
Aggregated Multicast with Inter-Group Tree Sharing ?

Aiguo Fei1, Junhong Cui1, Mario Gerla1, and Michalis Faloutsos2

1 Computer Science Department, University of California, Los Angeles, CA90095
2 Computer Science and Engineering, University of California, Riverside, CA 92521

Abstract. IP multicast suffers from scalability problems for large numbers of
multicast groups, since each router keeps forwarding state proportional to the
number of multicast tree passing through it. In this paper, we present and eval-
uateaggregated multicast, an approach to reduce multicast state. In aggregated
multicast, multiple groups are forced to share a single delivery tree. At the ex-
pense of some bandwidth wastage, this approach can reduce multicast state and
tree management overhead at transit routers. It may also simplify and facilitate
the provisioning of QoS guarantee for multicast in future aggregated-flow-based
QoS networks. We formulate the tree sharing problem and propose a simple intu-
itive algorithm. We study this algorithm and evaluate the trade-off of aggregation
vs. bandwidth overhead using simulations. Simulation results show that signifi-
cant aggregation is achieved while at the same time bandwidth overhead can be
reasonably controlled.

1 Introduction

Multicast is a mechanism to efficiently support multi-point communications. IP mul-
ticast utilizes a tree delivery structure on which data packets are duplicated only at
fork nodes and are forwarded only once over each link. Thus IP multicast is resource-
efficient in delivering data to a group of members simultaneously and can scale well to
support very large multicast groups. However, even after approximately twenty years
of multicast research and engineering effort, IP multicast is still far from being as
common-place as the Internet itself.

The deployment of multicasting has been delayed partly because of the scalability
issues of the related forwarding state. In unicast, address aggregation coupled with hier-
archical address allocation has helped to achieve scalability. This can not be easily done
for multicasting, since a multicast address corresponds to a logical group and does not
convey any information on the location of its members. A multicast distribution tree
requires all tree nodes to maintain per-group (or even per-group/source) forwarding
state, and the number of forwarding state entries grows with the number of “passing-
by” groups. As multicast gains widespread use and the number of concurrently active
groups grows, more and more forwarding state entries will be needed. More forwarding
entries translate into more memory requirements, and may also lead to slower forward-
ing process since every packet forwarding involves an address look-up. This perhaps
is the main scalability problem with IP multicast when the number of simultaneous
on-going multicast sessions is very large.
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Recognition of the forwarding-state scalability problem has prompted some recent
research in forwarding state reduction. Some architectures aim to completely eliminate
multicast state at routers [5, 9] using network-transparent multicast, which pushes the
complexity to the end-points. Some other schemes attempt to reduce forwarding state
by tunneling [11] or by forwarding-state aggregation [8, 10]. Apparently, less entries
are needed at a router if multiple forwarding state entries can be aggregated into one.
Thaler and Handley analyze the aggregatability of forwarding state in [10] using an in-
put/output filter model of multicast forwarding. Radoslavov et al. propose algorithms to
aggregate forwarding state and study the bandwidth-memory tradeoff with simulations
in [8]. Both these works attempt to aggregate routing state after the distribution trees
have been established.

We propose a novel scheme to reduce multicast state, which we callaggregated
multicast. The difference with previous approaches is that we force multiple multicast
groups to share one distribution tree, which we call anaggregated tree. This way, the
number of trees in the network may be significantly reduced. Consequently, forwarding
state is also reduced: core routers only need to keep state per aggregated tree instead
of per group. The trade-off is that this approach may waste extra bandwidth to deliver
multicast data to non-group-member nodes. Simulation results demonstrate that, the
more bandwidth we sacrifice, the more state reduction we can achieve. The management
policy and functional requirements can determine the right point in this trade-off. In our
earlier work [4], we introduced the basic concepts of aggregated multicast. In this paper,
we propose an algorithm to assign multicast groups to delivery trees with controllable
bandwidth overhead. We also propose a model to capture the membership patterns of
multicast users, which can affect our ability to aggregate groups. Finally, we study the
trade-off between aggregation versus bandwidth overhead using series of simulations.

The rest of this paper is organized as follows. Section 2 introduces the concept of
aggregated multicast and discusses some related issues. Section 3 then formulates the
tree sharing problem and presents an intuitive solution, and Section 4 provides a sim-
ulation study of our algorithm and cost/benefit evaluation. Finally Section 5 discusses
the implications and contributions of our work.

2 Aggregated Multicast

Aggregated multicast is targeted as an intra-domain multicast provisioning mechanism.
The key idea of aggregated multicast is that, instead of constructing a tree for each
individual multicast session in the core network (backbone), one can force multiple
multicast sessions share a single aggregated tree.

2.1 Concept

Fig. 1 illustrates a hierarchical inter-domain network peering. Domain A is a regional
or national ISP’s backbone network, and domain D, X, and Y are customer networks
of domain A at a certain location (say, Los Angeles). Domain B and C can be other
customer networks (say, in New York) or some other ISP’s networks that peer with A. A
multicast session originates at domain D and has members in domain B and C. Routers
D1, A1, A2, A3, B1 and C1 form the multicast tree at the inter-domain level while A1,
A2, A3, Aa and Ab form an intra-domain sub-tree within domain A (there may be other
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Fig. 1. Domain peering and a cross-domain multicast tree, tree nodes: D1, A1, Aa, Ab, A2, B1,
A3, C1, covering groupG0 (D1, B1, C1).

routers involved in domain B and C). The sub-tree can be a PIM-SM shared tree rooted
at an RP (Rendezvous Point) router (say, Aa) or a bi-directional shared CBT (Center-
Based Tree) tree centered at Aa or maybe an MOSPF tree. Here we will not go into
intra-domain multicast routing protocol details, and just assume that the traffic injected
into router A1 by router D1 will be distributed over that intra-domain tree and reaches
router A2 and A3.

Consider a second multicast session that originates at domain D and also has mem-
bers in domain B and C. For this session, a sub-tree with exactly the same set of nodes
will be established to carry its traffic within domain A. Now if there is a third multi-
cast session that originates at domain X and it also has members in domain B and C,
then router X1 instead of D1 will be involved, but the sub-tree within domain A still
involves the same set of nodes: A1, A2, A3, Aa, and Ab. To facilitate our discussions,
we make the following definitions. We callterminal nodes the nodes where traffic en-
ters or leaves a domain, A1, A2, and A3 in our example. We calltransit nodesthe tree
nodes that are internal to the domain, such as Aa and Ab in our example. Using the
terminology commonly used in DiffServ [2], terminal nodes are oftenedgerouters and
transit nodes are oftencorerouters in a network.

In conventional IP multicast, all the nodes in the above example that are involved
within domain A must maintain separate state for each of the three groups individu-
ally though their multicast trees are actually of the same “shape”. Alternatively, in the
aggregated multicast, we can setup a pre-defined tree (or establish on demand) that
covers nodes A1, A2 and A3 using a single multicast group address (within domain A).
This tree is called anaggregated tree(AT) and it is shared by more than one multicast
groups. We say an aggregated treeT coversa groupG if all terminal nodes forG are
member nodes ofT . Data from a specific group is encapsulated at the incoming terminal
node. It is then distributed over the aggregated tree and decapsulated at exiting terminal
nodes to be further distributed to neighboring networks. This way, transit router Aa and
Ab only need to maintain a single forwarding entry for the aggregated tree regardless
how many groups are sharing it. Furthermore, the use of aggregated multicast in one
domain is transparent to the rest of the network.

2.2 Discussion

Aggregation reduces the required multicast state in a straightforward way. Transit nodes
don’t need to maintain state for individual groups; instead, they only maintain forward-
ing state for a smaller number of aggregated trees. On a backbone network, core nodes



are the busiest and often they are transit nodes for many “passing-by” multicast ses-
sions. Relieving these core nodes from per-micro-flow multicast forwarding enables
better scalability with the number of concurrent multicast sessions.

The management overhead for the distribution trees is also reduced. First, there are
fewer trees that exchange refresh messages. Second, tree maintenance can be a much
less frequent process than in conventional multicast, since an aggregated tree has a
longer life span. The control overhead reduction improves the scalability of multicast
in an indirect yet important way.

The problem of matching groups to aggregated trees hides several subtleties. The
set of the group members and the tree leaves are not always identical. A match is a
perfect or non-leaky matchfor a group if all the tree leaves are terminal nodes for the
group, thus traffic will not “leak” to any nodes that are not group members. For example,
the aggregated tree with nodes (A1, A2, A3, Aa, Ab) in Fig. 1 is a perfect match for
our early multicast groupG0 which has members (D1, B1, C1). A match may also be a
leaky match. For example, if the above aggregated tree is also used for groupG1 which
only involves member nodes (D1, B1), then it is a leaky match since traffic forG1 will
be delivered to node A3 (and will be discarded there since A3 does not have state for
that group). A disadvantage of leaky match is that some bandwidth is wasted to deliver
data to nodes that are not members for the group (e.g., deliver multicast packets to node
A3 in this example). Leaky match may be unavoidable since usually it is not possible
to establish aggregated trees for all possible group combinations.

Aggregated multicast can be deployed incrementally and it can interoperate with
traditional multicast. First, we can invoke aggregation on a need-to basis. For example,
we can aggregate only when the number of groups in a domain goes over a thresh-
old. We can also choose to aggregate only when the aggregation causes reasonable
bandwidth overhead, as we will discuss in detail in later sections. Second, aggregated
multicast can co-exist with traditional multicast. Finally, the aggregation happens only
within a domain, while it is transparent to the rest of the network including neighboring
domains.

A related motivation for aggregated multicast is how to simplify the provisioning of
multicast with QoS guarantees in future QoS-enabled networks. Regarding QoS sup-
port, per-flow-based traffic management requirement of Integrated Services [3] does
not scale. Today people are backing away from it and are moving towards aggregated
flow based Differentiated Services [2]. The intrinsic per-flow nature of multicast may
be problematic for DiffServ networks especially in provisioning multicast with guaran-
teed service quality. Aggregated multicast can simplify and facilitate QoS management
for multicast by pre-assignment of resource/bandwidth (or reservation on demand) in a
smaller number of shared aggregated trees.

It is worth pointing out that our approach of “group aggregation” is fundamentally
different from the “forwarding-state aggregation” approaches in [8, 10]. We force multi-
ple multicast groups to share a single tree, while their approach is to aggregate multiple
multicast forwarding entries on each router locally. In a nutshell, we first aggregate and
then route, while they first route and then aggregate. Note that the two approaches can
co-exist: it is possible to further reduce multicast state using their approaches even after
deploying our approach.



3 The Tree Sharing Problem

To implement aggregated multicast, two main problems must be worked out first: (1)
what are the aggregated trees that should be established; (2) which aggregated tree is
to be used for a certain group. In this section, we will formulate the tree sharing prob-
lem and propose a simple and intuitive algorithm; in the next section, we will present
simulation results.

3.1 Why the Problem

If aggregated multicast is only used by an ISP to provide multi-point connections among
several routers that have heavy multicast traffic or that are strategically placed to carry
inter-domain multicast, then a few number of trees can be pre-established and the
matching (from group to a tree) is straightforward. The situation becomes complicated
if aggregated multicast is used to a greater extend and the network is large.

Given a network withn edge nodes (nodes that can be terminal nodes for a multicast
group), the number of different group combinations is about2n (=C2

n+C3
n+ ...+Cn

n =
2n − 1 − n, given that a group has at least two members), which grows exponentially
with n. For a reasonably large network, it doesn’t make sense to establish pre-defined
trees for all possible groups – that number can be larger than the number of possible
concurrently active groups. So we should and can only establish a subset of trees out
of all possible combinations. This is whereleaky match comes into play. Meanwhile,
if aggregated multicast is used as a general multicast provisioning mechanism, then it
becomes a necessity to dynamically manage and maintain aggregated trees since a static
set of trees may not be very resource efficient all the time as groups come and go. For
any solution one may have, the question is how much aggregation it can achieve and
how efficient it is regarding bandwidth use.

3.2 Aggregation Overhead

A network is modeled as an undirected graphG(V,E). Each edge(i, j) is assigned a
positive costcij = cji which represents the cost to transport unit traffic from nodei to
nodej (or from j to i). Given a multicast treeT , total cost to distribute a unit amount
of data over that tree is

C(T ) =
∑

cij , link (i, j) ∈ T. (1)

If every link is assumed to have equal cost, tree cost is simplyC(T ) = |T | − 1, where
|T | denotes the number of nodes inT .

Given a multicast groupg and a treeT , we say treeT coversgroupg if all members
of g are in-tree nodesof T (i.e., in the vertex set ofT ). If a groupg is covered by a
treeT , then any data packets delivered overT will reach all members ofg, assuming
a bi-directional tree. In a transport network, members ofg are not necessarilygroup
member routers(i.e., designated router with hosts in its subnet as group members), but
rather they are edge routers connecting to other in-tree routers in neighboring domains.



Now consider a network in which routing algorithmA is used to setup multicast
trees. Given a multicast groupg, let TA(g) be the multicast tree computed by the rout-
ing algorithm. Alternatively, this group can be covered by a aggregated treeT (g), ag-
gregation overheadis defined as

∆(T, g) = C(T (g))− C(TA(g)). (2)

Aggregation overhead directly reflects bandwidth waste if treeT (g) is used to carry
data for groupg instead of the conventional treeTA(g) with encapsulation overhead
not counted; i.e., bandwidth waste can be quantified asDg × ∆(T, g) if the amount
of data transmitted isDg. Note that,TA(g) is not necessarily the minimum cost tree
(Steiner tree). Therefore, the aggregated treeT (g) may happen to be more efficient
thanTA(g), and thus it is possible for∆(T, g) to be negative.

3.3 Two Versions of the Problem

Static Pre-Defined Trees In this version of the problem, we are given: a network
G(V,E), tree cost modelC(T ), a set ofN multicast groups, and a numbern (N >>
n). The goal is to findn trees (each of them covers a different node set) and a match-
ing from a groupg to a treeT (g) such that every groupg is covered by a treeT (g),
with the objective of minimizing total aggregation overhead. This is the problem we
need to solve to build a set of pre-defined aggregated trees based on long-term traffic
measurement information.

In reality, different groups may require different bandwidth and have different life
time. Eventually they transmit different amounts of data (to all members, assumed).
Aggregation overhead would beDg ×∆(T, g) for groupg which transmitsDg amount
of data. However, ifDg is independent of group size and group membership, then sta-
tistically the end effect will be the same if all groups are treated as if they have the same
amount of data to deliver. Then the total aggregation overhead is simply

∑
g ∆(T, g).

An average percentage overheadcan be defined as

δA =

∑
g ∆(T, g)∑

g C(TA(g))
=

∑
g C(T (g))∑

g C(TA(g))
− 1. (3)

Dynamic Trees The dynamic version of the problem is more meaningful for practical
purposes. In this case, instead of a static set of groups, groups dynamically come and
go. Our goal is to find a procedure to generate and maintain (establish, modify and tear
down) a set of trees and map a group to a tree when the group starts, while minimizing
the percentage aggregation overhead.

If an upper bound is put on the number of trees that are allowed simultaneously,
apparently the procedure in the dynamic tree matching problem can be used to solve
the static tree matching problem: the given set of (static) groups are brought up one by
one (without going down) and the dynamic tree matching procedure is used to generate
trees and do the mapping; the resulting set of trees and the corresponding mapping are
the solution (for the static tree sharing problem).

In the static case, the number of groups given is finite and assumed to beN . In the
dynamic case, similarly we can specifyN to be the average or maximum number of



concurrently active groups. In both the static and dynamic problems,N andn (num-
ber of trees allowed) affect aggregation overhead. Intuitively, the closern to N , the
smaller the overhead will be. Whenn = N , the overhead can be0 since each group can
be matched to the tree computed by the routing algorithm. The question is if we can
achieve meaningful aggregation (N >> n) while bandwidth overhead is reasonable.

3.4 Dynamic Tree Sharing with Aggregation Overhead Threshold Control

Here we present a solution for the dynamic tree sharing problem with the percentage
aggregation overhead statistically controlled under a given threshold.

First we introduce some notations and definitions. LetMTS (multicast tree set)
denote the current set of multicast trees established in the network. LetG(T ) be the
current set of active groups covered by treeT ∈ MTS. BothMTS andG(T ) evolve
with time, and the time parameter is implied but not explicitly indicated. For eachT ∈
MTS, an average aggregation overhead forT is kept as

δ̃(T ) =

∑
g in G(T ) ∆(T, g)∑

g in G(T ) C(TA(g))
=

|G(T )| × C(T )∑
g in G(T ) C(TA(g))

− 1, (4)

and is updated every timeG(T ) changes.|G(T )| denotes the rank of setG(T )(or, the
number of groups covered byT ). At a certain timet, the average aggregation overhead
for all groupsδA(t)(δA at timet) can be computed from̃δ(T, t)(δ̃(T ) at timet). If tree
T is used to cover groupg, the percentage aggregation overhead for this match is

δ(T, g) =
C(T )− C(TA(g))

C(TA(g))
. (5)

Let δ̃′(T, g) denote the average aggregation overhead if groupg is covered byT and is
to be added toG(T ), then

δ̃′(T, g) =
(|G(T )|+ 1)× C(T )∑
gx in {G(T ),g} C(TA(gx))

− 1 =
(|G(T )|+ 1)× C(T )

|G(T )|×C(T )

1+δ̃(T )
+ C(TA(g))

− 1. (6)

When a new multicast session goes on with group member setg, there are three
options to accommodate this new group: (1) an existing tree coversg and is used to
distribute packets for this new session; (2) an existing tree is extended to cover this
group; (3) a new tree is established for this group.

Let bt be the given bandwidth overhead threshold. The goal is to control (statisti-
cally) the total percentage overhead to beδ̃(T ) < bt, for eachT ∈ MTS, or δA < bt

(which is a weaker requirement).The following procedure determines how one of the
above options is used:

(1) compute the “native” multicast treeTA(g) for g(e.g., using shortest-path tree
algorithm as in MOSPF);

(2) for each treeT in MTS, if T coversg, computẽδ′(T, g); otherwise compute an
extended treeT e to coverg and then computẽδ′(T e, g); if δ̃′(T, g) < bt or δ̃′(T e, g) <
bt, thenT or T e is considered to be a candidate (to coverg);



(3) among all candidates, choose the one such thatC(T ) or C(T e) + |G(T )| ×
(C(T e)−C(T )) is minimum, denote is asTm; Tm is used to coverg, updateMTS (if
Tm is an extended tree),G(Tm), andδ̃(Tm);

(4) if no candidate found in step (2),TA(g) is used to coverg and is added toMTS

and correspondinglyG(TA(g)) andδ̃(TA(g)) are recorded.
To extend treeT to cover groupg (step (2)), a greedy strategy similar to Prim’s

minimum spanning algorithm [6] can be employed to connectT to nodes ing that are
not covered, one by one.

Since each group has a limited life time, it will not be using a tree after that. A simple
clean-up procedure can be applied when a group goes off: when a multicast sessiong
goes off,g is removed fromG(T ) whereT is the tree used to coverg; if G(T ) becomes
empty, thenT is removed fromMTS; T is pruned recursively for nodes no longer
needed in the tree;G(T ) andδ̃(T ) are updated. A node is no longer needed in treeT if
it is a leaf and is not a member of any groupg ∈ G(T ).

In the above algorithm description, we have assumed treeT is a bi-directional tree
so that it can be used to cover any group whose members are all in-tree nodes ofT .
Apparently we can enforce that each tree is source-specific and each group needs to
specify a source node, and the above algorithm still applies except that we may turn out
to have more trees.

Bandwidth-Aware Aggregation. In all the aggregation overhead definitions we
had above, bandwidth requirement of a multicast session is not considered. This is in
agreement with today’s IP multicast routing architecture where a group’s bandwidth
requirement is unknown to the routing protocols. At the same time, we assumed both
bandwidth requirement and lifetime of a group are independent of the group size and
member distribution. If bandwidth requirement is given for each multicast session (e.g.,
in future networks with QoS guarantee), the above algorithms can be extended to con-
sider the bandwidth in a straightforward way. Due to space limitation, we do not present
this formulation here.

3.5 Performance Metrics

We use the following metrics to quantify the effectiveness of an aggregation method.
Let N(t) be the number of active multicast groups in the network at timet and

M(t) the number of trees,aggregation degreeis defined as

AD(t) =
N(t)
M(t)

. (7)

AD is an important indication of tree management overhead reduction. For example,
the number of trees that need periodical refresh messages to keep state is reduced from
N to N

AD .
Average aggregation overheadis

δA(t) =

∑
g C(T (g))∑

g C(TA(g))
− 1 =

∑
T∈MTS |G(T )| × C(T )∑

T∈MTS
|G(T )|×C(T )

1+δ̃(T )

− 1, (8)

as defined in last subsection.δA reflects the extra bandwidth wasted to carry multicast
traffic using shared aggregated trees.



Without loss of generality, we assume that a router needs one routing entry per
multicast address in its forwarding table. Here we care about thetotal number of state
entries that are installed atall routers involved to support a multicast group in a network.
In conventional multicast, the total number of entries for a group equals the number of
nodes|T | in its multicast treeT (or subtree within a domain, to be more specific) – i.e.,
each tree node needs one entry for this group. In aggregated multicast, there are two
types of state entries: entries for the shared aggregated trees and group-specific entries
at terminal nodes. The number of entries installed for an aggregated treeT equals the
number of tree nodes|T | and these state entries are considered to beshared by all
groupsusingT . The number of group-specific entries for a group equals the number of
its terminal nodes because only these nodes need group-specific state.

Furthermore, we also introduce the concept ofirreducible state and reducible
state: group-specific state at terminal nodes isirreducible . All terminal nodes need
such state information to determine how to forward multicast packets received, no mat-
ter in conventional multicast or in aggregated multicast. For example, in our early ex-
ample illustrated by Fig. 1, node A1 always needs to maintain state for groupG0 so
it knows it should forward packets for that group received from D1 to the interface
connecting to Aa and forward packets for that group received from Aa to the interface
connecting to node D1 (and not X1 or Y1), assuming a bi-directional inter-domain tree.

Given a set of groupsG, if each groupg is serviced by a treeTA(g), then the total
number of state entries is

NA =
∑
g∈G

|TA(g)|. (9)

Alternatively, if the same set of groups are serviced using a set of aggregated trees
MTS, the total number of state entries is

NT =
∑

T∈MTS

|T |+
∑
g∈G

|g|, (10)

where|T | is the number of nodes inT , and|g| is the group size ofg. The first part of
( 10) represents the number of entries to maintain for the aggregated trees, while the
second part denotes the number of entries that source and exit nodes of a group need
to maintain in order to determine how to forward and handle multicast data packets.
Overall state reduction ratio can be defined as

ras = 1− NT

NA
= 1−

∑
T∈MTS |T |+

∑
g∈G |g|∑

g∈G |TA(g)|
. (11)

A better reflection of state reduction achieved by our “group aggregation” approach,
however, is thereducible state reduction ratio, which is defined as

rrs = 1−
∑

T∈MTS |T |∑
g∈G(|TA(g)| − |g|)

; (12)

i.e., the total number of entries needed to be maintained by transit nodes has been re-
duced from

∑
g∈G(|TA(g)| − |g|) to

∑
T∈MTS |T |.

Another metric calledhit ratio is defined as

HR(t) =
number of groups covered by existing trees

total number of groups
=

Nh(t)
Nt(t)

. (13)



BothNh andNt are accumulated from time 0 (start of simulation) to timet. The higher
HR(t), the less often new trees have to be setup to accommodate new groups. Similarly
extend ratio is defined as

ER(t) =
number of groups covered by extended trees

total number of groups
=

Ne(t)
Nt(t)

. (14)

The “cost” to extend an existing is expected to be lower than setting-up a new tree.
Percentage of groups that require to establish new trees is1−HR−ER, up to timet.

4 Simulation Studies

In this section, we evaluate our approach by studying the trade-off between aggregation
and bandwidth overhead using simulations. We find that we can achieve significant
aggregation for reasonable bandwidth overhead. We attempt to test our approach in a
wide variety of scenarios. Given the absence of large scale real multicast traces, we
are forced to develop membership models that exhibits a locality and correlated group
preferences.

4.1 Multicast Group Models

The performance of any aggregation is substantially affected by the distribution of mul-
ticast group members in the network. Currently multicast is not widely deployed and
its usage has been limited, thus, trace data from real multicast sessions is limited and
can only be considered as an indication of multicast patterns in large scale multicast.
We develop and use the following different models to generate multicast groups.

In most multicast routing research literature, members of a multicast group are ran-
domly chosen among all nodes. In this model, not only group members are assumed
to be uncorrelated, but all nodes are treated the same as well. This well reflects mem-
ber distribution of many applications, such as Internet gaming, but not all of them. In
some applications, members tend to cluster together; for example, an Internet broad-
cast of Laker’s basket ball game is watched by its local fans around Los Angeles area.
Inter-group correlation is also an important factor; for example, members of a multicast
group might tend to be in another group as well [12]. Neither does this model reflect the
fact that not all nodes in the network are equivalent. For example, consider two nodes in
MCI’s backbone network: one is in Los Angeles and the other one is in Santa Barbara. It
is very likely that the LA node has much more multicast sessions going through it than
that of the Santa Barbara node given that MCI has a much larger customer base in LA.
Besides, there can be historic correlation of group distribution among network nodes as
well. For example, a customer company of MCI’s Internet service has three locations
in LA, Seattle and Houston, which are connected through MCI’s backbone. There are
often video conferences among these three sites, and when there is one, MCI’s routers
at the three places will be in a multicast session.

From the above discussions, to model multicast group distribution, the following
factors have to be considered: (1) member distribution within a group (e.g., spread or
clustered); (2) inter-group correlation; (3) node difference in multicast participation; (4)
inter-node correlation; (5) group size distribution; i.e, how often we tend to have very
small groups or very large groups. Factor (5) has been not discussed above, but clearly



it is very important as well. Several models are described in [12] where factors (1) and
(2) are considered. The terms of affinity and disaffinity are used in [7] to describe the
clustering and spreading out tendencies of members within a group.

In our work, we use thenode weightedframework which incorporates the differ-
ence among network nodes (factor (3)). In this framework, each node is assigned a
weight representing the probability for that node to be in a group. We have two models
to generate groups based on node weight assignment, which gives rise to two different
models.

The random node-weighted model.This model statistically controls the number
of groups a node will participate based on its weight: for two nodesi andj with weight
w(i) andw(j) (0 < w(i), w(j) ≤ 1), let N(i) =the number of groups that havei as a
member andN(j) =the number of groups that havej as a member, thenN(i)

N(j) = w(i)
w(j)

in average. Assuming the number of nodes in the network isN and nodes are numbered
from 1 toN . For each nodei, 1 ≤ i ≤ N , it is assigned a weightw(i), 0 ≤ w(i) ≤ 1.
Then a group can be generated as the following procedure:

for i = 1 to N do
generate a random number between 0 and 1, let it be p
if p < w(i) then

add i as a group member
end if

end for
The group-size controlled model. In this model, we want to have more accurate

control over the size of the groups we generate. For this reason, we use the following
procedure to generate groups with a given group size that follows a given probability
mass function pmfpX(x):

generate group sizen according topX(x)
while the number of member is less thann do

randomly pick up a non-member, let it be i
generate a random number between 0 and 1, let it be p
if p < w(i) then

add i as a group member
end if

end while
This model controls the group-size distribution; however, nodes no longer participate
in groups according to their weights (i.e., we no longer haveN(i)

N(j) = w(i)
w(j) in average).

4.2 Simulation Results

We present results from simulation using a network topology abstracted from a real
network topology, AT&T IP backbone [1], which has a total of 123 nodes: 9 gateway
routers, 9 backbone routers, 9 remote GSR (gigabit switch router) access router, and 96
remote access routers.

The abstract topology is constructed as follows. First, we “contract” all the attached
remote access routers of a gateway router or a backbone router into one node (connect-
ing to the original gateway/backbone router), which is called acontracted node. Since
a gateway router in the backbone represents connectivity to other peering network(s)
and/or Internet public exchange point(s), a neighbor node calledexchange nodeis



added to each gateway router to represent such external connectivity. The result is a
simplified network with 54 nodes. Among these nodes, gateway nodes (9 of them) and
backbone nodes (9 of them) are assumed to becore routersonly (i.e., will not be ter-
minal nodes for any multicast group) and are assigned weight 0. Each access router is
assigned weight 0.01, and a “contracted” node’s weight is the summation of the weights
of all access routers from which it is contracted. Exchange nodes are assigned weight
ranging from 0.1 to 0.9 in different simulation runs.

In simulation experiments, multicast connection requests arrive as a Poisson process
with arrival rateλ. Each time a connection comes up, all group members are specified.
Group membership is generated using the node weighted framework discussed in Sec-
tion 4.1. Connections’ life time has a Poisson distribution with averageµ. At steady
state, average number of connections isN̄ = λ×µ. The algorithm specified in last sec-
tion is used to establish/mantain trees and map a group to a tree. The routing algorithm
A is shortest-path tree algorithm with root randomly chosen from all group members.
Performance data is collected at certain time points (e.g., atT = 10µ), when stead state
is reached, as “snapshot”.
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Fig. 2. Aggregation vs. bandwidth overhead threshold, groups are generated using group-size-
controlled model.

In our first experiment, an exchange node is assigned a weight 0.25 or 0.9 according
to link bandwidths of the original gateway– the rationale is that, the more the bandwidth
on the outgoing (and incoming) links of a node, the more the number of multicast
groups it may participate. Groups are generated using the group-size-controlled model.
Group size is uniformly distributed from 2 to 36 and the average number of concurrently
active groups isλµ = 1000. Fig. 2 shows the results of aggregation degree (a), state
reduction (b) and hit/extend ratios (c) vs. bandwidth overhead threshold. We can see
that, aggregation degree increases as the bandwidth threshold is increased – if we are
willing sacrifice more bandwidth, we can accommodate more multicast groups into
a shared aggregated tree. Apparently this agrees with our intuition. Fig. 2(b) shows
that, overall state reduction ratio and reducible state ratio also increase with bandwidth
overhead threshold – as we squeeze more groups into an aggregated tree, we need fewer
trees and achieve more state reduction. Fig. 2(c) tells us that, hit ratio goes up and
extend ratio goes down with increasing threshold. This is consistent with the trend of
other metrics (aggregation degree and state reductions). When more groups can share
an aggregated tree, it is more likely for an incoming group to be covered by an existing
tree and thus it becomes less often to setup new trees or extend existing trees.
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Fig. 3. Aggregation vs. maximum size of multicast groups, groups are generated using group-
size-controlled model.

In our second experiment, we keep the bandwidth overhead threshold at a fixed
value (=0.3 for results presented here) and vary the upper bound of group size (still
uniformly distributed with lower bound 2) while keep all other parameters the same as
in the first experiment. The results in Fig. 3 demonstrate the effect of group size on
aggregation: if there are more larger groups, then we can aggregate more groups into
sharing trees. As groups become larger, so do their multicast trees. A larger tree can
“cover” more groups than a smaller one under the same overhead threshold (i.e., there
are more subtrees of a larger tree within that threshold).
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Fig. 4. Aggregation vs. weight of exchange nodes, groups are generated using group-size-
controlled model.

We want to see how node weight affects aggregation. Here we also keep the band-
width overhead threshold at a fixed value (=0.3 for results presented here) and group
size is uniformly distributed from 2 to 36. All other parameters are the same as in our
first experiment, while we vary the weight ofexchange nodesfrom 0.1 to 0.9. The re-
sults are shown in Fig. 4. The higher the weight of a node, the larger the number of
groups it may participate. As we increase the weights of thoseexchange nodes, multi-
cast groups are more likely to “concentrate” on these nodes, and better aggregation is
achieved as the results show.

The same set of experiments are also conducted using the random node-weighted
model. In Fig. 5, we plot the results of an experiment similar to our first one. The
results demonstrate similar trends, although the actual values differ. Note that the state
reduction seems to be comparable.

We also examine how the aggregation scales with the (statistic average) number of
concurrent groups. We run simulations with differentλµ products while keep all other
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Fig. 5.Aggregation vs. bandwidth overhead threshold, groups are generated using random model.

parameters fixed. Fig. 6 plots the results for two different bandwidth overhead thresh-
olds. It is no surprise that as more groups are pumped into the network, the aggregation
degree increases – in average, more groups can share an aggregated tree. The scaling
trend is encouraging: as the average number of (concurrent) groups is increased from
1000 to 9000, the number of aggregated trees is increased from 29 to 46 only (with
bandwidth overhead threshold 0.3). At the same time, reducible state reduction ratio is
getting close to 1.
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Fig. 6.Aggregation vs. concurrent group number, groups are generated using random model.

To summarize, we observe that the state reduction can be significant up to 50% for
the overall state. Furthermore, we can get significant reduction even for small bandwidth
overhead. Finally, our approach has the right trend: the state-reduction increases as
the number and the size of groups increase. This way, the aggregation becomes more
effective when it is really needed.

We also have to warn the limitations of such simulation studies. As we have found,
multicast group models (size distribution and member distribution as controlled by node
weights) can significantly affect aggregation; thus how aggregated multicast is going to
work out in real networks depends a lot on such factors in practice. Therefore, it is im-
portant to develop realistic multicast scenarios to evaluate any aggregation approach.

5 Conclusions and Future Work

We propose a novel approach to address the problem of multicast state scalability. The
key idea of aggregated multicast is to force groups into sharing a single delivery tree.
This comes in contrast to other forwarding-state aggregation approaches that first create



multiple trees and then try to aggregate the state locally on each router. A key concept
in our approach is that it sacrifices bandwidth to reduce the routing state.

Our work could be summarized in the following points:

– We introduce the concept of aggregated multicast and discuss several related issues.
– We formulate the tree sharing problem and present a simple and effective algorithm

to establish aggregated trees and dynamically match groups with existing trees.
– We propose performance metrics that can be used to evaluate our approach.
– We show that our approach seems to be very promising in a series of simulation ex-

periments. We can achieve significant state aggregation (up to 50%) with relatively
small bandwidth overhead(10% to 30%).

Our work suggests that the benefits of aggregated multicast lie in the following two
areas: (1) control overhead reduction by reducing the number of trees needed to be
maintained in the network; (2) state reduction at core nodes. While the price to pay for
that is bandwidth waste. Our simulation results confirm our claim while demonstrate
the following trends: (1) as we are willing to sacrifice more bandwidth (by increasing
the bandwidth overhead threshold), more or better aggregation is achieved; (2) better
aggregation is achievable as the number and size of concurrent groups increases. The
last is specially important since one basic goal of aggregated multicast is to achieve
better scalability regarding the number of concurrent groups.

FUTURE WORK. Our scheme simplifies multicast management and could lend
itself to a mechanism of QoS provisioning and multicast traffic engineering with the
appropriate use of DiffServ or MPLS. We find that this by itself could be a sufficient
motivation for studying aggregated multicast.
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