
COMPILED HARDWARE ACCELERATION OF MOLECULAR DYNAMICS CODE

Jason Villarreal and Walid A. Najjar

Department of Computer Science and Engineering
University of California, Riverside

{villarre, najjar}@cs.ucr.edu

ABSTRACT

The objective of Molecular Dynamics (MD) simulations is
to determine the shape of a molecule in a given biomolecular
environment. These simulations are very demanding computa-
tionally, where simulations of a few milliseconds can take days
or months depending on the number of atoms involved. There-
fore, MD simulations are a prime candidate for FPGA-based
code acceleration. We have investigated the possible acceler-
ation of the commonly used MD program NAMD. This code
is highly optimized for software based execution and does not
benefit from an FPGA-based acceleration as written. We have
therefore developed a modified version, based on the calcu-
lations NAMD performs, that streams a set of data through
a highly pipelined circuit on the FPGA. We have used the
ROCCC compiler toolset to generate the circuit and imple-
mented it on the SGI Altix 4700 fitted with a RASC RC100
blade.

1. INTRODUCTION

The objective of Molecular Dynamics (MD) simulations is to
determine the shape of a molecule in a given biomolecular
environment. MD simulations are based upon the use of a
molecular mechanics force field and the availability of three-
dimensional structural templates derived using crystallographic
data (from X-ray or neutron diffraction) or nuclear magnetic
resonance (NMR) data. The force field is based on a potential
energy function that accounts for all pairwise interactions of
a biomolecular system. This potential energy function is used
to simultaneously solve Newton’s equations of motion for all
atoms of the biomolecular system.

Current processors barely allow for molecular dynamics
simulations up to microsecond timescales, using explicit sol-
vation models and atomic resolution. Atomic-level resolution
and the presence of explicit solvent molecules are necessary
for a realistic physiochemical representation of the biomolec-
ular system. Another limiting factor is the size of the simulated
system. Although the first molecular dynamics simulation was
performed for a protein of a mere 500 atoms in 1976, the bio-
logically interesting systems of today involve 104-106 atoms.
There is a great need to increase both the size of the simulated
systems and the accessible timescales. The size should resem-
ble the actual physically functional systems, as biomolecules

do not act alone, but form large complexes and multicompo-
nent assemblies. The timescale is important to address un-
solved fundamental problems, such as protein folding, but also
the driving principles of biomolecular interactions.

Dedicated hardware solutions are being developed [7], but
such solutions are extremely expensive and impractical for many
researchers. Companies and researchers would like to have
the flexibility of a software solution that allows researchers the
ability to tune the accuraccy versus time and perform different
approximations.

Field programmable gate arrays (FPGAs) provide a mid-
dle ground between flexible software and dedicated hardware.
Specific parallel portions of reliable molecular dynamics soft-
ware packages could be implemented on FPGAs providing the
speedup of hardware without sacrificing the flexibility in the
software package.

FPGAs are efficient when massive fine-grained parallelism
can be exploited and large data driven pipelines can be created.
Implementations on FPGAs have all the advantages of custom
hardware, such as creating a datapath with a nonstandard bit-
width without any overhead, but run at a much slower clock
rate than a standard processor.

Recently, Strenski [12] has shown that FPGAs are now ca-
pable of outperforming a dual core 2.5 GHz Opteron on double
precision floating point operations. FPGAs performance, how-
ever, is limited by the memory bandwidth and requires both
streams of data for input and output in order to be effective.

The difficulty in using FPGAs is in programming the sys-
tem and translating sequential computing systems into an equiv-
alent and efficient spatial implementation. This difficulty comes
from the very different programming and optimization strate-
gies for a sequential processor. Most high performance sys-
tems, such as the molecular dynamics simulations we exam-
ined, are heavily optimized for a particular microprocessor ar-
chitecture, such as supercomputer systems, and not suited for
a completely different paradigm. The memory model in these
software solutions assumes communication through a shared
memory and has heavy use of random accesses to memory
which are hidden by the cache architecture. FPGAs have no
caching architecture and accesses to memory are extremely
expensive, making the optimized software not amenable to a
hardware implementation as written. We overcome the dif-
ficulty of programming FPGAs by automatically compiling
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hardware from sections of code in the original systems using
the ROCCC compiler [1]. The ROCCC compiler allows us to
change a small portion of the original implementation in C and
generate a hardware co-processor, with the rest of the software
remaining unchanged.

NAMD [8] is a popular MD software package. We have
studied this package extensively with the objective of accel-
erating their most frequently executed code segment on FP-
GAs. In this paper, we report that NAMD is so finely opti-
mized for a sequential software execution that no speedup can
be achieved from an FPGA-based acceleration of the most fre-
quently executed loop. We offer an extensive analysis of the
code as well as a quantitative evaluation of the obstacles to ac-
celeration. We have developed our own implementation, based
on the NAMD approach, that we have compiled with ROCCC
and implemented on a Xilinx Virtex 4 LX200 on the SGI Altix
RASC RC100 blade. Our results show that the main bottleneck
is the data bandwidth in and out of the FPGA. This bottleneck
is shown to reduce the throughput by a factor of three.

Acceleration of MD algorithms has been looked at previ-
ously in [9], [11], [10], and others. This papers differs from
the previous works in several aspects. We report on an ex-
tensive analysis of why the acceleration would not succeed on
standard software codes. Based on this analysis we have de-
veloped a code structure that is more suitable for FPGA-based
code acceleration. We use ROCCC, a C to VHDL compiling
tool, to generate the hardware mapped to the FPGAs. We ana-
lyze the I/O bottleneck on the FPGA in the SGI RASC RC 100
blade.

2. MOLECULAR DYNAMICS

In this section, we describe how the basis of molecular dy-
mamics is reflected in NAMD and how the most frequently
executed region is structured. We also explore the specific im-
plementation details chosen in NAMD.

2.1. Basis of Molecular Dynamics

The main algorithm in molecular dynamics simulations is the
calculation and summation of all forces between all atoms at
each timestep. A typical timestep is one femtosecond (10−15

second). The calculations performed in molecular dynamics
break down into two main categories, bonded forces and non-
bonded forces. Bonded forces refer to the forces between all
the atoms in the same molecule while nonbonded forces, which
are much more extensive, refer to the set of forces between
atoms in different molecules or different sections of large molecules.

The nonbonded forces are the most computationally in-
tensive section of molecular dynamics simulations [9] and are
based upon several physical formulations. These formulations
include the Lennard-Jones Potential, which calculates both the
attractive Van Der Waal force at long distances and the repul-
sive force at close distances, and the Coulombic forces, which
calculate the electrostatic attraction and repulsion between two
atoms.

The Lennard-Jones potential is shown in equation 1. σ
and ε are both constants based upon the types of the two atoms
being compared while r represents the distance between them.

u(r) = 4ε
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Equation 2 shows the equation necessary to compute the
Coulombic forces. In this equation, ε is again a constant based
upon the types of atoms (different from the ε in Equation 1),
r is the distance between the atoms, and q1 and q2 are the
charges of the respective atoms.

F =
(q1 ∗ q2)
4επ ∗ r2 (2)

The values of ε and σ are typically calculated before com-
pilation and stored in a table which is only indexed during the
execution of the program. The value r must be computed for
every pair of atoms at every timestep based upon the x, y, and
z coordinate of the atoms.

All of these values are real numbers and are typically rep-
resented in software using single precision or double preci-
sion floating point numbers. The calculation of these forces,
then, requires many floating point computations which must
be scheduled in limited hardware on a sequential processor.

In software, in order to conserve time, many computations
are not performed. The long-range forces are typically ap-
proximated using methods such as Ewald summation or the
smooth particle mesh Ewald summation, both of which aggre-
gate collections of atoms over long distances into one entity
and assume a regular structure. These methods trade off accu-
racy for speed, but do so on the long range interactions, which
contribute very little to the total forces. In the C code, these
formulations translate into different floating point calculations
that replace the basic Coulomb equations.

Another time saving optimization is the use of distance
based cutoffs in software. Atoms beyond a user defined cutoff
are approximated using one of the methods described above,
whereas atoms that are closer will have the full computation
performed.

2.2. NAMD

NAMD (NAnoscale Molecular Dynamics) [8] is a popular molec-
ular dynamics simulation implementation. The structure of
NAMD is highly optimized for execution on supercomputers
and multiprocessor systems.

The general execution flow of NAMD is shown in Figure
1. The main iteration per timestep involves first picking an
atom and then arranging all other atoms into lists dependant
on the distance. There are 60 distinct ranges that an atom can
fall into, and different calculations are performed based upon
the range. Each list is determined before the loop body that
calculates the forces and used as input to that loop body. Most
of the lists are not filled and one loop instance accounts for
approximately 80% of the nonbonded force calculation time.

While the number of floating point operations in each loop
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for all timesteps
{ for A in all atoms
{

for C in all cutoff values
{

Create list L of all atoms within C ;
for all B in L

Compute forces between A and B ;
}
}
}

Fig. 1. NAMD Nonbonded Computation Execution. Cutoffs
are user defined or precalculated.

Fig. 2. Distribution of data set size per invocation of our hard-
ware accelerator. Data sets of size zero are excluded. Over
83% of all calls are with less than 100 data elements.

body varied from 39 to over 135, the one loop instance that
accounted for the most computation time contained 52 float-
ing point operations and calculated the Lennard-Jones Poten-
tial and Coulombic forces as described in the previous section.
We previously converted this loop instance into hardware by
using ROCCC in [14].

3. FPGA ACCELERATION OF MD

3.1. Experience with NAMD

We replaced the original frequently executed loop of NAMD
in the software with a call to our hardware. We ran this combi-
nation on an SGI Altix 4700 with RASC blade, but the re-
sults were not as expected. The software with a hardware
co-processor did not accelerate the program, but actually ran
16,200X slower than the original software implementation on
a single CPU.

While exploring the cause of this slowdown, we noted that

each hardware activation takes approximately 2 milliseconds
of setup and memory transfer. The circuit itself was running
at 100 MHz, but required 15 floating point values per loop it-
eration. The available bandwidth into the FPGA was 128 bits
per cycle, so a total of 4 cycles was required before the start of
the pipeline could be filled. With this information, we deter-
mined that we would need 50,000 data elements before the 2
millisecond overhead accounted for half of the time accessing
the hardware. The RASC blade is capable of running multi-
ple clocks, however, and should be able to retrieve data with
a clock rate of 200 MHz, making certain the co-processor is
fed twice as fast. With a dual clock scheme, we would need to
transfer 25,000 data elements before the overhead accounted
for half of the time accessing the hardware.

After analysing the data transfer pattern, we determined
that even though this section of code was the most frequently
executed, there were a very low number of iterations per exe-
cution. As shown in Figure 2, 24% of all calls to the hardware
sent less than 10 data elements and over 83% sent less than
100 elements. These numbers were observed when running
the apoa dataset, a representative molecular dynamics dataset,
and correlate directly with the amount of data sent to the hard-
ware. Note that this does not include the amount of times the
hardware was called with zero data elements, in those cases
we did not transfer control to the hardware. The total number
of invocations with any data elements is only approximately
29%.

3.2. A Streamed Data Implementation

A kernel that performs the same calculations as the popular
software described above, but benefits from hardware acceler-
ation would be ideal. In order for acceleration to occur, the
data must be streamed into the FPGA. In order to stream the
data, we bring together the distance calculations as well as the
LJ potential and Coulomb forces so we don’t have to perform
any cutoffs calculations.

In hardware, the most efficient way of performing the force
calculations and summations is not clear. The massive amount
of parallelism provided by hardware may make it more benefi-
cal to always calculate the full forces every timestep than to
use an approximation method consisting of more hardware
components. Our hardware implementation is based upon the
base Coulomb forces and LJ potential, which are the most fre-
quently executed instructions in NAMD.

We found that as written, current popular implementations
of molecular dynamics code can not be accelerated through
the use of a hardware co-processor that simply replaces the
most frequently executed region in software. Based off of this
knowledge, we implemented a version of the common calcu-
lations that was amenable to hardware acceleration. The flow
of our implementation is shown in Figure 3.

The code we wrote stores the X, Y, Z coordinates as well
as the current charge of an atom in a structure and all atom
instances are stored in an array of these structures. The cal-
culations performed in the hardware operate on pairs of atoms
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for each timestep
{

Stream every pair of atoms to the FPGA ;
// In Hardware
Compute LJ potential and Coulombic forces on pairs;
// In Software
Accumulate all forces over original atom list ;
}

Fig. 3. Execution flow of streamlined nonbonded computation

and the pipeline requires two atoms per clock cycle. In addi-
tion to the data stored in each atom, the constants ε and σ need
to be determined. Currently, we look these up in a table in
software and pass them into the hardware along with the atom
data, but this could also be performed in hardware.

In the first step, our code creates a stream of atom pairs by
pairing and packing all atoms together. In contrast to software,
we do not pass pointers around, but instead create a reorga-
nized array that acts as a stream of atom pairs that we send to
the hardware.

Because we are not working on the original atom data
in place, but rather many copies of the original atoms, this
data needs to be accumulated, which is handled by our third
pass. Traversing the output stream in the same order the orig-
inal stream was assembled, we update the original atom list in
place. Once the update is done, we can move on to the next
timestep and repeat this process.

3.3. Hardware Implementation

The software implementation we created was passed through
ROCCC and generated hardware. We only took the second
section of our code, the floating point computations, into hard-
ware. The first and third sections of our code were identical
in the software and hardware-accelerated versions. We used
single precision floating point numbers in both software and
hardware.

Table 1 summarizes the structure of the hardware accel-
erator that was created. The accelerator fits in 31,292 slices,
which corresponds to 35% of the LX200 FPGA located on the
RASC blade. The hardware consists of 27 floating point op-
erations in a 125 stage pipeline, with the pipeline expecting
12 floating point numbers each iteration. The clock speed we
achieved was 100 MHz.

We are able to transfer large amounts of memory back and
forth from the hardware because we make no distinction be-
tween different cutoffs and create a very large stream of data.
For instance, if we have 1024 distinct atoms, we send 48 MB
worth of data to the hardware each timestep.

3.4. Results

Table 2 shows the results of running the hardware implemen-
tation on the SGI Altix 4700 with RASC blade versus running

# Of F.P. Ops Pipeline Stages Slices Clock Speed
27 125 31292 100 MHz

Table 1. Hardware accelerator details. The FPGA circuit can
sustain 2.7 GFLOPS assuming full bandwidth.

Input Size (MB) 48 96 192 768
FPGA 0.151s 0.243s 0.382s 1.278s

on RASC blade
FPGA 0.1s 0.162s 0.254s 0.852s

Dual Clock Scheme
FPGA 0.05s 0.081s 0.127s 0.426s

Full Bandwidth
Xeon 3.0 GHz 0.061s 0.132s 0.235s 0.931s
(4MB cache)

Xeon 2.8 GHz 0.664s 2.269s 4.739s n/a
(512KB cache)

Table 2. Execution time with varying amount of data. The
first row is the measured time on the RASC blade at 100 MHz.
The second row is on the RASC blade with separate clock do-
main for the memory interface running at 200 MHz. Row
three is the FPGA implementation assuming sufficient band-
width to accommodate all the data needed per iteration. The
last two rows are the software implementation on a high end
and a desktop CPU.

the software implementation. The RASC blade has two Virtex
LX200 FPGAs with memory interfaces that have bandwidth
of 128 bits per cycle. Our hardware required 12 floating point
values per pipeline stage, so the data reads must be split up into
three read cycles. The first row in Table 2 shows the amount
of time it took to process various amounts of data using this
implementation in seconds.

Using a dual clock scheme on the RASC blade, where one
clock reads data from memory at 200 MHz and one clock con-
trols our co-processor at 100 MHZ, data is provided every 2
out of 3 cycles. The second row of Table 2 represents the time
for such a scheme to process the same amount of data.

The memory interface is out of our control, however, and
the pipeline we create can handle a full 12 floating point num-
bers per cycle if they are provided. The third row of Table
2 shows the amount of time necessary to process the same
amount of data if 12 floating point numbers were provided ev-
ery clock cycle.

We compared this time with two different Xeon proces-
sors, one running at 3.0 GHz with a 4MB Cache and one run-
ning at 2.8 GHz Xeon with 512KB of Cache. When we have
full bandwidth, our hardware is able to outperform software
execution runs on both a modest and higher end processor, and
our current hardware implementation on the RASC blade out-
performs the software execution on a modest Xeon processor.
Due to performance restrictions, we were unable to run the
software on the lesser system for 768 MB.
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4. RELATED WORK

Accelerating molecular dynamics code has been examined in
detail by several researchers.

In [9], an approach very similar to ours was taken. The
difference between our approach and theirs is that our profil-
ing went into more depth to identify the loop body that was
most frequently executed rather than the function, and with
this information we didn’t rewrite entire functions, but only
that loop body. They also used Map C, which is specific to a
particular architecture, whereas our high level language is C
and the hardare generated could be used in many platforms.

In [10], the authors take a particular set of equations, the
smooth particle mesh Ewald summation technique, and cre-
ate hardware at a low level by hand. They do not include the
Lennard-Jones equations, which we observed to be part of the
most frequently executed section in NAMD.

The authors of [11] create a pipeline similar to the one that
we compile for just the Lennard-Jones potential. Again, the
pipeline they create is done by hand. Included in their pipeline
is a square root operation. While the square root operation is
mathematically valid, code implementations like NAMD skip
this step and the most frequently executed section of code does
not contain this operation.

The MDGRAPE-3 project [7] is a specially built super-
computer dedicated to molecular dynamics problems. The MDGRAPE-
3 is running a custom molecular dynamics program that has
custom hardware support and is inflexible.

5. CONCLUSIONS

Molecular dynamics is an important class of high-performance
computing applications that can potentially be a good candi-
date for FPGA-based code acceleration. We report on an ex-
tensive effort to accelerate MD computations. We have ex-
plored a commonly used MD software package. Our first result
is that simply replacing the most frequently executed section
of code with a call to an FPGA-based hardware accelerator re-
sulted in performance much worse than the software version.
We have investigated the causes of this slowdown and show
that the structure of the software optimized code defeats the
acceleration advantages of the FPGA. Using this knowledge,
we rewrote the most computationally intensive section of code
to support the streaming of data to the FPGA accelerator. We
compiled the C code to VHDL using the ROCCC compiler
and mapped the hardware on the Xillinx Virtex 4 LX200 on
the SGI RASC RC100 blade. The resulting hardware runs
at 100 MHz, consists of 125 pipeline stages with 27 floating
point operations and occupied about a third of the FPGA. Our
results show that a speedup, over a software execution, can be
obtained for large amounts of data and when the bandwidth in
and out of the FPGA is large enough to support the initiation of
one iteration per cycle. We also report on the performance of
the software version on two CPUs: one desktop class and the
other high-end with 4 MB cache. The difference in execution
time varies by an order of magnitude.
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