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Abstract

Background: We introduce a novel method, called PuFFIN, that takes advantage of paired-end short reads to build
genome-wide nucleosome maps with larger numbers of detected nucleosomes and higher accuracy than existing
tools. In contrast to other approaches that require users to optimize several parameters according to their data
(e.g., the maximum allowed nucleosome overlap or legal ranges for the fragment sizes) our algorithm can
accurately determine a genome-wide set of non-overlapping nucleosomes without any user-defined parameter.
This feature makes PuFFIN significantly easier to use and prevents users from choosing the “wrong” parameters
and obtain sub-optimal nucleosome maps.

Results: PuFFIN builds genome-wide nucleosome maps using a multi-scale (or multi-resolution) approach. Our
algorithm relies on a set of nucleosome “landscape” functions at different resolution levels: each function
represents the likelihood of each genomic location to be occupied by a nucleosome for a particular value of the
smoothing parameter. After a set of candidate nucleosomes is computed for each function, PuFFIN produces a
consensus set that satisfies non-overlapping constraints and maximizes the number of nucleosomes.

Conclusions: We report comprehensive experimental results that compares PuFFIN with recently published tools
(NOrMAL, TEMPLATE FILTERING, and NucPosSimulator) on several synthetic datasets as well as real data for S.
cerevisiae and P. falciparum. Experimental results show that our approach produces more accurate nucleosome
maps with a higher number of non-overlapping nucleosomes than other tools.

Background
One of the central objectives in molecular biology is to
characterize all cellular processes controlling gene regu-
lation. The complex interaction between DNA chroma-
tin structure and transcription factors is one of these
key processes. The basic unit of chromatin structure is
the nucleosome, which is composed of ≈ 146 base pairs
of DNA wrapped around a protein complex of eight
histones. Loosely speaking, the more compact the chro-
matin, the harder it is for transcription factors and
other DNA binding proteins to access DNA and trigger
transcription. Thus, to elucidate the role of interactions
between chromatin and transcription factors, it is crucial

to determine the location of all nucleosomes along the
chromosomes.
Several experimental techniques are available to produce

genome-wide nucleosome maps. For instance, one can
isolate the portions of DNA that are free of nucleosomes
or enrich for genomic regions that are bound to histones.
The latter can be achieved via micrococcal nuclease diges-
tion (MNase or MAINE) [1], which can be combined with
chromatin immunoprecipitation (ChIP) to enrich for a
particular subset of nucleosomes (e.g., for a particular his-
tone tail mark), typically followed by high-throughput
sequencing (MNase-Seq and ChIP-Seq, respectively). In
this work, we assume that the sequencing data is either
MNase-Seq or ChIP-Seq, which are currently the most
popular approaches to study the locations of nucleosomes
and histone modifications.1Department of Computer Science and Engineering, University of California,
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An analysis of the literature reveals that the majority
of nucleosome maps have so far been produced from
single-end reads (which are less expensive to obtain
than paired-end reads). As a consequence, nearly all
computational methods available assume that the input
data are single-end reads. Nucleosome positioning from
single-end reads is, however, more computationally chal-
lenging and much less precise than if paired-end data
was available. Paired-end reads allow one to determine
both ends of nucleosome-enriched DNA fragments,
whereas with single-end reads one either obtains one
“boundary” or the other. In the latter case, the problem of
associating a peak in the forward strand with the correct
peak in the negative strand can be difficult, in particular
for complex nucleosome configurations.
Existing methods for single-end reads either rely on

the assumption that nucleosome-enriched DNA frag-
ments are expected to be of a size compatible with the
nucleosome (≈ 146 bp), or use probabilistic models to
estimate these sizes from the data. From our experience,
the first approach can lead to poor results because there
is no fragment size that will work equally well for all
nucleosomes in the genome. While one would expect
nucleosome-enriched DNA fragments to be about 146
bp, in MNase-Seq the digestion process can either leave
nucleosome-free DNA in the sample, or “over-digest” the
ends of nucleosome-bound DNA. Furthermore, the rate of
digestion is sequence-dependent [2,3], so nucleosomes in
different genomic locations can end up with different
DNA fragment sizes.
Despite these challenges, the majority of so-called

“peak-calling” approaches usually rely on the assumption
that the data is derived from nucleosome-sized DNA frag-
ments and consist of following steps: (1) a nucleosome
occupancy score function is obtained from mapping
nucleosome-enriched reads to the reference genome,
followed by counting, smoothing and normalization; (2)
candidate nucleosomes are placed according to the peaks
of the score function; (3) the final set of nucleosomes is
selected to satisfy additional constraints (which are
tool-dependent). To compute the occupancy score, differ-
ent techniques have been proposed, ranging from simply
computing the number of reads covering each genomic
location, to sophisticated statistics to estimate the false dis-
covery rate. For instance, nucleR [4] uses the raw coverage
with extensive “profile cleaning” based on the Fourier
transform, whereas NSeq [5] employs a triangle statistic
based on read counts within a sliding window.
A second group of methods is based on probabilistic

models. Our tool NOrMAL [6] uses a modified Gaussian
mixture model to infer nucleosome-enriched fragment
sizes. The parametric probabilistic model allows to
deal with the problem of overlapping and complex

configurations of nucleosomes. Developed in parallel with
NOrMAL, Ping [7] employs a similar probabilistic model.
Both tools provide a clear advantage over algorithms that
rely on the user to provide estimated DNA fragment sizes.
Finally, a distinct group of positioning methods depend

on the availability of a control track (i.e., “naked” DNA),
e.g., NucleoFinder [8], while others have been desig-
ned to perform differential nucleosome positioning,
e.g., DANPOS [9] and DiNuP [10].
In this work, we focus on the problem of determining

nucleosome positions based on the availability of paired-
end reads (without a control track). To the best of our
knowledge, NucPosSimulator [11] is the only published
tool specifically designed to take advantage of paired-end
reads: to place nucleosomes it solves the optimization
problem of selecting the subset of peaks which maximizes
the total score, under the constraint that these peaks are
located at the expected nucleosome distance from each
other. Our tool PuFFIN (Positioning for Fuzzy and FIxed
Nucleosomes) instead uses a novel multi-resolution
approach: while its algorithm is relatively simple, our
approach introduces some novel ideas that have the
potential to be useful in other domains of genome
analysis.

Methods
Our method consists of three steps: (A) we build a set of
nucleosome profiles and nucleosome “landscapes"; (B) we
detect candidate nucleosome locations on each profile;
(C) we select a “consensus” set of nucleosomes that satis-
fies non-overlapping constraints. We discuss these steps in
detail in the next subsections.

Computing nucleosome profiles and nucleosome
landscapes
We first map sequenced reads to the reference genome
and then compute a nucleosome profile that represents
the likelihood that a genomic location is occupied by a
nucleosome. Candidate nucleosomes are detected at the
peaks of the nucleosome profile. In order to reduce false
positives, profiles have to be cleaned from their high fre-
quency component. Choosing the best smoothing
method (and its parameters) is, however, not easy. For
instance, in [4] the authors show that the kernel density
estimation method [12] works significantly better than
moving average-based smoothing. The choice of kernel
parameters is also important: too much smoothing can
merge adjacent peaks, too little can leave noisy artifacts
that can be interpreted as peaks and thus introduce
spurious nucleosomes. To address the challenges of
choosing the “right” kernel and smoothing parameters,
we follow an alternative (novel) procedure to construct
nucleosome profiles.
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First, we replace each mapped paired-end read i with
a function f αwi

i distributed as a Gaussian with mean µi
and standard deviation awi, i.e.,

f αwi
i (x) =

1

αwi
√

2π
e
−

(x − μi)
2

(αwi)
2

where µi is the genomic center location of read i, wi is
the length of read i (i.e., the distance between the left-
most nucleotide in the left mate and rightmost nucleo-
tide of the right mate), and a is a smoothing parameter.
Replacing each mapped read with a Gaussian distribu-
tion allows us to model probabilistically the uncertainty
in the paired-end mapping. For instance, when the left
and right mate are mapped far from each other, the
mass of the Gaussian will be distributed on a longer
interval because of its large variance. If instead the left
and right mate are close to each other, the Gaussian will
have its mass concentrated at the center of the read,
indicating a higher confidence in the nucleosome
position.
Then, we compute the nucleosome profile Sa as the

weighted sum of functions f αwi
i for all the mapped reads

in the input

Sα(x) =
n∑

i=1

βif
αwi
i (x)

where n is the number of mapped reads in input, and
bi is the weight of the read i. If we had employed a uni-
form weighting scheme

(
βi = 1

n

)
, paired-end reads with

very short insert would dominate the profiles. To reduce
the effects of short DNA fragments, we use a non-uni-
form weighting scheme. For paired-end reads that are
shorter than 146bp, we assign a penalty factor g(w) < 1,
such that the shorter the read is, the less the weight is
(i.e., βi = 1

nγ (wi) ). Additionally, one could use the
weights bi to account for sequence quality of individual
reads, mappability biases, etc.
As said, parameter a controls the smoothness of

function Sa. The bigger a is, the smoother Sa is,
(peaks will be wider), and vice versa. When a is large,
we capture nucleosome binding preferences at a lower
resolution scale; when a is small we can detect nucleo-
somes at a high resolution scale (but noisier). In the

limit a ® 0, function Sα(x) →
∑n

i=1
χ(x − μi) , where

χ(x) =
{

1, x = 0
0, x �= 0

is the indicator function. In this case,

S0(x) represents how many read centers cover location
x in the genome.
One might think that one could obtain the same pro-

files by computing the read coverage function smoothed

by a Gaussian kernel. There is, however, a significant
difference: the size of each mapped read independently
influences the shape of Sa (no matter what smoothing
parameter is chosen), while in the case of kernel
smoothing the impact of read sizes becomes less and
less important as the smoothing strength increases.
Since we do not know the appropriate value for a for

the data, in this step we generate a family of functions
for several choices of a. Formally, we create a set of m
functions

{
Sαk

}
k=1,2,...,m =

{
Sα1 , Sα1 , . . . , Sαm

}
, where a1 <

a2 < . . . < am are m distinct choices for a. The value m
is hard-coded in our implementation (we used m = 40
for all the experiments).
The set of functions

{
Sαk

}
k=1,2,...,m enables our algo-

rithm to detect candidate locations for nucleosomes at
different resolution scales, thus eliminating the need to
specify in advance the parameters for the range of
nucleosome-enriched fragments. In other words, our
algorithm can “adapt” to the local properties of the
input data by processing the same location at different
resolutions (corresponding to the choices of a).
Finally, we compute a set of nucleosome landscapes{
Nαk

}
k=1,2,...,m by normalizing each function Sαk by the

lowest resolution function SA, as follows

Nαk (x) = log
(

Sak (x) + ε

SA(x) + ε

)

where ε > 0 is a small constant to avoid a division by
zero, and A > maxk = 1,2,...,m ai. In our implementation
we pick a to range from 0.05 to 0.63 and A = 1.5. Since
mappability biases affect each function

{
Sαk

}
, we can

effectively reduce these biases by taking the log ratio of
high-resolution and low-resolution function. Another
reason to carry out this normalization step is to reduce
the differences in the peak heights.
To illustrate the multi-resolution approach in our

algorithm, we created a small synthetic dataset with
four nucleosomes shown in Figure 1. Panel A shows
the raw coverage obtained by mapping synthetic
paired-end reads to the reference genome. Observe
that nucleosomes I,III and IV are strongly positioned,
while nucleosome II is “fuzzy”. Fuzzy nucleosomes are
quite common and occur when a subset of the cells in
the sample has a nucleosome at one location, while in
the other subset the same nucleosome is slightly
shifted. Nucleosome I is isolated, while nucleosomes III
and IV are located very close to each other. Panel B
shows the family of functions

{
Sαk

}
for three choices

of a; panel C illustrates the set of nucleosome land-
scape functions

{
Nαk

}
. Observe in Figure 1C that the

transformation amplifies candidate peaks in areas with
low coverage and reduces the amplitude of peaks in
regions with high coverage.
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Detecting candidate nucleosomes
By construction, a nucleosome landscape Nαk represents a
non-parametric distribution of nucleosomes at resolution
ak . The presence of a peak in any nucleosome landscape
indicates a candidate nucleosome. The reads that form
corresponding peak belong to that candidate.
A peak is defined by a pair (q, s) where q is the center of

the peak and s is the width of the peak. We say that (q, s)
is a peak for function N when N (q) is local maximum for
N and s = minz (|q − z|) where z is any local minimum for
function N .
Detecting peaks on each function Nαk can be easily

computed in linear time along the length of the genome.
As a result, for every choice of ak, k = 1, 2, . . . , m we

have a set of peaks {pk1 , pk2 , . . . , pkl }, where pkj is a pair
(center, width) representing the peak, and l is the num-
ber of peaks.
Peaks are however not guaranteed to have a symmetric

shape. We therefore recompute the location of every
nucleosome candidate as the centroid location of its read
midpoints. This additional step ensures that candidate
nucleosome locations properly represent the correspond-
ing input reads.

Building the final solution
We now explain how to build the final set of non-
overlapping nucleosomes from the family of peak sets{
Pαk

}
k=1,...,m . We say that two peaks (q1, s1) and (q2, s2)

Figure 1 Synthetic illustrative example. A) Read coverage; B) Nucleosome profiles {Sαk} for a1 = 0.07 (blue), a2 = 0.21 (green), a3 = 0.62
(red) C) Corresponding nucleosome landscapes {Nαk} (see text for detailed explanation)
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overlap if |q1 − q2| < 146 (the size of a nucleosome).
Observe that by construction, the number of peaks
detected at lower resolution (i.e., for large a) will be
smaller than or equal to the number of peaks detected
at higher resolution, i.e., |Pa| ≤ |Pb| when a > b. As
we increase the smoothing parameter a, the total
number of peaks decreases: while some peaks are pre-
served, others are merged. In other words, for every
peak in Pa we can find at least one corresponding
peak in Pb if a > b.
Based on this observation, we build the final set of non-

overlapping nucleosomes C as follows. Given a family of
peak sets

{
Pαk

}
k=1,...,m where a1 < a2 < . . . < am, we pro-

cess each peak set Pαk in increasing order for a. We add a
peak p from the current set Pαk to the final solution C if p
does not overlap with any other peak in the set Pαk and if
p does not overlap with any other peak already in C.
A sketch of the algorithm can be found in Figure 2.
Let us consider again our example in Figure 1.

Detected peaks are marked with circles in panel C. The
algorithm first processes the set of peaks on the blue
function (a = 0.07). Since there are no peaks on that
curve that are located at a distance greater than 146bp
from each other, the final set C remains empty. Next,
the algorithm processes the green curve (a = 0.21): here
there are three peaks that satisfy the non-overlapping
constraint. Thus, the algorithm adds those peaks
(marked with solid circles) to C. Then, the algorithm
considers the red curve (a = 0.62): all four peaks are
non-overlapping with each other, however only one
peak (marked with the solid circle) can be added to C.
As a result, the final solution C consists a set of four
peaks that match the original nucleosomes. Observe
that strongly positioned nucleosomes I, III and IV are
detected earlier in the algorithm (a = 0.21) than fuzzy
nucleosome II (a = 0.62).

Running time
To compute a set of profile functions Sa we use a pre-
computed set of curves f αw

i for every choice a and w in
a predefined range. As a result, it takes Θ(nm) operations,
where n is the number of reads and m is the number of
curves. In our implementation we used m = 40 choices
of equally distributed values for a ∈ [0.05, 0.63].
Finding peaks on each curve Sa takes Θ(l) time, where l

is the length of the processed region. Thus, the total time
to find candidate nucleosomes (Figure 2, lines 1-3) is
Θ(m(n + l)). Building the resulting set of non-overlapping
nucleosomes is determined by the number of candidates
that is at most Θ(ml). Given that m is predefined, it fol-
lows that the total running time is linear in the region
size and number of input reads.

Experimental results
To evaluate the performance of PuFFIN, we performed
extensive benchmarking against NucPosSimulator,
TEMPLATE FILTERING and NOrMAL. NucPosSimulator
is the only published tool designed to deal with paired-end
reads [11]. As said, it solves the optimization problem of
selecting the subset of peaks which maximizes the total
score, under the constraint that these peaks are located at
the expected nucleosome distance from each other.
TEMPLATE FILTERING is one of the first algorithms
developed to infer the size of the fragments from single-end
reads [3]. NOrMAL uses a modified Gaussian model to
cluster input single-reads such that every cluster represents
a nucleosome [6]. Some of the recently published tools that
use a control sample to solve the nucleosome positioning
problem, e.g., DANPOS and NucleoFinder , are not
included in this comparison.
We used default parameters for each tool except for the

following provisions. For TEMPLATE FILTERING and
NOrMAL we set to zero the allowed overlap between

Figure 2 Sketch of the proposed algorithm.
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adjacent nucleosomes to allow for a fair comparison with
PuFFIN and NucPosSimulator.
Arguably the major challenge for nucleosome position

inference is that the true positions of nucleosomes are
unknown. The lack of a “ground-truth” makes it very
hard to benchmark existing computational methods. For
this reason we made extensive use of synthetic data, as
explained next.

Results on synthetic data
We started by producing a small dataset of reads corre-
sponding to DNA-enriched fragments for only one
nucleosome (Figure 3). This allowed us to investigate

the behavior of these various tools in the scenario of
low sequence coverage in a region containing a fuzzy
nucleosome. Nucleosome I is centered at 300bp and the
paired-end reads of size 146bp were generated with
midpoints distributed according to Gaussian with mean
300, and standard deviation 40. To simulate a low cov-
erage scenario, we generated only twenty sequence reads
(20-fold coverage). PuFFIN, TEMPLATE FILTERING
and NOrMAL report one nucleosome located at 308bp,
311bp and 292bp, respectively, while NucPosSimulator
reports two nucleosomes positioned at 221bp and
369bp. The slight difference of the reported locations
for the first three tools could be explained by the small

Figure 3 A “toy” example. A) Raw coverage; B) Nucleosome landscapes for different choices of a ∈ [0.05, 0.63); C) NucPosSimulator result; D)
PuFFIN result; E) TEMPLATE FILTERING result; F) NOrMAL result;
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sample size that is insufficient to recover the true location.
Interestingly, the first two methods, which are based on
peak-detection, produced a similar close right shift, while
the nucleosome detected by NOrMAL showed a small left
shift. NucPosSimulator detected two distinct nucleosomes,
probably because the objective of this tool is to maximize
the total score of reported nucleosomes. We believe that
maximizing this quantity has the undesirable effect to
over-report nucleosomes (i.e., increase false positives).
Decreasing the smoothing parameter in NucPosSimulator
from 20.0 (default) to 2.0 reduces the output to a single
nucleosome, again demonstrating how the choice of
smoothing parameters can have significant effects on the
results.
Next, we performed a more realistic comparison on in

silico reads for larger synthetic nucleosome maps. We
used the nucleosome map generator syntheticNucMap
from nucleR [4]. This tool allows users to specify the
number of well-positioned and fuzzy nucleosomes, as
well as the variance for the location of synthetic reads
and the coverage level. Well-positioned nucleosomes are
placed along the chromosome regularly spaced with a
fixed linker size (we used linkers of 20bp, which intro-
duces a periodicity of ≈ 167bp). For fuzzy nucleosomes,
locations are picked at random and independently from
other nucleosomes already on the chromosome. As a
consequence, fuzzy nucleosomes can overlap with other
nucleosomes. For the variance parameter we choose 30

bases for well-positioned and 50 bases for fuzzy
nucleosomes.
Our objective was to investigate the accuracy of

nucleosome detection as a function of the fraction of
fuzzy nucleosomes: we expected the detection problem
to become increasingly harder as the number of fuzzy/
overlapping nucleosomes increases. For each percentage
level of fuzzy nucleosomes (0%, 10% . . . , 100%) we gen-
erated ten datasets of synthetic reads for a map contain-
ing 1,000 synthetic nucleosomes. To build these
datasets, we used the following command: synthe-
ticNucMap(wp.num = 1100, wp.del=(100
+r*100), wp.var = 30, fuz.num=(r*100),
fuz.var = 50, max.cover = 70, nuc.len =
147, lin.len = 20), where r controls the fraction of
fuzzy nucleosomes (r = 0 is 0%, r = 1 is 10%, . . . , r =
10 is 100%). For each group of ten datasets we measured
the number of reported nucleosomes and the accuracy of
each tool, and reported the average and standard devia-
tion over the ten sets. To measure the accuracy, we cal-
culated the distances between the true nucleosome
location and the center of the corresponding detected
nucleosome. Results in Figure 4 show that PuFFIN
reports nucleosome positions more accurately in datasets
with larger proportions of fuzzy nucleosomes. In addition,
Figure 5 shows the average number of nucleosomes
detected by the various tools for increasing percentages
of fuzzy nucleosome (the error bar represents the

Figure 4 Distribution of the distances between detected and true locations for A) 100%, B) 60% and C) 0% fuzzy dataset.
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standard deviation over the ten datasets). First observe
that although each dataset is expected to have synthetic
reads for exactly 1,000 nucleosomes, this is only true for
datasets with no fuzzy nucleosomes. Since fuzzy nucleo-
somes may overlap other nucleosomes, we expect to
detect a decreasing numbers of nucleosomes as the per-
centage of fuzzy nucleosomes increases (which is
reflected in Figure 5). Also observe in Figure 5 that in
datasets with more than 20% of fuzzy nucleosomes, Nuc-
PosSimulator detects the highest number of nucleosomes

compared to other tools. However, as we demonstrated
earlier in Figure 3, NucPosSimulator can over-report
nucleosomes. To explore whether this was true on these
larger datasets, we computed the distribution of distances
between adjacent nucleosomes (Figure 6). In the group of
datasets with no fuzzy nucleosomes, both NucPosSimula-
tor and PuFFIN have strong peak at around 167bp loca-
tion and 334bp. This is expected, because all
nucleosomes are well-positioned and are located at multi-
ples of 167bp. However, as we increase the percentage of

Figure 5 Dependency between the percentage of fuzzy reads in the sample (X axis) and the number of detected nucleosomes (Y axis)
for synthetic dataset.

Figure 6 Distribution of the distances between adjacent nucleosomes for A) NucPosSimulator B) PuFFIN.
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fuzzy nucleosomes in the datasets, NucPosSimulator
reports more and more nucleosomes exactly 148 bp apart
from each other, which suggests that its strategy to maxi-
mize the total score for reported nucleosomes has the
effect of reporting too many nucleosomes.
To eliminate the effects of over-reporting in NucPos-

Simulator, we discarded from the counts nucleosomes
that are located 148 bases or less from each other, such
that every pair of tightly placed nucleosomes is count as
one nucleosome. In Figure 5, curves marked “filtered”
shows the results of this cleaning step. Observe that the
number of nucleosomes reported by NucPosSimulator
drops significantly, while only a small number of PuF-
FIN nucleosomes are affected. In fact, using this clean-
ing step, PuFFIN reports a larger numbers of
nucleosomes than NucPosSimulator. All together, these
experimental results on synthetic data show that PuF-
FIN generates more accurate nucleosome maps, without
over-reporting nucleosomes.

Results on real data
For the comparison of nucleosome positioning tools, we
used a publicly available dataset for S. cerevisiae (NCBI
SRA SRR094649) and our dataset for P. falciparum
(NCBI SRA SRS453761). All datasets contain paired-end
reads produced by an Illumina sequencing instrument.
Reads were mapped to their corresponding reference
genomes using Bowtie2 [13] with –very-fast-local
–no-discordant flags. We removed reads that were
not mapped uniquely or had a distance between the left
and right mates smaller than 40bp or bigger than
1,000bp.
Experimental results are summarized in Table 1,

which include the number of reported nucleosomes
and the execution time. Nucleosome positioning in S.
cerevisiae is extensively studied and the majority of the
tools perform well on this organism. Also, nucleo-
somes in yeast are well-positioned and not many over-
laps are present. The results in Table 1 show that the
number of nucleosome reported in yeast by these tools
are quite similar, except for NucPosSimulator that
reports a significantly larger number. These results
possibly again suggest the over-reporting behavior of
this tool.

Our previous work [6] has demonstrated that the P.
falciparum genome has a greater complexity of nucleo-
somes configurations. As expected, experimental results
show much greater variance in the number of nucleo-
somes in the malaria dataset reported by the various
tools. PuFFIN reports a similar number of nucleosomes
compared to NucPosSimulator, but significantly higher
numbers than NOrMAL and TEMPLATE FILTERING,
indicating that our method is capable to resolve com-
plex configurations of nucleosomes.
The execution time of PuFFIN is higher than NOr-

MAL and TEMPLATE FILTERING on both datasets,
but shorter than NucPosSimulator on P. falciparum and
higher on S. cerevisiae datasets. Our implementation of
PuFFIN is currently written in Python, while the other
tools use either Java or C/C++. We believe that speed of
our tool could be easily improved by one order of mag-
nitude by implementing it in C/C++ (work in progress).
To investigate the sensitivity of the tools on the quan-

tity of the input data (coverage), we performed an
experiment in which an increasing fractions of the input
reads were discarded. Specifically, we sampled the P. fal-
ciparum dataset by randomly selecting a given fraction
of the input reads (20%, 30% . . . , 100%) and ran the
four tools on the resulting datasets. Subsamples have 7x,
14x,. . . , 63x fold coverage. Figure 7 shows that the per-
formance of PuFFIN degrades monotonically as the
quantity of the data decreases, while NucPosSimulator
remains more stable over a larger range of input data.
We therefore recommend to use sequence data with a
minimum of 30-fold for the analysis of nucleosome
positions if PuFFIN is used.

Conclusion
We described a novel method to solve the nucleosome
positioning problem when paired-end data is available.
Our method employs a multi-resolution strategy that
circumvents a smoothing step that usually requires
user-defined parameters to set the strength of the
smoothing and type of kernel to be used. Experimental
results show that our method more accurately detects
nucleosome positions as compared to existing software
tools, in particular when complex nucleosome config-
urations are present in the data.

Table 1 Number of reported nucleosomes and execution times on yeast and the human malaria parasite.

S. cerevisiae (W303 contig 7) P. falciparum (3D7 chr. 2)

# Nucleosomes Time (sec) # Nucleosomes Time (sec)

TEMPLATE FILTERING 630 1 2,725 13

NOrMAL 592 4 3,247 40

NucPosSimulator 802 75 3,722 920

PuFFIN 709 165 3,760 350
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