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Abstract We give an approximation algorithm for fractional packing and covering
linear programs (linear programs with non-negative coefficients). Given a constraint
matrix with n non-zeros, r rows, and c columns, the algorithm (with high probability)
computes feasible primal and dual solutions whose costs are within a factor of 1 + ε

of OPT (the optimal cost) in time O((r + c) log(n)/ε2 + n).

Keywords Linear programming · Packing · Covering · Lagrangian relaxation ·
Approximation algorithm · Linear time · Lagrangian relaxation

1 Introduction

A packing problem is a linear program of the form max{a · x : Mx ≤ b, x ∈ P },
where the entries of the constraint matrix M are non-negative and P is a convex
polytope admitting some form of optimization oracle. A covering problem is of the
form min{a · x̂ : Mx̂ ≥ b, x̂ ∈ P }.

This paper focuses on explicitly given packing and covering problems, that is,
max{a · x : Mx ≤ b, x ≥ 0} and min{a · x̂ : Mx̂ ≥ b, x̂ ≥ 0}, where the polytope P

is just the positive orthant. Explicitly given packing and covering are important spe-
cial cases of linear programming, including, for example, fractional set cover, multi-
commodity flow problems with given paths, two-player zero-sum matrix games with
non-negative payoffs, and variants of these problems.

The paper gives a (1 + ε)-approximation algorithm—that is, an algorithm that
returns feasible primal and dual solutions whose costs are within a given factor 1 + ε

of OPT. With high probability, it runs in time O((r +c) log(n)/ε2 +n), where n—the

The conference version of this paper was “Beating Simplex for fractional packing and covering
linear programs” [13].
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input size—is the number of non-zero entries in the constraint matrix and r + c is the
number of rows plus columns (i.e., constraints plus variables).

For dense instances, r + c can be as small as O(
√

n). For moderately dense
instances—as long as r + c = o(n/ logn)—the 1/ε2 factor multiplies a sub-
linear term. Generally, the time is linear in the input size n as long as ε ≥
Ω(

√
(r + c) log(n)/n).

1.1 Related Work

The algorithm is a Lagrangian-relaxation (a.k.a. price-directed decomposition, mul-
tiplicative weights) algorithm. Broadly, these algorithms work by replacing a set of
hard constraints by a sum of smooth penalties, one per constraint, and then iteratively
augmenting a solution while trading off the increase in the objective against the in-
crease in the sum of penalties. Here the penalties are exponential in the constraint
violation, and, in each iteration, only the first-order (linear) approximation is used to
estimate the change in the sum of penalties.

Such algorithms, which can provide useful alternatives to interior-point and
Simplex methods, have a long history and a large literature. Bienstock gives an
implementation-oriented, operations-research perspective [2]. Arora et al. discuss
them from a computer-science perspective, highlighting connections to other fields
such as learning theory [1]. An overview by Todd places them in the context of gen-
eral linear programming [18].

The running times of algorithms of this type increase as the approximation pa-
rameter ε gets small. For algorithms that rely on linear approximation of the penalty
changes in each iteration, the running times grow at least quadratically in 1/ε (times
a polynomial in the other parameters). For explicitly given packing and covering, the
fastest previous such algorithm that we know of runs in time O((r + c)c̄ log(n)/ε2),
where c̄ is the maximum number of columns in which any variable appears [21].
That algorithm applies to mixed packing and covering—a more general problem. Us-
ing some of the techniques in this paper, one can improve that algorithm to run in
time O(n log(n)/ε2) (an unpublished result), which is slower than the algorithm here
for dense problems.

Technically, the starting point for the work here is a remarkable algorithm by
Grigoriadis and Khachiyan for the following special case of packing and cover-
ing [9]. The input is a two-player zero-sum matrix game with payoffs in [−1,1].
The output is a pair of mixed strategies that guarantee an expected payoff within an
additive ε of optimal. (Note that achieving additive error ε is, however, easier than
achieving multiplicative error 1 + ε.) The algorithm computes the desired output in
O((r + c) log(n)/ε2) time. This is remarkable in that, for dense matrices, it is sub-
linear in the input size n = Θ(rc).1 (For a machine-learning algorithm closely related
to Grigoriadis and Khachiyan’s result, see [5, 6].)

We also use the idea of non-uniform increments from algorithms by Garg and
Könemann [7, 8, 12].

1The problem studied here, packing and covering, can be reduced to Grigoriadis and Khachiyan’s problem.

This reduction leads to an O((r + c) log(n)(U OPT)2/ε2)-time algorithm to find a (1 + ε)-approximate
packing/covering solution, where U

.= maxij Mij /(biaj ). A pre-processing step [14, Sect. 2.1] can

bound U , leading to a running time bound of O((r + c) log(n)min(r, c)4/ε4).
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Dependence on ε Building on work by Nesterov (e.g., [16, 17]), recent algo-
rithms for packing and covering problems have reduced the dependence on 1/ε

from quadratic to linear, at the expense of increased dependence on other parame-
ters. Roughly, these algorithms better approximate the change in the penalty func-
tion in each iteration, leading to fewer iterations but more time per iteration (al-
though not to the same extent as interior-point algorithms). For example, Bien-
stock and Iyengar give an algorithm for concurrent multicommodity flow that solves
O∗(ε−1k1.5|V |0.5) shortest-path problems, where k is the number of commodities
and |V | is the number of vertices [3]. Chudak and Eleuterio continue this direction—
for example, they give an algorithm for fractional set cover running in worst-case
time O∗(c1.5(r + c)/ε + c2r) [4].

Comparison to Simplex and Interior-Point Methods Currently, the most commonly
used algorithms for solving linear programs in practice are Simplex and interior-point
methods. Regarding Simplex algorithms, commercial implementations use many
carefully tuned heuristics (e.g. pre-solvers and heuristics for maintaining sparsity and
numerical stability), enabling them to quickly solve many practical problems with
millions of non-zeros to optimality. But, as is well known, their worst-case running
times are exponential. Also, for both Simplex and interior-point methods, running
times can vary widely depending on the structure of the underlying problem. (A de-
tailed analysis of Simplex and interior-point running times is outside the scope of
this paper.) These issues make rigorous comparison between the various algorithms
difficult.

Still, here is a meta-argument that may allow some meaningful comparison. Fo-
cus on “square” constraint matrices, where r = Θ(c). Note that at a minimum, any
Simplex implementation must identify a non-trivial basic feasible solution. Like-
wise, interior-point algorithms require (in each iteration) a Cholesky decomposition
or other matrix factorization. Thus, essentially, both methods require implicitly (at
least) solving an r × r system of linear equations. Solving such a system is a rela-
tively well-understood problem, both in theory and in practice, and (barring special
structure) takes Ω(r3) time, or Ω(r2.8) time using Strassen’s algorithm. Thus, on
“square” instances, Simplex and interior-point algorithms should have running times
growing at least with Ω(r2.8) (and probably more). This reasoning applies even if
Simplex or interior-point methods are terminated early so as to find approximately
optimal solutions.

In comparison, on “square” matrices, the algorithm in this paper takes time
O(n + r log(r)/ε2) where n = O(r2) or less. If the meta-argument holds, then, for
applications where (1 + ε)-approximate solutions suffice for some fixed and moder-
ate ε (say, ε ≈ 1 %), for very large instances (say, r ≥ 104), the algorithm here should
be orders of magnitude faster than Simplex or interior-point algorithms.

This conclusion is consistent with experiments reported here, in which the running
times of Simplex and interior-point algorithms on large random instances exceed
Ω(r2.8). Concretely, with ε = 1 %, the algorithm here is faster when r is on the order
of 103, with a super-linear (in r) speed-up for larger r .

1.2 Technical Roadmap

Broadly, the running times of iterative optimization algorithms are determined by (1)
the number of iterations and (2) the time per iteration. Various algorithms trade off
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these two factors in different ways. The technical approach taken here is to accept
a high number of iterations—(r + c) log(n)/ε2, a typical bound for an algorithm of
this class (see e.g. [11] for further discussion)—and to focus on implementing each
iteration as quickly as possible (ideally in constant amortized time).

Coupling Grigoriadis and Khachiyan’s sub-linear time algorithm uses an unusual
technique of coupling primal and dual algorithms that is critical to the algorithm
here. As a starting point, to explain coupling, consider the following “slow” coupling
algorithm. (Throughout, assume without loss of generality by scaling that aj = bi = 1
for all i, j .) The algorithm starts with all-zero primal and dual solutions, x and x̂,
respectively. In each iteration, it increases one coordinate xj of the primal solution x

by 1, and increases one coordinate x̂i of the dual solution x̂ by 1. The index j of the
primal variable to increment is chosen randomly from a distribution p̂ that depends
on the current dual solution. Likewise, the index i of the dual variable to increment is
chosen randomly from a distribution p that depends on the current primal solution.
The distribution p̂ is concentrated on the indices of dual constraints MTx̂ that are
“most violated” by x̂. Likewise, the distribution p is concentrated on the indices of
primal constraints Mx that are “most violated” by x. Specifically, pi is proportional

to (1 + ε)Mix , while p̂j is proportional to (1 − ε)
MT

j x̂ .2

Lemma 1 in the next section proves that this algorithm achieves the desired ap-
proximation guarantee. Here, broadly, is why coupling helps reduce the time per
iteration in comparison to the standard approach. The standard approach is to in-
crement the primal variable corresponding to a dual constraint that is “most violated”
by p—that is, to increment xj ′ where j ′ (approximately) minimizes MT

j ′p (for p

defined as above). This requires at a minimum maintaining the vector MTp. Recall
that pi is a function of Mix. Thus, a change in one primal variable xj ′ changes many
entries in the vector p, but even more entries in MTp. (In the r × c bipartite graph
G = ([r], [c],E) where E = {(i, j) : Mij 	= 0}, the neighbors of j ′ change in p, while
all neighbors of those neighbors change in MTp.) Thus, maintaining MTp is costly.
In comparison, to implement coupling, it is enough to maintain the vectors p and p̂.
The further product MTp is not needed (nor is Mp̂). This is the basic reason why
coupling helps reduce the time per iteration.

Non-uniform Increments The next main technique, used to make more progress per
iteration, is Garg and Könemann’s non-uniform increments [7, 8, 12]. Instead of in-
crementing the primal and dual variables by a uniform amount each time (as de-
scribed above), the algorithm increments the chosen primal and dual variables xj ′
and x̂i′ by an amount δi′j ′ chosen small enough so that the left-hand side (LHS)
of each constraint (each Mix or MT

j x̂) increases by at most 1 (so that the analysis
still holds), but large enough so that the LHS of at least one such constraint in-
creases by at least 1/4. This is small enough to allow the same correctness proof

2The algorithm can be interpreted as a form of fictitious play of a two-player zero-sum game, where in
each round each player plays from a distribution concentrated around the best response to the aggregate
of the opponent’s historical plays. In contrast, in many other fictitious-play algorithms, one or both of the
players plays a deterministic pure best-response to the opponent’s historical average.
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to go through, but is large enough to guarantee a small number of iterations. The
number of iterations is bounded by (roughly) the following argument: each iteration
increases the LHS of some constraint by 1/4, but, during the course of the algo-
rithm, no LHS ever exceeds N ≈ log(n)/ε2. (The particular N is chosen with fore-
sight so that the relative error works out to 1 + ε.) Thus, the number of iterations is
O((r + c)N) = O((r + c) log(n)/ε2).

Using Slowly Changing Estimates of Mx and MTx̂ In fact, we will achieve this
bound not just for the number of iterations, but also for the total work done (outside
of pre- and post-processing). The key to this is the third main technique. Most of the
work done by the algorithm as described so far would be in maintaining the vectors
Mx and MTx̂ and the distributions p and p̂ (which are functions of Mx and MTx̂).
This would require lots of time in the worst case, because, even with non-uniform
increments, there can still be many small changes in elements of Mx and MTx̂. To
work around this, instead of maintaining Mx and MTx̂ exactly, the algorithm main-
tains more slowly changing estimates for them (vectors y and ŷ, respectively), using
random sampling. The algorithm maintains y ≈ Mx as follows. When the algorithm
increases a primal variable xj ′ during an iteration, this increases some elements in the
vector Mx (specifically, the elements Mix where Mij > 0). For each such element
Mix, if the element increases by, say, δ ≤ 1, then the algorithm increases the corre-
sponding yi not by δ, but by 1, but only with probability δ. This maintains not only
E[yi] = Mix, but also, with high probability, yi ≈ Mix. Further, the algorithm only
does work for a yi (e.g. updating pi ) when yi increases (by 1). The algorithm main-
tains the estimate vector ŷ ≈ MTx̂ similarly, and defines the sampling distributions
p and p̂ as functions of y and ŷ instead of Mx and MTx̂. In this way each unit of
work done by the algorithm can be charged to an increase in |Mx| + |MTx̂| (or more
precisely, an increase in |y| + |ŷ|, which never exceeds (r + c)N ). (Throughout the
paper, |v| denotes the 1-norm of any vector v.)

Section 2 gives the formal intuition underlying coupling by describing and for-
mally analyzing the first (simpler, slower) coupling algorithm described above. Sec-
tion 3 describes the full (main) algorithm and its correctness proof. Section 4 gives
remaining implementation details and bounds the run time. Section 5 presents basic
experimental results, including a comparison with the GLPK Simplex algorithm.

1.3 Preliminaries

For the rest of the paper, assume the primal and dual problems are of the following
restricted forms, respectively: max{|x| : Mx ≤ 1, x ≥ 0}, min{|x̂| : MTx̂ ≥ 1, x̂ ≥ 0}.
That is, assume aj = bi = 1 for each i, j . This is without loss of generality by the
transformation M ′

ij = Mij/(biaj ). Recall that |v| denotes the 1-norm of any vector v.

2 Slow Algorithm (Coupling)

To illustrate the coupling technique, in this section we analyze the first (simpler but
slower) algorithm described in the roadmap in the introduction, a variant of Grigori-
adis and Khachiyan’s algorithm [9]. We show that it returns a (1 − 2ε)-approximate
primal-dual pair with high probability.
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We do not analyze the running time, which can be large. In the following section,
we describe how to modify this algorithm (using non-uniform increments and the
random sampling trick described in the previous roadmap) to obtain the full algorithm
with a good time bound.

For just this section, assume that each Mij ∈ [0,1]. (Assume as always that
bi = aj = 1 for all i, j ; recall that |v| denotes the 1-norm of v.) Here is the algorithm:

slow-alg(M ∈ [0,1]r×c, ε)

1. Vectors x, x̂ ← 0; scalar N = �2 ln(rc)/ε2�.
2. Repeat until maxi Mix ≥ N :

3. Let pi
.= (1 + ε)Mix (for all i) and p̂j

.= (1 − ε)
MT

j x̂ (for all j ).
4. Choose random indices j ′ and i′ respectively

from probability distributions p̂/|p̂| and p/|p|.
5. Increase xj ′ and x̂i′ each by 1.
6. Let (x�, x̂�)

.= (x/maxi Mix, x̂/minj MT
j x̂).

7. Return (x�, x̂�).

The scaling of x and x̂ in line 6 ensures feasibility of the final primal solution x�

and the final dual solution x̂�. (Recall the assumption that bi = aj = 1 for all i, j .)
The final primal solution cost and final dual solution costs are, respectively |x�| =
|x|/maxi Mix and |x̂�| = |x̂|/minj MT

j x̂. Since the algorithm keeps the 1-norms |x|
and |x̂| of the intermediate primal and dual solutions equal, the final primal and
dual costs will be within a factor of 1 − 2ε of each other as long as minj MT

j x̂ ≥
(1 − 2ε)maxi Mix. If this event happens, then weak duality implies that each solu-
tion is a (1 − 2ε)-approximation of its respective optimum.

To prove that the event minj MT
j x̂ ≥ (1 − 2ε)maxi Mix happens with high proba-

bility, we show that |p| · |p̂| (the product of the 1-norms of p and p̂, as defined in the
algorithm) is a Lyapunov function—that is, the product is non-increasing in expecta-
tion with each iteration. Thus, its expected final value is at most its initial value rc,
and with high probability, its final value is at most, say, (rc)2. If that happens, then by
careful inspection of p and p̂, it must be that (1 − ε)maxi Mix ≤ minj MT

j x̂ + εN ,

which (with the termination condition maxi Mix ≥ N ) implies the desired event.3

3It may be instructive to compare this algorithm to the more standard algorithm. In fact there are two
standard algorithms related to this one: a primal algorithm and a dual algorithm. In each iteration, the
primal algorithm would choose j ′ to minimize MT

j ′p and increment xj ′ . Separately and simultaneously,

the dual algorithm would choose i′ to maximize (Mp̂)i′ , then increment x̂i′ . (Note that the primal algo-
rithm and the dual algorithm are independent, and in fact either can be run without the other.) To prove the
approximation ratio for the primal algorithm, one would bound the increase in |p| relative to the increase
in the primal objective |x|. To prove the approximation ratio for the dual algorithm, one would bound the
decrease in |p̂| relative to the increase in the dual objective |x̂|. In this view, the coupled algorithm can be
obtained by taking these two independent primal and dual algorithms and randomly coupling their choices
of i′ and j ′ . The analysis of the coupled algorithm uses as a penalty function |p||p̂|, the product of the
respective penalty functions |p|, |p̂| of the two underlying algorithms.
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Lemma 1 The slow algorithm returns a (1−2ε)-approximate primal-dual pair (fea-
sible primal and dual solutions x� and x̂� such that |x�| ≥ (1 − 2ε)|x̂�|) with proba-
bility at least 1 − 1/(rc).

Proof In a given iteration, let p and p̂ denote the vectors at the start of the iteration.
Let p′ and p̂′ denote the vectors at the end of the iteration. Let �x denote the vector
whose j th entry is the increase in xj during the iteration (or if z is a scalar, �z denotes
the increase in z). Then, using that each �Mix = Mij ′ ∈ [0,1],

|p′| =
∑

i

pi(1 + ε)Mi�x ≤
∑

i

pi(1 + εMi�x) = |p|
[

1 + ε
pT

|p|M�x

]
.

Likewise, for the dual, |p̂′| ≤ |p̂|[1 − ε(p̂/|p̂|)TMT�x̂].
Multiplying these bounds on |p′| and |p̂′| and using that (1 + a)(1 − b) = 1 + a −

b − ab ≤ 1 + a − b for a, b ≥ 0 gives

|p′||p̂′| ≤ |p||p̂|
[

1 + ε
p

|p|
T
M�x − ε�x̂TM

p̂

|p̂|
]
.

The inequality above motivates the “coupling” of primal and dual increments. The
algorithm chooses the random increments to x and x̂ precisely so that E[�x] = p̂/|p̂|
and E[�x̂] = p/|p|. Taking expectations of both sides of the inequality above, and
plugging these equations into the two terms on the right-hand side, the two terms
exactly cancel, giving E[|p′||p̂′|] ≤ |p||p̂|. Thus, the particular random choice of
increments to x and x̂ makes the quantity |p||p̂| non-increasing in expectation with
each iteration.

This and Wald’s equation (Lemma 9, or equivalently a standard optional stopping
theorem for supermartingales) imply that the expectation of |p||p̂| at termination is at
most its initial value rc. So, by the Markov bound, the probability that |p||p̂| ≥ (rc)2

is at most 1/rc. Thus, with probability at least 1 − 1/rc, at termination |p||p̂| ≤
(rc)2.

Assume this happens. Note that (rc)2 ≤ exp(ε2N), so |p||p̂| ≤ (rc)2 implies

(1 + ε)maxi Mix(1 − ε)
minj MT

j x̂ ≤ |p||p̂| ≤ exp(ε2N). Taking logs, and using the
inequalities 1/ ln(1/(1 − ε)) ≤ 1/ε and ln(1 + ε)/ ln(1/(1 − ε)) ≥ 1 − ε, gives
(1 − ε)maxi Mix ≤ minj MT

j x̂ + εN .
By the termination condition maxi Mix ≥ N , so the above inequality implies

(1 − 2ε)maxi Mix ≤ minj MT
j x̂.

This and |x| = |x̂| (and weak duality) imply the approximation guarantee for the
primal-dual pair (x�, x̂�) returned by the algorithm. �

3 Full Algorithm

This section describes the full algorithm and gives a proof of its approximation guar-
antee. In addition to the coupling idea explained in the previous section, for speed
the full algorithm uses non-uniform increments and estimates of Mx and MTx̂ as de-
scribed in the introduction. Next we describe some more details of those techniques.
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After that we give the algorithm in detail (although some implementation details that
are not crucial to the approximation guarantee are delayed to the next section).

Recall that WLOG we are assuming ai = bj = 1 for all i, j . The only assumption
on M is Mij ≥ 0.

Non-uniform Increments In each iteration, instead of increasing the randomly cho-
sen xj ′ and x̂i′ by 1, the algorithm increases them both by an increment δi′j ′ , chosen
just so that the maximum resulting increase in any left-hand side (LHS) of any con-
straint (i.e. maxi �Mix or maxj �MT

j x̂) is in [1/4,1]. The algorithm also deletes
covering constraints once they become satisfied (the set J contains indices of not-
yet-satisfied covering constraints, that is j such that MT

j x̂ < N ).
We want the analysis of the approximation ratio to continue to hold (the analogue

of Lemma 1 for the slow algorithm), even with the increments adjusted as above.
That analysis requires that the expected change in each xj and each x̂i should be
proportional to p̂j and pi , respectively. Thus, we adjust the sampling distribution for
the random pair i′, j ′ so that, when we choose i′ and j ′ from the distribution and
increment xj ′ and x̂i′ by δi′j ′ as defined above, it is the case that, for any i and j ,
E[�xj ] = αp̂j /|p̂| and E[�x̂i] = αpi/|p| for an α > 0. This is done by scaling the
probability of choosing each given i′, j ′ pair by a factor proportional to 1/δi′j ′ .

To implement the above non-uniform increments and the adjusted sampling distri-
bution, the algorithm maintains the following data structures as a function of the
current primal and dual solutions x and x̂: a set J of indices of still-active (not
yet met) covering constraints (columns); for each column MT

j its maximum entry
uj = maxi Mij ; and for each row Mi a close upper bound ûi on its maximum active
entry maxj∈J Mij (specifically, the algorithm maintains ûi ∈ [1,2] × maxj∈J Mij ).

Then, the algorithm takes the increment δi′j ′ to be 1/(ûi′ + uj ′). This seemingly
odd choice has two key properties: (1) It satisfies δi′j ′ = Θ(1/max(ûi′ , uj ′)), which
ensures that when xj ′ and x̂i′ are increased by δi′j ′ , the maximum increase in any
LHS (any Mix, or MT

j x̂ with j ∈ J ) is Ω(1). (2) It allows the algorithm to select the
random pair (i′, j ′) in constant time using the following subroutine, called random-
pair (the notation p × û denotes the vector with ith entry piûi ):

random-pair(p, p̂,p × û, p̂ × u)

1. With probability |p × û||p̂|/(|p × û||p̂| + |p||p̂ × u|)
choose random i′ from distribution p × û/|p × û|,
and independently choose j ′ from p̂/|p̂|,

2. or, otherwise,
choose random i′ from distribution p/|p|,
and independently choose j ′ from p̂ × u/|p̂ × u|.

3. Return (i′, j ′).

The key property of random-pair is that it makes the expected changes in x and
x̂ correct: any given pair (i, j) is chosen with probability proportional to pip̂j /δij ,
which makes the expected change in any xj and x̂i , respectively, proportional to p̂j

and pi . (See Lemma 2 below.)
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Maintaining Estimates (y and ŷ) of Mx and MTx̂ Instead of maintaining the vec-
tors p and p̂ as direct functions of the vectors Mx and MTx̂, to save work, the al-
gorithm maintains more slowly changing estimates (y and ŷ) of the vectors Mx and
MTx̂, and maintains p and p̂ as functions of the estimates, rather than as functions
of Mx and MTx̂.

Specifically, the algorithm maintains y and ŷ as follows. When any Mix increases
by some δ ∈ [0,1] in an iteration, the algorithm increases the corresponding estimate
yi by 1 with probability δ. Likewise, when any MT

j x̂ increases by some δ̂ ∈ [0,1] in
an iteration, the algorithm increases the corresponding estimate ŷj by 1 with proba-
bility δ̂. Then, each pi is maintained as pi = (1+ ε)yi instead of (1+ ε)Mix , and each
p̂j is maintained as p̂j = (1 − ε)ŷj instead of (1 + ε)Mix . This reduces the frequency
of updates to p and p̂ (and so reduces the total work), yet maintains y ≈ Mx and
ŷ ≈ MTx̂ with high probability, which is enough to still allow a (suitably modified)
coupling argument to go through.

Each change to a yi or a ŷj increases the changed element by 1. Also, no element
of y or ŷ gets larger than N before the algorithm stops (or the corresponding covering
constraint is deleted). Thus, in total the elements of y and ŷ are changed at most
O((r + c)N) = O((r + c) log(n)/ε2) times. We implement the algorithm to do only
constant work maintaining the remaining vectors for each such change. This allows us
to bound the total time by O((r + c) log(n)/ε2) (plus O(n) pre- and post-processing
time).

As a step towards this goal, in each iteration, in order to determine the elements in
y and ŷ that change, using just O(1) work per changed element, the algorithm uses
the following trick. It chooses a random β ∈ [0,1]. It then increments yi by 1 for
those i such that the increase Mij ′δi′j ′ in Mix is at least β . Likewise, it increments ŷj

by 1 for j such that the increase Mi′j δi′j ′ in MT
j x̂ is at least β . To do this efficiently,

the algorithm preprocesses M , so that within each row Mi or column MT
j of M ,

the elements can be accessed in (approximately) decreasing order in constant time
per element accessed. (This preprocessing is described in Sect. 4.) This method of
incrementing the elements of y and ŷ uses constant work per changed element and
increments each element with the correct probability. (The random increments of
different elements are not independent, but this is okay because, in the end, each
estimate yj and ŷi will be shown seperately to be correct with high probability.)

The detailed algorithm is shown in Fig. 1, except for the subroutine random-pair
(above) and some implementation details that are left until Sect. 4.

Approximation Guarantee Next we state and prove the approximation guarantee for
the full algorithm in Fig. 1. We first prove three utility lemmas. The first utility lemma
establishes that (in expectation) x, x̂, y, and ŷ change as desired in each iteration.

Lemma 2 In each iteration,

1. The largest change in any relevant LHS is at least 1/4:

max
{

max
i

�Mix,max
j∈J

�MT
j x̂

}
∈ [1/4,1].
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solve(M ∈ R
r×c+ , ε)—return a (1 − 6ε)-approximate primal-dual pair w.h.p.

1. Initialize vectors x, x̂, y, ŷ ← 0, and scalar N = �2 ln(rc)/ε2�.
2. Precompute uj

.= max{Mij : i ∈ [r]} for j ∈ [c]. As x and x̂ are incremented,
the alg. maintains y and ŷ so E[y] = Mx, E[ŷ] = MTx̂. It maintains vectors
p defined by pi

.= (1 + ε)yi and, as a function of ŷ:

J
.= {j ∈ [c] : ŷj ≤ N} (the active columns)

ûi ∈ [1,2] × max{Mij : j ∈ J }
(approximates the max. active entry in row i of M)

p̂j
.=

{
(1 − ε)ŷj if j ∈ J

0 otherwise.

It maintains vectors p × û and p̂ × u, where the ith entry of a × b is aibi .
3. Repeat until maxi yi = N or minj ŷj = N :
4. Let (i′, j ′) ← random-pair(p, p̂,p × û, p̂ × u).
5. Increase xj ′ and x̂i′ each by the same amount δi′j ′ .= 1/(ûi′ + uj ′).
6. Update y, ŷ, and the other vectors as follows:
7. Choose random β ∈ [0,1] uniformly, and
8. for each i ∈ [r] with Mij ′δi′j ′ ≥ β, increase yi by 1
9. (and multiply pi and (p × û)i by 1 + ε);

10. for each j ∈ J with Mi′j δi′j ′ ≥ β, increase ŷj by 1
11. (and multiply p̂j and (p̂ × u)j by 1 − ε).
12. For each j leaving J , update J , û, and p × û.
13. Let (x�, x̂�)

.= (x/maxi Mix, x̂/minj MT
j x̂). Return (x�, x̂�).

Fig. 1 The full algorithm. [i] denotes {1,2, . . . , i}. Implementation details are in Sect. 4

2. Let α
.= |p||p̂|/∑

ij pip̂j /δij . The expected changes in each xj , xj , yi , ŷj satisfy

E[�xj ] = αp̂j /|p̂|, E[�yi] = E[�Mix] = αMp̂i/|p̂|,
E[�x̂i] = αpi/|p|, E[�ŷj ] = E

[
�MT

j x̂
] = αMTpj/|p|.

Proof (i) By the choice of û and u, for the (i′, j ′) chosen, the largest change in a
relevant LHS is

δi′j ′ max
(

max
i

Mij ′ ,max
j∈J

Mi′j
)

∈ [1/2,1]δi′j ′ max(ûi′ , uj ′)

⊆ [1/4,1]δi′j ′(ûi′ + uj ′)

= [1/4,1].
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(ii) First, we verify that the probability that random-pair returns a given (i, j) is
α(pi/|p|)(p̂j /|p̂|)/δij . Here is the calculation. By inspection of random-pair, the
probability is proportional to

|p × û||p̂| piûi

|p × û|
p̂j

|p̂| + |p||p̂ × u|pi

p

p̂juj

|p̂ × u|
which by algebra simplifies to pip̂j (ûi + uj ) = pip̂j /δij .

Hence, the probability must be α(pi/|p|)(p̂j /|p̂|)/δij , because the choice of α

makes the sum over all i and j of the probabilities equal 1.
Next, note that part (i) of the lemma implies that in line 8 (given the chosen i′

and j ′) the probability that a given yi is incremented is Mij ′δi′j ′ , while in line 10 the
probability that a given ŷj is incremented is Mi′j δi′j ′ .

Now, the remaining equalities in (ii) follow by direct calculation. For example:

E[�xj ] =
∑

i

((
αpi/|p|)(p̂j /|p̂|)/δij

)
δij = αp̂j /|p̂|.

�

The next lemma shows that (with high probability) the estimate vectors y and ŷ

suitably approximate Mx and MTx̂, respectively. The proof is simply an application
of an appropriate Azuma-like inequality (tailored to deal with the random stopping
time of the algorithm).

Lemma 3

1. For any i, with probability at least 1 − 1/(rc)2, at termination (1 − ε)Mix ≤
yi + εN .

2. For any j , with probability at least 1 − 1/(rc)2, after the last iteration with j ∈ J ,
it holds that (1 − ε)ŷj ≤ MT

j x̂ + εN .

Proof (i) By Lemma 2, in each iteration each Mix and yi increase by at most 1
and the expected increases in these two quantities are the same. So, by the Azuma
inequality for random stopping times (Lemma 10), Pr[(1 − ε)Mix ≥ yi + εN ] is at
most exp(−ε2N) ≤ 1/(rc)2. This proves (i).

The proof for (ii) is similar, noting that, while j ∈ J , the quantity MT
j x̂ increases

by at most 1 each iteration. �

Finally, here is the main utility lemma. Recall that the heart of the analysis of
the slow algorithm (Lemma 1) was showing that in expectation |p||p̂| was non-
increasing. This allowed us to conclude that (with high probability at the end)
maxi Mix was not much larger than minj MT

j x̂. This was the key to proving the ap-
proximation ratio.

The next lemma gives the analogous argument for the full algorithm. It shows
that the quantity |p||p̂| is non-increasing in expectation, which, by definition of p

and p̂, implies that (with high probability at the end) maxi yi is not much larger
than minj ŷj . The proof is essentially the same as that of Lemma 1, but with some
technical complications accounting for the deletion of covering constraints.
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Since (with high probability by Lemma 3) the estimates y and ŷ approximate Mx

and Mx̂, respectively, this implies that (with high probability at the end) maxi Mix

is not much larger than minj MT
j x̂. Since the algorithm maintains |x| = |x̂|, this is

enough to prove the approximation ratio.

Lemma 4 With probability at least 1−1/rc, when the algorithm stops, maxi yi ≤ N

and minj ŷj ≥ (1 − 2ε)N .

Proof Let p′ and p̂′ denote p and p̂ after a given iteration, while p and p̂ de-
note the values before the iteration. We claim that, given p and p̂, E[|p′||p̂′|] ≤
|p||p̂|—with each iteration |p||p̂| is non-increasing in expectation. To prove it, note
|p′| = ∑

i pi(1 + ε�yi) = |p| + εpT�y and, similarly, |p̂′| = |p̂| − εp̂T�ŷ (recall
�yi,�ŷj ∈ {0,1}). Multiplying these two equations and dropping a negative term
gives

|p′||p̂′| ≤ |p||p̂| + ε|p̂|pT�y − ε|p|p̂T�ŷ.

The claim follows by taking expectations of both sides, then, in the right-hand side
applying linearity of expectation and substituting E[�y] = αMp̂/|p̂| and E[�ŷ] =
αMTp/|p| from Lemma 2.

By Wald’s equation (Lemma 9), the claim implies that E[|p||p̂|] for p and p̂ at ter-
mination is at most its initial value rc. Applying the Markov bound, with probability
at least 1 − 1/rc, at termination maxi pi maxj p̂j ≤ |p||p̂| ≤ (rc)2 ≤ exp(ε2N).

Assume this event happens. The index set J is not empty at termination, so the
minimum ŷj is achieved for j ∈ J . Substitute in the definitions of pi and p̂j and take
the logarithm to get maxi yi ln(1 + ε) ≤ minj ŷj ln(1/(1 − ε)) + ε2N .

Divide by ln(1/(1−ε)), apply 1/ ln(1/(1−ε)) ≤ 1/ε and also ln(1+ε)/ ln(1/(1−
ε)) ≥ 1 − ε. This gives (1 − ε)maxi yi ≤ minj ŷj + εN .

By the termination condition maxi yi ≤ N is guaranteed, and either maxi yi = N

or minj ŷj = N . If minj ŷj = N , then the event in the lemma occurs. If not, then
maxi yi = N , which (with the inequality in previous paragraph) implies (1 − ε)N ≤
minj ŷj + εN , again implying the event in the lemma. �

Finally, here is the approximation guarantee (Theorem 1). It follows from the three
lemmas above by straightforward algebra.

Theorem 1 With probability at least 1−3/rc, the algorithm in Fig. 1 returns feasible
primal and dual solutions (x�, x̂�) with |x�|/|x̂�| ≥ 1 − 6ε.

Proof Recall that the algorithm returns (x�, x̂�)
.= (x/maxi Mix, x̂/minj MT

j x̂). By
the naive union bound, with probability at least 1 − 3/rc (for all i and j ) the events
in Lemma 3 occur, and the event in Lemma 4 occurs. Assume all of these events
happen. Then, at termination, for all i and j ,

(1 − ε)Mix ≤ yi + εN (1 − 2ε)N ≤ ŷj

yi ≤ N
and

(1 − ε)ŷj ≤ MT
j x̂ + εN.
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By algebra, using (1 − a)(1 − b) ≥ 1 − a − b and 1/(1 + ε) ≥ 1 − ε, it follows for
all i and j that

(1 − 2ε)Mix ≤ N and (1 − 4ε)N ≤ MT
j x̂.

This implies minj MT
j x̂/maxi Mix ≥ 1 − 6ε.

The scaling at the end of the algorithm assures that x� and x̂� are feasible. Since
the sizes |x| and |x̂| increase by the same amount each iteration, they are equal. Thus,
the ratio of the primal and dual objectives is |x�|/|x̂�| = minj MT

j x̂/maxi Mix ≥
1 − 6ε. �

4 Implementation Details and Running Time

This section gives remaining implementation details for the algorithm and bounds the
running time. The remaining implementation details concern the maintenance of the
vectors (x, x̂, y, ŷ,p, p̂, u, û,p × û, p̂ × u) so that each update to these vectors can
be implemented in constant time and random-pair can be implemented in constant
time.

The matrix M should be given in any standard sparse representation, so that the
non-zero entries can be traversed in time proportional to the number of non-zero
entries.

4.1 Simpler Implementation

First, here is an implementation that takes O(n logn+ (r + c) log(n)/ε2) time. (After
this we describe how to modify this implementation to remove the logn factor from
the first term.)

Theorem 2 The algorithm can be implemented to return a (1 − 6ε)-approximate
primal-dual pair for PACKING and COVERING in time O(n logn+ (r +c) log(n)/ε2)

with probability at least 1 − 4/rc.

Proof To support random-pair, store each of the four vectors p, p̂,p × û, p̂ ×u in its
own random-sampling data structure [15] (see also [10]). This data structure main-
tains a vector v; it supports random sampling from the distribution v/|v| and chang-
ing any entry of v in constant time. Then random-pair runs in constant time, and each
update of an entry of p, p̂, p × û, or p̂ × u takes constant time.

Updating the estimates y and ŷ in each iteration requires, given i′ and j ′, identify-
ing which j and i are such that Mi′j and Mij ′ are at least β/δi′j ′ (the corresponding
elements yi and ŷj get increased). To support this efficiently, at the start of the al-
gorithm, preprocess the matrix M . Build, for each row and column, a doubly linked
list of the non-zero entries. Sort each list in descending order. Cross-reference the
lists so that, given an entry Mij in the ith row list, the corresponding entry Mij in
the j th column list can be found in constant time. The total time for preprocessing is
O(n logn).
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Now implement each iteration as follows. Let It denote the set of indices i for
which yi is incremented in line 8 in iteration t . From the random β ∈ [0,1] and the
sorted list for row j ′, compute this set It by traversing the list for row j ′ in order
of decreasing Mij ′ , collecting elements until an i with Mij ′ < β/δi′j ′ is encountered.
Then, for each i ∈ It , update yi , pi , and the ith entry in p × û in constant time.
Likewise, let Jt denote the set of indices j for which ŷj is incremented in line 10.
Compute Jt from the sorted list for column i′. For each j ∈ Jt , update p̂j , and the j th
entry in p̂ × u. The total time for these operations during the course of the algorithm
is O(

∑
t 1 + |It | + |Jt |).

For each element j that leaves J during the iteration, update p̂j . Delete all entries
in the j th column list from all row lists. For each row list i whose first (largest) entry
is deleted, update the corresponding ûi by setting ûi to be the next (now first and
maximum) entry remaining in the row list; also update (p × û)i . The total time for
this during the course of the algorithm is O(n), because each Mij is deleted at most
once.

This completes the implementation.
By inspection, the total time is O(n logn) (for preprocessing, and deletion of cov-

ering constraints) plus O(
∑

t 1 + |It | + |Jt |) (for the work done as a result of the
increments).

The first term O(n logn) above is in its final form. The next three lemmas bound
the second term (the sum). The first lemma bounds the sum except for the “1”. That is,
it bounds the number of times any yi or ŷj is incremented. (There are r + c elements,
and each can be incremented at most N times during the course of the algorithm.)

Lemma 5
∑

t

|It | + |Jt | ≤ (r + c)N = O
(
(r + c) log(n)/ε2).

Proof First,
∑

t |It | ≤ rN because each yi can be increased at most N times before
maxi yi ≥ N (causing termination). Second,

∑
t |Jt | ≤ cN because each ŷj can be

increased at most N times before j leaves J and ceases to be updated. �

The next lemma bounds the remaining part of the second term, which is O(
∑

t 1).
Given that

∑
t |It | + |Jt | ≤ (r + c)N , it’s enough to bound the number of iterations

t where |It | + |Jt | = 0. Call such an iteration empty. (The 1’s in the non-empty
iterations contribute at most

∑
t |It | + |Jt | ≤ (r + c)N to the sum.)

We first show that each iteration is non-empty with probability at least 1/4. This
is so because, for any (i′, j ′) pair chosen in an iteration, for the constraint that deter-
mines the increment δi′j ′ , the expected increase in the corresponding yi or ŷj must be
at least 1/4, and that element will be incremented (making the iteration non-empty)
with probability at least 1/4.

Lemma 6 Given the state at the start of an iteration, the probability that it is empty
is at most 3/4.

Proof Given the (i′, j ′) chosen in the iteration, by (1) of Lemma 2, by definition of
δi′j ′ , there is either an i such that Mij ′δi′j ′ ≥ 1/4 or a j such that Mi′j δi′j ′ ≥ 1/4. In
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the former case, i ∈ It with probability at least 1/4. In the latter case, j ∈ Jt with
probability at least 1/4. �

This implies that, with high probability, the number of empty iterations does not
exceed three times the number of non-empty iterations by much. (This follows from
the Azuma-like inequality.) We have already bounded the number of non-empty it-
erations, so this implies a bound (with high probability) on the number of empty
iterations.

Lemma 7 With probability at least 1 − 1/rc, the number of empty iterations is
O((r + c)N).

Proof Let Et be 1 for empty iterations and 0 otherwise. By the previous lemma and
the Azuma-like inequality tailored for random stopping times (Lemma 10), for any δ,
A ≥ 0,

Pr

[

(1 − δ)

T∑

t=1

Et ≥ 3
T∑

t=1

(1 − Et) + A

]

≤ exp(−δA).

Taking δ = 1/2 and A = 2 ln(rc), it follows that with probability at least 1−1/rc, the
number of empty iterations is bounded by a constant times the number of non-empty
iterations plus 2 ln(rc). The number of non-empty iterations is at most (r + c)N ,
hence, with probability at least 1 − 1/rc the number of empty iterations is O((r +
c)N). �

Finally we complete the proof of Theorem 2, stated at the top of the section.
As discussed above, the total time is O(n logn) (for preprocessing, and deletion

of covering constraints) plus O(
∑

t 1 + |It | + |Jt |) (for the work done as a result of
the increments).

By Lemma 5,
∑

t |It | + |Jt | = O((r + c) log(n)/ε2). By Lemma 7, with prob-
ability 1 − 1/rc, the number of iterations t such that |It | + |Jt | = 0 is O((r +
c) log(n)/ε2). Together, these imply that, with probability 1 − 1/rc, and the total
time is O(n logn + (r + c) log(n)/ε2). This and Theorem 1 imply Theorem 2. �

4.2 Faster Implementation

To prove the main result, it remains to describe how to remove the logn factor from
the n logn term in the time bound in the previous section.

The idea is that it suffices to approximately sort the row and column lists, and that
this can be done in linear time.

Theorem 3 The algorithm can be implemented to return a (1 − 7ε)-approximate
primal-dual pair for PACKING and COVERING in time O(n+ (c + r) log(n)/ε2) with
probability at least 1 − 5/rc.
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Proof Modify the algorithm as follows.
First, preprocess M as described in [14, Sect. 2.1] so that the non-zero entries

have bounded range. Specifically, let γ = minj maxi Mij . Let M ′
ij

.= 0 if Mij < γ ε/c

and M ′
ij

.= min{γ c/ε,Mij } otherwise. As shown in [14], any (1 − 6ε)-approximate
primal-dual pair for the transformed problem will be a (1 − 7ε)-approximate primal-
dual pair for the original problem.

In the preprocessing step, instead of sorting the row and column lists, pseudo-sort
them—sort them based on keys �log2 Mij �. These keys will be integers in the range
log2(γ ) ± log(c/ε). Use bucket sort, so that a row or column with k entries can be
processed in O(k + log(c/ε)) time. The total time for pseudo-sorting the rows and
columns is O(n + (r + c) log(c/ε)).

Then, in the t th iteration, maintain the data structures as before, except as follows.
Compute the set It as follows. Traverse the pseudo-sorted j th column until an

index i with Mij ′δi′j ′ < β/2 is found. (No indices later in the list can be in It .) Take
all the indices i seen with Mij ′δi′j ′ ≥ β . Compute the set Jt similarly. Total time for
this is O(

∑
t 1 + |I ′

t | + |J ′
t |), where I ′

t and J ′
t denote the sets of indices actually

traversed (so It ⊆ I ′
t and Jt ⊆ J ′

t ).
When an index j leaves the set J , delete all entries in the j th column list from all

row lists. For each row list affected, set ûi to two times the first element remaining in
the row list. This ensures ûi ∈ [1,2]maxj∈J Mij .

These are the only details that are changed.
The total time is now O(n + (r + c) log(c/ε)) for preprocessing and deletion of

covering constraints, plus O(
∑

t 1 + |I ′
t | + |J ′

t |) to implement the increments and
vector updates. To finish, the next lemma bounds the latter term. The basic idea is
that, in each iteration, each matrix entry is at most twice as likely to be examined as
it was in the previous algorithm. Thus, with high probability, each matrix element is
examined at most about twice as often as it would have been in the previous algo-
rithm.

Lemma 8 With probability at least 1 − 2/rc, it happens that
∑

t (1 + |I ′
t | + |J ′

t |) =
O((r + c)N).

Proof Consider a given iteration. Fix i′ and j ′ chosen in the iteration. For each i,
note that, for the random β ∈ [0,1],

Pr
[
i ∈ I ′

t

] ≤ Pr[β/2 ≤ Mij ′δi′j ′ ] ≤ 2Mij ′δi′j ′

= 2 Pr[β ≤ Mij ′δi′j ′ ] = 2 Pr[i ∈ It ].

Fix an i. Applying Azuma-like inequality for random stopping times (Lemma 10),
for any δ,A ≥ 0,

Pr

[
(1 − δ)

∑

t

[
i ∈ I ′

t

] ≥ 2
∑

t

[i ∈ It ] + A

]
≤ exp(−δA).

(Above [i ∈ S] denotes 1 if i ∈ S and 0 otherwise.)
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Taking δ = 1/2 and A = 4 ln(rc), with probability at least 1 − (rc)2, it happens
that

∑

t

[
i ∈ I ′

t

] ≤ 4
∑

t

[i ∈ It ] + 8 ln(rc).

Likewise, for any j , with probability at least 1 − 1/(rc)2, we have that
∑

t [j ∈
J ′

t ] ≤ 2
∑

t [j ∈ Jt ] + 8 ln(rc).
Summing the naive union bound over all i and j , with probability at least 1−1/rc,

it happens that the sum
∑

t (|I ′
t |+ |J ′

t |) is at most 4
∑

t (|It |+ |Jt |)+8(r + c) ln(rc).
By Lemma 5 the latter quantity is O((r + c)N).
By Lemma 7, the number of empty iterations is still O((r + c)N) with probability

at least 1 − 1/rc. The lemma follows by applying the naive union bound. �

If the event in the lemma happens, then the total time is O(n+ (r + c) log(n)/ε2).
This proves Theorem 3. �

5 Empirical Results

We performed an experimental evaluation of our algorithm and compared it against
Simplex on randomly generated 0/1 input matrices. These experiments suffer from
the following limitations: (i) the instances are relatively small, (ii) the instances are
random and thus not representative of practical applications, (iii) the comparison is
to the publicly available GLPK (GNU Linear Programming Kit), not the industry
standard CPLEX. With those caveats, here are the findings.

The running time of our algorithm is well-predicted by the analysis, with a leading
constant factor of about 12 basic operations in the big-O term in which ε occurs.

For moderately large inputs, the algorithm can be substantially faster than Simplex
(GLPK—Gnu Linear Programming Kit—Simplex algorithm glpsol version 4.15 with
default options).4 The empirical running times reported here for Simplex are to find
a (1 ± ε)-approximate solution.

For inputs with 2500–5000 rows and columns, the algorithm (with ε = 0.01) is
faster than Simplex by factors ranging from tens to hundreds. For larger instances,
the speedup grows roughly linearly in rc. For instances with moderately small ε and
thousands (or more) rows and columns, the algorithm is orders of magnitude faster
than Simplex.

The test inputs had r, c ∈ [739,5000], ε ∈ {0.02,0.01,0.005}, and matrix density
d ∈ {1/2k : k = 1,2,3,4,5,6}. For each (r, c, d) tuple there was a random 0/1 matrix
with r rows and c columns, where each entry was 1 with probability d . The algorithm
here was run on each such input, with each ε. The running time was compared to that
taken by a Simplex solver to find a (1 − ε)-approximate solution.

4Preliminary experiments suggest that the more sophisticated CPLEX implementation is faster than GLPK
Simplex, but, often, only by a factor of five or so. Also, preliminary experiments on larger instances than
are considered here suggest that the running time of Simplex and interior-point methods, including CPLEX
implementations on random instances grows more rapidly than estimated here.
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GLPK Simplex failed to finish due to cycling on about 10 % of the initial runs;
those inputs are excluded from the final data. This left 167 runs. The complete data
for the non-excluded runs is given in the tables at the end of the section.

5.1 Empirical Evaluation of this Algorithm

The running time of the algorithm here includes (A) time for preprocessing and ini-
tialization, (B) time for sampling (line 4, once per iteration of the outer loop), and
(C) time for increments (lines 8 and 10, once per iteration of the inner loops). Theo-
retically the dominant terms are O(n) for (A) and O((r + c) log(n)/ε2) for (C). For
the inputs tested here, the significant terms in practice are for (B) and (C), with the
role of (B) diminishing for larger instances. The time (number of basic operations) is
well-predicted by the expression

[
12(r + c) + 480d−1] ln(rc)

ε2
(1)

where d = 1/2k is the density (fraction of matrix entries that are non-zero, at least
1/min(r, c)).

The 12(r + c) ln(rc)/ε2 term is the time spent in (C), the inner loops; it is the
most significant term in the experiments as r and c grow. The less significant term
480d−1 ln(rc)/ε2 is for (B), and is proportional to the number of samples (that is, it-
erations of the outer loop). Note that this term decreases as matrix density increases.
(For the implementation we focused on reducing the time for (C), not for (B). It is
probable that the constant 480 above can be reduced with a more careful implemen-
tation.)

The plot below shows the run time in seconds, divided by the predicted time (the
predicted number of basic operations (1) times the predicted time per basic opera-
tion):

The time exceeds the predicted time by up to a factor of two for large instances.
To understand this further, consider the next two plots. The plot on the left plots the

actual the number of basic operations (obtained by instrumenting the code), divided
by the estimate (1). The plot on the right plots the average time per operation.
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The conclusion seems to be that the number of basic operations is as predicted,
but, unexpectedly, the time per basic operation is larger (by as much as a factor of
two) for large inputs. We observed this effect on a number of different machines.
We don’t know why. Perhaps caching or memory allocation issues could be the cul-
prit.

5.2 Empirical Evaluation of Simplex

We estimate the time for Simplex to find a near-optimal approximation to be at
least 5 min(r, c)rc basic operations. This estimate comes from assuming that at least
Ω(min(r, c)) pivot steps are required (because this many variables will be non-zero
in the final solution), and each pivot step will take Ω(rc) time. (This holds even for
sparse matrices due to rapid fill-in.) The leading constant 5 comes from experimen-
tal evaluation. This estimate seems conservative, and indeed GLPK Simplex often
exceeded it.

Here’s a plot of the actual time for Simplex to find a (1 − ε)-approximate solution
(for each test input), divided by this estimate (5 min(r, c)rc times the estimated time
per operation).
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Simplex generally took at least the estimated time, and sometimes up to a factor
of ten longer. (Note also that this experimental data excludes about 10 % of the runs,
in which GLPK Simplex failed to terminate due to basis cycling.)

5.3 Speed-up of This Algorithm Versus Simplex

Combining the above estimates, a conservative estimate of the speed-up factor in
using the algorithm here instead of Simplex (that is, the time for Simplex divided by
the time for the algorithm here) is

5 min(r, c)rc

[12(r + c) + 480d−1] ln(rc)/ε2.
(2)

The plot below plots the actual measured speed-up divided by the conservative
estimate (2), as a function of the estimated running time of the algorithm here.

The speedup is typically at least as predicted in (2), and often more.
To make this more concrete, consider the case when r ≈ c and ε = 0.01. Then the

estimate simplifies to about (r/310)2/ ln r . For r ≥ 900 or so, the algorithm here
should be faster than Simplex, and for each factor-10 increase in r , the speedup
should increase by a factor of almost 100.
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5.4 Implementation Issues

The primary implementation issue is implementing the random sampling efficiently
and precisely. The data structures in [10, 15], have two practical drawbacks. The con-
stant factors in the running times are moderately large, and they implicitly or explic-
itly require that the probabilities being sampled remain in a polynomially bounded
range (in the algorithm here, this can be accomplished by rescaling the data structure
periodically). However, the algorithm here uses these data structures in a restricted
way. Using the underlying ideas, we built a data structure from scratch with very fast
entry-update time and moderately fast sample time. We focused more on reducing the
update time than the sampling time, because we expect more update operations than
sampling operations. Full details are beyond the scope of this paper. An open-source
implementation is at [19].

5.5 Data

Table 1 tabulates the details of the experimental results described earlier: “t-alg” is
the time for the algorithm here in seconds; “t-sim” is the time for Simplex to find
a (1 − ε)-optimal soln; “t-sim %” is that time divided by the time for Simplex to
complete; “alg/sim” is t-alg/t-sim.

6 Future Directions

Can one extend the coupling technique to mixed packing and covering problems?
What about the special case of ∃x ≥ 0;Ax ≈ b (important for computer tomogra-
phy). What about covering with “box” constraints (upper bounds on individual vari-
ables)? Perhaps most importantly, what about general (not explicitly given) packing
and covering, e.g. to maximum multicommodity flow (where P is the polytope whose
vertices correspond to all si → ti paths)? In all of these cases, correctness of a nat-
ural algorithm is easy to establish, but the running time is problematic. This seems
to be because the coupling approach requires that fast primal and dual algorithms of
a particular kind must both exist. Such algorithms are known for each of the above-
mentioned problems, but the natural algorithm for each dual problems is slow.

The algorithm seems a natural candidate for solving dynamic problems, or se-
quences of closely related problems (e.g. each problem comes from the previous one
by a small change in the constraint matrix). Adapting the algorithm to start with a
given primal/dual pair seems straightforward and may be useful in practice.

Can one use coupling to improve parallel and distributed algorithms for packing
and covering (e.g. [14, 21]), perhaps reducing the dependence on ε from 1/ε4 to
1/ε3? (In this case, instead of incrementing a randomly chosen variable in each of
the primal and dual solutions, one would increment all primal and dual variables
deterministically in each iteration: increment the primal vector x by αp̂ and the dual
vector x̂ by αp for the maximal α so that the correctness proof goes through. Can one
bound the number of iterations, assuming the matrix is appropriately preprocessed?)
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Table 1 Empirical results
r c k 100ε t-alg t-sim t-sim % alg/sim

739 739 2 2.0 1 3 0.31 0.519

739 739 2 1.0 7 6 0.51 1.251

739 739 2 0.5 33 7 0.64 4.387

739 739 5 2.0 3 1 0.51 2.656

739 739 5 1.0 15 1 0.63 8.840

739 739 5 0.5 63 2 0.76 30.733

739 739 4 2.0 2 2 0.51 0.970

739 739 4 1.0 11 3 0.64 3.317

739 739 4 0.5 46 4 0.76 11.634

739 739 3 2.0 2 3 0.43 0.561

739 739 3 1.0 9 5 0.60 1.745

739 739 3 0.5 38 6 0.72 6.197

1480 740 3 2.0 2 9 0.37 0.304

1480 740 3 1.0 13 13 0.53 0.959

1480 740 3 0.5 57 16 0.64 3.478

1480 740 2 2.0 2 24 0.44 0.102

1480 740 2 1.0 11 33 0.60 0.342

1480 740 2 0.5 51 39 0.71 1.313

1480 740 5 2.0 4 4 0.41 0.928

1480 740 5 1.0 18 6 0.56 2.930

1480 740 5 0.5 77 7 0.66 10.447

1480 740 4 2.0 3 6 0.34 0.495

1480 740 4 1.0 15 10 0.49 1.496

1480 740 4 0.5 64 12 0.60 5.239

740 1480 3 2.0 3 14 0.35 0.211

740 1480 3 1.0 14 21 0.51 0.667

740 1480 3 0.5 63 29 0.71 2.139

740 1480 2 2.0 2 13 0.27 0.192

740 1480 2 1.0 11 25 0.51 0.462

740 1480 2 0.5 54 34 0.68 1.597

740 1480 5 2.0 5 7 0.59 0.699

740 1480 5 1.0 22 9 0.72 2.460

740 1480 5 0.5 94 10 0.82 9.054

740 1480 1 2.0 2 23 0.24 0.097

740 1480 1 1.0 9 41 0.44 0.237

740 1480 1 0.5 47 55 0.59 0.848

740 1480 4 2.0 3 12 0.47 0.313

740 1480 4 1.0 17 15 0.61 1.130

740 1480 4 0.5 73 19 0.75 3.803



670 Algorithmica (2014) 70:648–674

Table 1 (Continued)
r c k 100ε t-alg t-sim t-sim % alg/sim

1110 1110 3 2.0 3 21 0.30 0.142

1110 1110 3 1.0 13 33 0.48 0.399

1110 1110 3 0.5 58 43 0.62 1.354

1110 1110 6 2.0 6 5 0.64 1.327

1110 1110 6 1.0 29 6 0.76 4.763

1110 1110 6 0.5 121 6 0.83 17.903

1110 1110 5 2.0 4 9 0.48 0.480

1110 1110 5 1.0 20 13 0.64 1.575

1110 1110 5 0.5 86 15 0.77 5.439

1110 1110 4 2.0 3 17 0.43 0.203

1110 1110 4 1.0 16 24 0.60 0.649

1110 1110 4 0.5 68 29 0.71 2.325

1111 2222 1 2.0 3 94 0.15 0.036

1111 2222 1 1.0 15 198 0.30 0.077

1111 2222 1 0.5 78 344 0.53 0.227

1111 2222 4 2.0 5 94 0.49 0.057

1111 2222 4 1.0 26 123 0.64 0.212

1111 2222 4 0.5 119 148 0.77 0.803

1111 2222 3 2.0 4 109 0.35 0.042

1111 2222 3 1.0 21 163 0.52 0.134

1111 2222 3 0.5 104 222 0.71 0.467

1111 2222 6 2.0 9 23 0.66 0.426

1111 2222 6 1.0 44 26 0.76 1.664

1111 2222 6 0.5 187 29 0.84 6.346

1111 2222 2 2.0 3 83 0.18 0.047

1111 2222 2 0.5 91 269 0.57 0.339

1111 2222 5 2.0 6 63 0.57 0.110

1111 2222 5 1.0 32 77 0.69 0.415

1111 2222 5 0.5 140 88 0.79 1.594

2222 1111 4 2.0 4 53 0.38 0.092

2222 1111 4 1.0 23 75 0.54 0.311

2222 1111 4 0.5 107 91 0.65 1.185

2222 1111 3 2.0 4 53 0.29 0.080

2222 1111 3 1.0 21 84 0.46 0.253

2222 1111 3 0.5 97 115 0.63 0.848

2222 1111 6 2.0 7 21 0.49 0.373

2222 1111 6 1.0 34 26 0.61 1.297

2222 1111 6 0.5 148 30 0.71 4.816

2222 1111 2 2.0 3 102 0.36 0.037

2222 1111 2 1.0 17 139 0.49 0.127

2222 1111 2 0.5 88 173 0.61 0.513

2222 1111 5 2.0 5 42 0.41 0.141

2222 1111 5 1.0 27 57 0.56 0.472

2222 1111 5 0.5 120 70 0.68 1.696
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Table 1 (Continued)
r c k 100ε t-alg t-sim t-sim % alg/sim

1666 1666 4 2.0 5 117 0.40 0.045

1666 1666 4 1.0 24 163 0.56 0.153

1666 1666 4 0.5 111 201 0.69 0.554

1666 1666 3 2.0 4 112 0.29 0.040

1666 1666 3 1.0 21 185 0.48 0.114

1666 1666 3 0.5 98 245 0.64 0.400

1666 1666 6 2.0 8 42 0.51 0.210

1666 1666 6 1.0 38 55 0.66 0.697

1666 1666 6 0.5 165 63 0.76 2.612

1666 1666 2 2.0 3 109 0.20 0.036

1666 1666 2 1.0 18 221 0.41 0.083

1666 1666 2 0.5 88 313 0.58 0.282

1666 1666 5 2.0 6 82 0.44 0.080

1666 1666 5 1.0 29 109 0.58 0.269

1666 1666 5 0.5 130 133 0.71 0.981

1666 3332 2 2.0 5 354 0.12 0.017

1666 3332 2 1.0 30 857 0.29 0.036

1666 3332 2 0.5 162 1594 0.54 0.102

1666 3332 5 2.0 9 509 0.51 0.020

1666 3332 5 1.0 51 654 0.65 0.078

1666 3332 5 0.5 227 762 0.76 0.299

1666 3332 1 2.0 5 350 0.09 0.015

1666 3332 1 1.0 24 1003 0.25 0.025

1666 3332 1 0.5 135 1881 0.46 0.072

1666 3332 4 2.0 7 578 0.38 0.014

1666 3332 4 1.0 42 899 0.58 0.047

1666 3332 4 0.5 204 1087 0.71 0.188

1666 3332 3 2.0 6 533 0.20 0.013

1666 3332 3 1.0 36 1095 0.41 0.033

1666 3332 3 0.5 180 1741 0.65 0.104

1666 3332 6 2.0 13 255 0.56 0.051

1666 3332 6 1.0 60 319 0.70 0.190

1666 3332 6 0.5 271 361 0.79 0.752

3332 1666 5 2.0 9 275 0.38 0.033

3332 1666 5 1.0 45 392 0.54 0.115

3332 1666 5 0.5 213 482 0.66 0.441

3332 1666 4 2.0 7 274 0.30 0.028

3332 1666 4 1.0 40 414 0.45 0.097

3332 1666 4 0.5 195 556 0.60 0.352

3332 1666 3 2.0 6 316 0.24 0.020

3332 1666 3 1.0 34 544 0.41 0.063

3332 1666 3 0.5 178 703 0.53 0.254

3332 1666 6 2.0 11 154 0.39 0.071

3332 1666 6 1.0 52 218 0.56 0.238

3332 1666 6 0.5 233 273 0.70 0.854
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Table 1 (Continued)
r c k 100ε t-alg t-sim t-sim % alg/sim

2499 2499 2 2.0 5 530 0.13 0.011

2499 2499 2 1.0 29 1556 0.40 0.019

2499 2499 2 0.5 159 2275 0.58 0.070

2499 2499 5 2.0 9 580 0.42 0.016

2499 2499 5 1.0 46 793 0.58 0.059

2499 2499 5 0.5 217 960 0.70 0.227

2499 2499 4 2.0 8 662 0.31 0.012

2499 2499 4 1.0 42 1064 0.50 0.040

2499 2499 4 0.5 195 1369 0.64 0.143

2499 2499 7 2.0 17 125 0.50 0.139

2499 2499 7 1.0 76 162 0.65 0.475

2499 2499 7 0.5 327 190 0.77 1.715

2499 2499 3 2.0 6 618 0.18 0.011

2499 2499 3 1.0 35 1079 0.32 0.032

2499 2499 3 0.5 174 1774 0.53 0.099

2500 5000 6 2.0 19 2525 0.52 0.008

2500 5000 6 1.0 98 3337 0.69 0.029

2500 5000 6 0.5 458 3828 0.79 0.120

2500 5000 7 2.0 26 1042 0.60 0.026

2500 5000 7 1.0 124 1272 0.73 0.098

2500 5000 7 0.5 556 1427 0.82 0.390

5000 2500 3 2.0 10 2165 0.23 0.005

5000 2500 3 1.0 62 3828 0.40 0.016

5000 2500 3 0.5 338 5586 0.58 0.061

5000 2500 6 2.0 17 1352 0.39 0.013

5000 2500 6 1.0 90 1832 0.53 0.049

5000 2500 6 0.5 418 2297 0.66 0.182

5000 2500 5 2.0 14 1752 0.33 0.008

5000 2500 5 1.0 82 2592 0.49 0.032

5000 2500 5 0.5 397 3330 0.63 0.119

5000 2500 4 2.0 12 1916 0.26 0.006

5000 2500 4 1.0 70 3177 0.44 0.022

5000 2500 4 0.5 367 4197 0.58 0.087

3750 3750 7 2.0 23 1828 0.50 0.013

3750 3750 7 1.0 111 2343 0.64 0.047

3750 3750 7 0.5 506 2712 0.74 0.187

3750 3750 6 2.0 18 3061 0.40 0.006

3750 3750 6 1.0 91 4263 0.55 0.022

3750 3750 6 0.5 432 5279 0.68 0.082
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Appendix: Utility Lemmas

The first is a one-sided variant of Wald’s equation:

Lemma 9 [20, Lemma 4.1] Let K be any finite number. Let x0, x1, . . . , xT be a se-
quence of random variables, where T is a random stopping time with finite expecta-
tion.

If E[xt − xt−1 | xt−1] ≤ μ and (in every outcome) xt − xt−1 ≤ K for t ≤ T , then
E[xT − x0] ≤ μE[T ].

The second is the Azuma-like inequality tailored for random stopping times.

Lemma 10 Let X = ∑T
t=1 xt and Y = ∑T

t=1 yt be sums of non-negative random
variables, where T is a random stopping time with finite expectation, and, for all t ,
|xt − yt | ≤ 1 and

E

[
xt − yt |

∑

s<t

xs,
∑

s<t

ys

]
≤ 0.

Let ε ∈ [0,1] and A ∈ R. Then

Pr
[
(1 − ε)X ≥ Y + A

] ≤ exp(−εA).

Proof Fix λ > 0. Consider the sequence π0,π1, . . . , πT where πt = 0 for t > λE[T ]
and otherwise

πt
.=

∏

s≤t

(1 + ε)xs (1 − ε)ys = πt−1(1 + ε)xt (1 − ε)yt ≤ πt−1(1 + εxt − εyt )

(using (1 + ε)x(1 − ε)y ≤ (1 + εx − εy) when |x − y| ≤ 1).
From E[xt − yt | πt−1] ≤ 0, it follows that E[πt | πt−1] ≤ πt−1.
Note that, from the use of λ,

∑
s≤t xs − ys and (therefore) πt − πt−1 are bounded.

Thus Wald’s (Lemma 9), implies E[πT ] ≤ π0 = 1.
Applying the Markov bound,

Pr
[
πT ≥ exp(εA)

] ≤ exp(−εA).

So assume πT < exp(εA). Taking logs, if T ≤ λE[T ],
X ln(1 + ε) − Y ln

(
1/(1 − ε)

) = lnπT < εA.

Dividing by ln(1/(1− ε)) and applying the inequalities ln(1+ ε)/ ln(1/(1− ε)) ≥
1 − ε and ε/ ln(1/(1 − ε)) ≤ 1, gives (1 − ε)X < Y + A. Thus,

Pr
[
(1 − ε)X ≥ Y + A

] ≤ Pr
[
T ≥ λE[T ]] + Pr

[
πT ≥ exp(εA)

] ≤ 1/λ + exp(−εA).

Since λ can be arbitrarily large, the lemma follows. �
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