
Algorithm-Based Recovery for Iterative Methods
without Checkpointing

Zizhong Chen
Colorado School of Mines

Golden, CO 80401
zchen@mines.edu

ABSTRACT
In today’s high performance computing practice, fail-stop
failures are often tolerated by checkpointing. While check-
pointing is a very general technique and can often be applied
to a wide range of applications, it often introduces a consid-
erable overhead especially when computations reach petas-
cale and beyond. In this paper, we show that, for many
iterative methods, if the parallel data partitioning scheme
satisfies certain conditions, the iterative methods themselves
will maintain enough inherent redundant information for
the accurate recovery of the lost data without checkpoint-
ing. We analyze the block row data partitioning scheme for
sparse matrices and derive a sufficient condition for recov-
ering the critical data without checkpointing. When this
sufficient condition is satisfied, neither checkpoint nor roll-
back is necessary for the recovery. Furthermore, the fault
tolerance overhead (time) is zero if no actual failures oc-
cur during a program execution. Overhead is introduced
only when an actual failure occurs. Experimental results
demonstrate that, when it works, the proposed scheme intro-
duces much less overhead than checkpointing on the current
world’s eighth-fastest supercomputer Kraken.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel programming

General Terms
Performance, Reliability

Keywords
Algorithm-Based Recovery, Application Level Fault Toler-
ance, Checkpointing, Iterative Methods, Rollback Recovery

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0552-5/11/06 ...$10.00.

1. INTRODUCTION
The extreme scale high performance computing (HPC)

systems available before the end of this decade are expected
to have 100 million to 1 billion CPU cores [5, 33]. Resilience
has been widely viewed as a necessity for the exascale HPC
applications [19, 20, 21, 33]. Fault tolerance techniques have
been identified to be critical to the effective use of these HPC
systems [19, 20, 21, 26, 33, 39, 54].

Fail-stop failure [53], where a failed process stops working
and all data associated with the failed process are lost, is a
very common [35, 39, 54] type of failure in HPC systems such
as high end clusters with thousands of processors and com-
putational grids with dynamic computing resources. Fail-
stop failures are often tolerated by checkpoint/restart [14,
15, 16, 18, 26, 34, 35, 51, 52, 55, 59]. While checkpoint/restart
is a very general technique and can be applied in a wide
range of applications, it is sometimes possible to achieve
much lower fault tolerance overhead if an algorithm-based
recovery scheme can be designed to tolerate the failure ac-
cording to the specific characteristics of an application [8,
24, 25, 28, 29, 30, 31, 32, 44, 46, 47].

Despite there are many other types of failures, this paper
focuses on fail-stop failures and presents an algorithm-based
recovery scheme for iterative methods. Iterative methods
have been widely used to solve linear algebra equations when
the co-efficient matrices of the linear systems are sparse [11,
40, 58]. While many iterative software packages such as
PETSc [12], Trilinos [43], and HYPRE [36] have been proved
to be able to scale to thousands of processors and achieve
teraflops level performance, these applications often restart
either from the beginning or from a checkpoint if failures
occur during the computation.

In this paper, we show that, for many iterative methods, if
the parallel data partitioning scheme satisfies certain condi-
tions, the iterative methods themselves will maintain enough
inherent redundant information for the accurate recovery of
the lost data without checkpointing. Neither checkpoint nor
roll-back is necessary. The computation can be restarted
from where the failure occurs. Furthermore, the fault toler-
ance overhead (time) is zero if no actual failures occur in a
particular instance of the application execution. Overhead
is introduced only when an actual failure occurs.

In cases where the parallel data partitioning scheme does
not generate enough inherent redundant information to per-
form an accurate recovery of all the lost data, it is often
possible to slightly modify these iterative methods to incor-
porate additional redundant information so that all the lost
data can still be recovered. Because periodical checkpoint is

not necessary during the whole computation and roll-back
is not necessary after a failure, the fault tolerance overhead
is often lower than checkpointing.

Experimental results demonstrate that the proposed algo-
rithm based recovery schemes introduce much less overhead
than checkpointing on the current (as of January 10, 2011)
world’s eighth-fastest supercomputer Kraken [2] at the Na-
tional Institute for Computational Sciences.

The rest of the paper is organized as following. Section 2
introduces the background and related work. In Section 3,
we analyze the inherent redundant information in paral-
lel sparse matrix-vector multiplication. Section 4 explores
the inherent redundant information in the residual relation-
ship. In Section 5, we develop fault tolerant versions of six
iterative algorithms including Jacobi, Gauss-Seidel, SOR,
SSOR, CG, and BiCGStab methods. In Section 6, we ex-
perimentally compare our algorithm-based recovery scheme
with checkpointing on kraken.nics.tennessee.edu. Section 7
concludes the paper and discusses the future work.

2. BACKGROUND
Recently, Schroeder and Gibson studied [39, 54] the sys-

tem logs of 22 HPC systems from 1996 to 2004 in Los Alamos
National Laboratory (LANL) and found that the mean-time-
to-interrupt (MTTI) for these HPC systems varies from about
half a month to less than half a day.

To avoid restarting the computation from the beginning,
HPC applications need to be able to tolerate failures. Con-
siderable work has been done to provide fault tolerance ca-
pabilities for HPC applications [14, 15, 16, 18, 24, 25, 26,
27, 28, 29, 30, 31, 32, 34, 35, 44, 46, 47, 51, 52, 55, 59].

Checkpoint/restart has been one of the major approaches
to achieve fault tolerance for many years [14, 15, 16, 18, 26,
34, 35, 46, 51, 52, 55, 59]. In HPC field, both LAM/MPI [17]
and OPEN MPI [38] implemented a transparent coordinated
checkpointing/restarting functionality. Open MPI is able
to support both the BLCR checkpoint/restart system [34]
and “self” checkpointers. In [7, 18], Cappello et al. imple-
mented MPICH-V which uses both checkpointing and mes-
sage logging techniques to tolerate failures. MPICH-V pro-
vides transparent fault tolerance for MPI programs using
four different protocols. By just linking with the MPICH-
V library, a non-fault-tolerant application becomes a fault
tolerant application.

While many fault tolerance systems have the ability to
tolerate the failure of the whole system, it is also desirable
to build systems that are able to survive partial failures with
reduced overhead. The PVM system [56] developed at the
Oak Ridge National Laboratory (ORNL) allows program-
mers to develop fault tolerant applications that can survive
host or task failures. FT-MPI [37], a fault tolerant version
of MPI, is also able to provide similar capability to sup-
port fault survivable HPC applications. Recently, a collab-
orative team of researchers (Gupta, Beckman, Park, Lusk,
Hargrove, Geist, Panda, Lumsdaine, and Dongarra) devel-
oped a coordinated infrastructure for fault-tolerant systems
named CIFTS [6, 42]. CIFTS allows system software com-
ponents to share fault information with each other and aims
to give programmers an opportunity to design applications
that can adapt to faults in a holistic manner.

When systems are able to survive partial failures, Plank
et al. developed the diskless checkpointing technique [50,
51, 52] that removes the I/O bottleneck from checkpoint-

ing by storing the checkpoints locally in processor memories
and encoding these local checkpoints to dedicated check-
point processors using Reed-Solomon codes. While disk-
less checkpointing can not survive the failure of the whole
system, it is able to survive partial failures with reduced
overhead. Strategies to improve the scalability of diskless
checkpointing have been explored in [26, 28].

In order to reduce overhead, fault tolerance can also be ad-
dressed from the application level. In [14, 15], Bronevetsky
et al. implemented an application-level, coordinated, non-
blocking checkpointing system for MPI programs. The sys-
tem is able to transform non-fault-tolerance C/MPI appli-
cations into fault tolerant applications using compiler tech-
nologies. Application-level checkpointing schemes are also
designed for OpenMP programs in [16].

It is also possible to address the fault tolerance issue from
the algorithm level [9, 10, 13, 41, 45, 48, 57]. When failed
processes continue working but produce incorrect computing
results, Huang and Abraham have developed the algorithm-
based fault tolerance (ABFT) technique [45] to detect (and
sometimes locate and correct) such miscalculations. Huang
and Abraham proved that, for many matrix operations, the
checksum relationship in the input checksum matrices is still
held in the final computation results. Therefore, if the failed
process is able to continue their work and finish the com-
putation, the miscalculations can be detected by verifying
whether or not the checksum relationship is still held in
the final computation results. ABFT was later extended
by many researchers (e.g [9, 10, 13, 41]).

When failed processes stop working, recovery often has
to be performed in the middle of the computation. In [24,
29, 31, 32], Chen et al. proved that, for the outer product
version of the matrix-matrix multiplication, Cholesky fac-
torization, and LU factorization, it is possible to maintain
the checksum relationship in the input checksum matrices
throughout the whole computation. Therefore, whenever a
fail-stop failure occurs during the computation, it is pos-
sible to use the checksum relationship to recover the lost
data on the failed process from where the computation fails.
Neither checkpoint nor rollback is necessary for the restart
of these computations. This technique is also extended to
tolerate multiple simultaneous failures in [22, 23, 30].

In this paper, we call these recovery schemes that
directly relay on the specific characteristics of the
algorithms as algorithm-based recovery. Algorithm-
based recovery for reliable and scalable tree-based overlay
networks has been designed by Arnold in [8]. In [49], Ltaief
et al. designed an algorithm-based recovery schemes for
heat transfer problems. In [44], Hough and Howle explored
algorithm-based recovery for several algorithms to solve PDEs.
In [47], Langou et al. designed an algorithm-based recovery
scheme for iterative methods, called lossy approach, which
recovers an approximation of the lost data through com-
puting.

While they are challenging to design, algorithm-based re-
covery schemes often introduce a much less overhead than
the more general periodic checkpointing technique. Because
no periodic checkpointing is involved during the whole com-
putation and no rollback is necessary after a failure, algorithm-
based recovery schemes are often highly scalable and have
a very good potential to scale to extreme scale computing
and beyond.

3. REDUNDANCIES IN PARALLEL SPARSE
MATRIX-VECTOR MULTIPLICATION

Sparse matrix-vector multiplication is one of the most im-
portant computational kernels in iterative methods such as
iterative linear equation solvers, linear least square problems
and eigenvalue solvers [11, 40]. In this section, we present
how to recover the lost data by taking advantage of the
inherent redundant information from the following sparse
matrix-vector multiplication:

y = Ax. (1)

In a parallel environment, data (such as vectors and matri-
ces) are often partitioned into many pieces and each process
often holds only parts of the whole data. Different software
packages may choose different data partitioning schemes.
The way in which a software package partitions its data
often affects both the performance of the software and its
compatibility with other existing codes.

In this paper, without loss of generality, we will demon-
strate our fault tolerant idea using the default data parti-
tioning scheme in the widely used iterative methods software
package PETSc [12].

In PETSc, by default, vectors and matrices are parti-
tioned into contiguous block of rows. In this block row data
partitioning scheme, when p processes are used to perform
the computation, the dense vector x and y are partitioned
into p contiguous blocks (sub-vectors), xi and yi, respec-
tively, where xi and yi are assigned to the ith process, and
i = 1, 2, . . . , p. Accordingly, the sparse matrix A is parti-
tioned as

A =


A11 A12 . . . A1p

A21 A22 . . . A2p

...
... . . .

...
Ap1 Ap2 . . . App

 ,

where Ai1, Ai2, . . . , Aip are assigned to the ith process.
In this data partitioning scheme, the sparse matrix-vector

multiplication (1) can be rewrite as


y1 = A11x1 + . . .+A1pxp

...

yp = Ap1x1 + . . .+Appxp.

(2)

To simplify the discussion, let’s first consider a simple par-
allel sparse matrix-vector multiplication algorithm without
any optimization on communication.

In the un-optimized algorithm, in order to calculate yi =
Ai1x1 + . . . + Aipxp on the ith process, the sub-vector xj ,
where j 6= i, has to to be sent from the jth process to the
ith process. This communication duplicates the sub-vector
xj from the jth process to the ith process.

Therefore, in this un-optimized parallel sparse matrix-
vector multiplication, it is possible to maintain multiple
copies of the same sub-vector of x in different processes with-
out additional time overhead. When a sub-vector of x on one
process is lost, it is possible to recover that lost sub-vector
of x by getting it from another process.

Note that, in the above analysis, the sparse matrix-vector
multiplication algorithm used is a simple un-optimized al-
gorithm. However, in practice, in order to achieve high

performance, the sparse matrix-vector multiplication algo-
rithm are often optimized according the non-zero structure
of sparse matrix A.

Now, let’s consider the sparse matrix-vector multiplication
algorithm that has been optimized according the non-zero
structure of the sparse matrix A. Assume when the ith pro-
cess is calculating yi = Ai1x1+. . .+Aipxp, only the elements
(of the sub-vector xj) that will multiply with a non-zero el-
ement in Aij , where j 6= i, are sent from jth process to the
ith process.

In what follows, we derive a sufficient condition for recov-
ering x without checkpointing. Let Sj denote the set of all
elements of the sub-vector xj , and Sji denote the set of the
elements that have been sent from the jth process to the ith

process, where i 6= j. Let

Rj =

(
j−1⋃
i=1

Sji

)⋃(
p⋃

i=j+1

Sji

)
. (3)

and

Rc
j = Sj −Rj . (4)

Theorem 1. If the jth process fails and the sub-vector xj
is lost, then xj can be accurately recovered from the rest of
the processes when the following condition is satisfied

Rj = Sj . (5)

Proof. Sji contains elements of xj that have been sent
from the jth process to the ith process. Therefore, we can
maintain a copy of Sji on the ith process for all i. When the
jth process fails, all other processes are still alive. Therefore,
each Sji, where i 6= j, is still available. From (3), Rj can be
accurately reconstructed using available Sji on the surviving
processes. Since Rj = Sj , therefore, xj can be accurately
reconstructed.

Let

B =


A21 A12 . . . A1p

A31 A32 . . . A2p

...
... . . .

...
Ap1 Ap2 . . . A(p−1)p

 , and Bj =



A1j

...
A(j−1)j

A(j+1)j

...
Apj


. (6)

Let Bj,k denote the kth column of the matrix Bj . Assume
there are mj columns in the matrix Bj , then xj is a vector
of length mj . Assume xj = (xj1, xj2, . . . , xjmj)T , then Sj =
{xj1, xj2, . . . , xjmj}.

Theorem 2. Rj = Sj if and only if BT
j,kBj,k 6= 0 for all

k = 1, 2, . . . ,mj.

Proof. If Rj = Sj , then, for any xjk ∈ Sj , there exists a
ik such that xjk ∈ Sjik . Note that Sjik is the set of elements
the ithk process need when performing Aikjxj . xjk ∈ Sjik

indicates that at least one element of the kth column of Aikj

is non-zero. Note that Sj = {xj1, xj2, . . . , xjmj} and Bj =

(A1j , A2j , . . . , A(j−1)j , A(j+1)j . . . , Apj)
T , therefore, for any

column of Bj , at least one element of the column is nonzero.
Therefore, BT

j,kBj,k 6= 0 for all k = 1, 2, . . . ,mj .

If BT
j,kBj,k 6= 0 for all k = 1, 2, . . . ,mj , then for any col-

umn of Bj , at least one element of the column is nonzero.

Therefore, all elements of xj have to be sent to another pro-
cess during the matrix-vector multiplication. Hence, Sj ⊆
Rj . Note that Rj ⊆ Sj , therefore, Rj = Sj .

From Theorem 1 and Theorem 2, it follows that, if the
jth process fails, the lost sub-vector xj can be accurately
recovered from the rest of the processes if no column of Bj

equals to the zero vector.

Theorem 3. If no column of B equals to the zero vector,
then the parallel sparse matrix vector multiplication itself
contains enough information to accurately recover the lost
part of x after any single process failure.

Proof. If no column of B equals to the zero vector, then
BT

j,kBj,k 6= 0 for all k = 1, 2, . . . ,mj , and j = 1, 2, . . . , p.
Therefore, according to Theorem 2, for any j = 1, 2, . . . , p,
Rj = Sj . According to Theorem 1, for any j = 1, 2, . . . , p, if
the jth process fails, the lost sub-vector xj can be accurately
recovered from the rest of the processes. Hence, the lost
part of x can be accurately recover after any single process
failure.

If there are some columns of B that equal to the zero
vector, then there exists at least one j such that Rj 6= Sj .
Then Rc

j = Sj−Rj 6= ∅. Notice that for all i 6= j, Rc
j ∩Sji =

∅. Therefore, the elements in Rc
j are actually these elements

of xj that are not sent out to any other process during the
matrix-vector multiplication.

Theorem 4. For any j = 1, 2, . . . , p,

Rc
j =

{
xjk | BT

j,kBj,k = 0
}
. (7)

Proof. For any xjt ∈ Rc
j , xjt is not sent out from the jth

process to any other process. Therefore, all the tth column
of Bj is zero (otherwise, xjt has to be sent out). Hence,
BT

j,tBj,t = 0. Hence, xjt ∈
{
xjk | BT

j,kBj,k = 0
}

. Therefore,

Rc
j ⊆

{
xjk | BT

j,kBj,k = 0
}

.

For any xjk ∈
{
xjk | BT

j,kBj,k = 0
}

, xjk will not be used

by any other process (except the jth process). Therefore
xjk /∈ Sji for all i = 1, 2, . . . , (j − 1), (j + 1), . . . , p. Hence
xjk ∈ Rc

j . Therefore,
{
xjk | BT

j,kBj,k = 0
}
⊆ Rc

j .

Therefore, Rc
j =

{
xjk | BT

j,kBj,k = 0
}

.

The structure of the matrix B defined in (6) depends both
on the structure of the original matrix A and on the parti-
tion scheme for A. In most iterative methods, the matrix
A involved is often non-singular. Therefore, it is often true
that no column of A equals to the zero vector. The parti-
tion of the matrix A often depends on the partition of the
vector x. In the parallel sparse matrix vector multiplication,
wherever the partition does not negatively affect the perfor-
mance, we can choose partitions that produce none (or as
few as possible) zero columns in B. By minimizing num-
ber of the zero columns in B, the amount of data that can
be recovered through the existing redundant information is
maximized.

When the matrix A can not be partitioned into such a way
that no column of B equals to the zero vector, then the par-
allel sparse matrix vector multiplication algorithm can be
slightly modified to incorporate additional redundant infor-
mation so that all the lost data can be accurately recovered.
The simplest modification that is able to achieve this goal

is to let the jth process also send Rc
j to the ((j + 1)%p)th

process while sending Sj ((j+1)%p).
Note that the matrix A is often a constant in iterative

methods, hence it is possible to avoid the periodic check-
pointing of A either through recovering using the same way
as it is initially constructed or through saving it into disks
at the beginning. After the lost part of x is recovered and
the lost part of A is reconstructed, the lost part of the re-
sult vector y can be recovered by recomputing through the
relationship y = Ax.

In what follows, without loss of generality, we will as-
sume that, after any single process failure, the lost part of
x, y, and A can all be accurately recover from the inherent
redundant information in the parallel sparse matrix vector
multiplication.

4. REDUNDANCIES IN THE RESIDUAL RE-
LATIONSHIP

When iterative methods are used to solve the linear equa-
tion Ax = b, for many algorithms (e.g. Conjugate Gradient
method and Bi-Conjugate Gradient Stabilized method), the

residual vector r(i) for the ith approximate solution x(i) is
also computed at each iteration of the algorithm. Accord-
ing to the definition of the residual vector, r(i), x(i) and A
satisfy the following residual relationship:

r(i) = b−Ax(i). (8)

In a parallel implementation, assuming the data are parti-
tioned among processes using the same way as in Section 3,
the residual relationship (8) becomes


r
(i)
1 = b1 − (A11x

(i)
1 + . . .+A1px

(i)
p)

...

r
(i)
p = bp − (Ap1x

(i)
1 + . . .+Appx

(i)
p).

(9)

Note that, no mater how the residual vector r(i) is com-
puted in the algorithm, the residual relationship (9) is always
true.

Theorem 5. If the data partition scheme satisfies the
condition that Bj defined in Section 3 formula (6) is full
rank for all j, then the residual relationship itself contains
enough information to accurately recover the lost part of both
x(i) and r(i) after any single process failure.

Proof. For any j, when the jth processor fails, all data

on the jth processor (i.e. i, r
(i)
j , x

(i)
j , bj , Aj1, . . . , Ajp) are

lost. The loop variable i can be recovered by getting it from
any surviving process. Since bj , Aj1, . . . , Ajp is constant and
do not change between iterations, they can be reconstructed
using the same way as they are created at the beginning of

the computation. For r
(i)
j and x(i)j , they satisfy the above

residual relationship (9). After bj , Aj1, . . . , Ajp are recon-

structed, r
(i)
j and x

(i)
j are the only unknowns in the residual

relationship (9).

Let

B̃ =



A11 . . . A1 j−1 A1 j+1 . . . A1p

... . . .
...

... . . .
...

Aj−1 1 . . . Aj−1 j−1 Aj−1 j+1 . . . Aj−1 p

Aj+1 1 . . . Aj+1 j−1 Aj+1 j+1 . . . Aj+1 p

... . . .
...

... . . .
...

Ap1 . . . Ap j−1 Ap j+1 . . . App


,

b̃ =



b1
...

bj−1

bj+1

...
bp


, r̃(i) =



r
(i)
1

...

r
(i)
j−1

r
(i)
j+1

...

r
(i)
p


, and x̃(i) =



x
(i)
1

...

x
(i)
j−1

x
(i)
j+1

...

x
(i)
p


.

After deleting the jth equation from (9), the relationship
(9) becomes

r̃(i) = b̃− B̃x̃(i) −Bjx
(i)
j . (10)

Note that x
(i)
j is the only unknown in (10). Therefore,

when Bj is full rank, x
(i)
j can be recovered by solving (10)

with x
(i)
j as unknown.

After x
(i)
j is recovered, r

(i)
j can be calculated by

r
(i)
j = bj − (Aj1x

(i)
1 + . . .+Ajpx

(i)
p). (11)

Like in Section 3, whether Bj is full rank or not depends
both the structure of the matrix A and the parallel data
partition scheme.

When the matrix A can not be partitioned into such a way

that Bj is full rank for all j, an approximation of x
(i)
j can

be reconstructed using the lossy approach from [47]. After

x
(i)
j is recovered, r

(i)
j can be calculated from (11).

In what follows, without loss of generality, we will assume
that, after any single process failure, the lost part of x(i) and
r(i) can be recovered from the inherent redundant informa-
tion in the residual relationship.

5. FAULT TOLERANT ITERATIVE METH-
ODS

In this section, we show how to reconstruct the lost data
on the failed process in selected iterative methods using the
inherent redundancies discussed in Section 3 and 4. Al-
though these inherent redundancies can be used in many
other places, in this paper, we will focus on parallel itera-
tive methods for solving the linear equation

Ax = b, (12)

where A is a large sparse matrix. Assume the parallel data
partition scheme in Section 3 is used.

5.1 Stationary Iterative Methods
In this subsection, we show how to recover the lost data

in four representative stationary iterative methods: (1). the

Jacobi method; (2). the Gauss-Seidel method; (3). the Suc-
cessive Overrelaxation (SOR) method; and (4). the Symmet-
ric Successive Overrelaxation (SSOR) method.

These four stationary iterative methods can all be ex-
pressed in the simple form [11]

x(k) = Cx(k−1) + c, (13)

where neither the matrix C nor the vector c changes during
the iteration.

For the stationary iterative methods represented in (13),
when a process failure occurs during the execution of the ith

iteration, the computation can be restarted from the same
iteration (i.e. the ith iteration) if, after the failure, the fol-

lowing four values can be recovered: i, C, c, and x(i−1).
During the execution of the ith iteration, if processes do

not discard the messages they received in the last iteration
and the update of the approximate solution vector x is not
in place (i.e. x(k−1) is not overwritten in the ith iteration),

then a consistent x(k−1) with enough redundancy to recover
itself is automatically maintained during the computation.

In the ith iteration, when there is a process failure, the four
values i, C, c, and x(i−1) that are necessary for the restart of
the ith iteration can be recovered from the following steps:

1. i: The iteration loop variable i can be recovered by
getting it from any surviving neighbor process.

2. C: The constant matrix C can be reconstructed using
the same way as they were constructed originally.

3. c: The constant vector c can be reconstructed using
the same way as they were constructed originally.

4. x(i−1): The lost part of the vector x(i−1) can be accu-
rately recovered using approaches from Section 3.

Now that i, C, c, and x(i−1) have all been successfully
recovered, the algorithm can be restarted from the compu-
tation of x(k), which is the very iteration where the process
failure occurs.

5.2 The Preconditioned Conjugate Gradient
Method

The Preconditioned Conjugate Gradient (CG) method is
one of the most commonly used iterative methods to solve
the sparse linear system Ax = b when the coefficient matrix
A is symmetric positive definite. The method computes suc-
cessive approximations to the solution, residuals correspond-
ing to the approximate solutions, and search directions used
to update both the approximate solutions and the residu-
als. The length of these vector sequences can be large, but
only a small number of the vectors need to be maintained in
memory. It involves one sparse matrix vector multiplication
three vector updates, and two vector inner products in every
iteration of the method. For more details of the algorithm,
we refer readers to [11].

When a process failure occurs during the execution of the
ith iteration, if the following seven values can be recovered: i,
A, M , r(i−1), ρi−2, p(i−1), and x(i−1), then the computation
can be restarted from the ith iteration.

In the ith iteration, if processes do not discard: (1). the
messages they received in the last two iterations; (2). the

vector p(i−1) and p(i−2); and (3). the scalar βi−2, then all
seven values that are necessary for the restart of the ith

iteration can be recovered from the following steps:

Compute r(0) = b−Ax(0) for some initial guess x(0)

for i = 1, 2, . . .
if ((recover) && (i > 1))

recover: i, A, M, r(i−1),

ρi−2, p(i−1), and x(i−1).

solve Mz(i−1) = r(i−1)

ρi−1 = r(i−1)T z(i−1)

if i = 1

p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif

q(i) = Ap(i)

αi = ρi−1/p
(i)T q(i)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq
(i)

check convergence; continue if necessary
end

Figure 1: Fault tolerant preconditioned conjugate
gradient algorithm

1. i: The iteration loop variable i can be recovered by
getting it from any surviving neighbor process.

2. A: The constant matrix A can be reconstructed ei-
ther through using the same way as it is initially con-
structed or through saving it into disks at the begin-
ning.

3. M : The constant matrix M can be reconstructed ei-
ther through using the same way as it is initially con-
structed or through saving it into disks at the begin-
ning.

4. ρi−2: ρi−2 can be recovered by getting it from any
surviving neighbor process.

5. p(i−1): The lost part of the vector p(i−1) can be accu-
rately recovered using the approach from Section 3.

6. r(i−1): In order to recover r(i−1), we first recover r(i−2).
The scalar βi−2 can be recovered by getting it from
any surviving neighbor process. The lost part of the
vector p(i−2) can be accurately recovered using the ap-
proach from Section 3. The lost part of z(i−2) can
be recovered from the relationship p(i−1) = z(i−2) +
βi−2p

(i−2), where p(i−1) has been recovered in step
5, βi−2 and p(i−2) have just been recovered in this
step. The lost part of r(i−2) can be recovered from
the relationship Mz(i−2) = r(i−2), where z(i−2) has
just been recovered in this step. q(i−1) can be recalcu-
lated from q(i−1) = Ap(i−1). αi−1 can be re-computed

from αi−1 = ρi−2/p
(i−1)T q(i−1). Finally, r(i−1) can be

re-computed by r(i−1) = r(i−2) − αi−1q
(i−1).

7. x(i−1): Note that, in the algorithm, the residual vec-
tor r(i−1) satisfies r(i−1) = b − Ax(i−1). r(i−1) have
been recovered in step 6. The right hand side vector
b can be reconstructed using the same way as they
are constructed originally. The constant matrix A
has be reconstructed in step 2. Therefore, the lost

part of x(i−1) can be recovered by solving the equa-
tion r(i−1) = b − Ax(i−1) with the lost part of the
x(i−1) as unknown. Because A is nonsingular, there-
fore all columns of A are linear independent. Hence,
the columns corresponding to the lost part of x(i−1) is
also linear independent. Therefore, the equation will
have a unique solution, which is the lost part of the
x(i−1).

By now, the seven values i, A, M , r(i−1), ρi−2, p(i−1),
and x(i−1) have all been successfully recovered, therefore,
the computation can now be restart from the ith iteration.
Figure 3 shows the fault tolerant version of the PCG algo-
rithm.

5.3 The Preconditioned Bi-Conjugate Gradi-
ent Stabilized Method

The Preconditioned Bi-Conjugate Gradient Stabilized (Bi-
CGSTAB) method is often used to solve the sparse lin-
ear system Ax = b when the coefficient matrix A is non-
symmetric. The method avoids the often irregular conver-
gence patterns of the Conjugate Gradient Squared (CGS)
method. Bi-CGSTAB needs two matrix-vector multiplica-
tion and four vector inner products. For more details of the
algorithm, we refer the reader to [11].

Compute r(0) = b−Ax(0) for some initial guess x(0)

Choose r̃ = r(0)

for i = 1, 2, . . .
if ((recover) && (i > 1))

recover: i, A, M, r̃, r(i−1), ρi−2, ωi−1,

p(i−1), υ(i−1), αi−1, and x(i−1).

ρi−1 = r̃T r(i−1)

if ρi−1 = 0, then the method fails
if i = 1

p(i) = r(i−1)

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

p(i) = r(i−1) + βi−1(p
(i−1) − ωi−1υ

(i−1))
endif

solve Mp̂ = p(i)

υ(i) = Ap̂

αi = ρi−1/r̃
T υ(i)

s = r(i−1) − αiυ
(i)

check norm of s;

if small enough: set x(i) = x(i−1) + αip̂; stop
solve Mŝ = s
t = Aŝ
ωi = tT s/tT t

x(i) = x(i−1) + αip̂+ ωiŝ

r(i) = s− ωit
check convergence; continue if necessary

end

Figure 2: Fault tolerant preconditioned Bi-
Conjugate Gradient Stabilized algorithm

If a process failure occurs in the ith iteration, in order to
restart the computation from the same iteration, the follow-
ing eleven values have to be recovered: i, A, M , r̃, r(i−1),
ρi−2, ωi−1, p(i−1), υ(i−1), αi−1, and x(i−1).

During the execution of the ith iteration, if processes do
not discard: (1). the messages they received in the last

iteration; and (2). the vector p̂ and ŝ in the last iteration,
then the eleven values that are necessary for the restart of
the ith iteration can all be recovered from the following steps:

1. i: The iteration loop variable i can be recovered by
getting it from any surviving neighbor process.

2. A: The constant matrix A can be reconstructed ei-
ther through using the same way as it is initially con-
structed or through saving it into disks at the begin-
ning.

3. M : The constant matrix M can be reconstructed ei-
ther through using the same way as it is initially con-
structed or through saving it into disks at the begin-
ning.

4. r̃: The constant vector r̃ can be reconstructed using
the same way as they were constructed originally.

5. r(i−1): In order to recover r(i−1), we first recover ŝ for
the (i− 1)th iteration using the approach discussed in
Section 3. Then, the s for the (i − 1)th iteration can
be recomputed from the relationship Mŝ = s. The t
for the (i− 1)th iteration can be recomputed from the
relationship t = Aŝ. ωi−1 can be recomputed from
the relationship ωi−1 = tT s/tT t. Finally, r(i−1) can be

recovered from the relationship r(i−1) = s− ωi−1t.

6. ρi−2: ρi−2 can be recovered by getting it from any
surviving neighbor process.

7. ωi−1: ωi−1 have been recovered during the process of
recovering r(i−1) in step 5.

8. p(i−1): In order to recover p(i−1), we first recover p̂ for
the (i− 1)th iteration using the approach discussed in

Section 3. Then, the p(i−1) can be recomputed from
the relationship Mp̂ = p(i−1).

9. υ(i−1): υ(i−1) can be recomputed from the relationship
υ(i−1) = Ap̂, where the p̂ is the p̂ for the (i − 1)th

iteration recovered in step 8.

10. αi−1: αi−1 can be recomputed from the relationship
αi−1 = ρi−2/r̃

Tυ(i−1), where ρi−2 has been recovered

in step 6, r̃ has been recovered in step 4, υ(i−1) has
been recovered in step 9.

11. x(i−1): Note that, in the algorithm, the residual vec-
tor r(i−1) satisfies r(i−1) = b − Ax(i−1). r(i−1) have
been recovered in step 5. The right hand side vector
b can be reconstructed using the same way as they
are constructed originally. The constant matrix A
has be reconstructed in step 2. Therefore, the lost
part of x(i−1) can be recovered by solving the equa-
tion r(i−1) = b − Ax(i−1) with the lost part of the
x(i−1) as unknown. Because A is nonsingular, there-
fore all columns of A are linear independent. Hence,
the columns corresponding to the lost part of x(i−1) are
also linear independent. Therefore, the equation has a
unique solution, which is the lost part of the x(i−1).

After the eleven values i, A, M , r̃ r(i−1), ρi−2, αi−1, ωi−1,
p(i−1), υ(i−1), and x(i−1) have all been recovered, the com-
putation can now be restart from the ith iteration. Figure 4
shows the fault tolerant version of the Bi-CGSTAB algo-
rithm.

6. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed

algorithm-based recovery scheme and compare it with check-
pointing. For the demonstration purpose, consider solving
the following sparse linear system arising from discretizing
a 3D Poisson’s equation using finite-difference-method:

An3×n3 un3×1 = bn3×1, (14)

where

An3×n3 =


Mn2×n2 In2×n2

In2×n2 Mn2×n2 In2×n2

. . .
. . .

. . .

In2×n2 Mn2×n2 In2×n2

In2×n2 Mn2×n2

 ,

Mn2×n2 =


Tn×n In×n

In×n Tn×n In×n

. . .
. . .

. . .

In×n Tn×n In×n

In×n Tn×n

 ,

Tn×n =


−6 1
1 −6 1

. . .
. . .

. . .

1 −6 1
1 −6

 .

When the block row data partitioning scheme is used to
partition the sparse matrix into n MPI processes, the corre-
sponding matrix B in the formula (6) of Section 3 becomes

B =


In2×n2 In2×n2

In2×n2 In2×n2

. . .
. . .

In2×n2 In2×n2

 . (15)

Note that no column of B in equals to the zero vector and
Bj (i.e. the jth column block of B) is full rank for all j,
therefore, this partition satisfies the condition in Theorem 3
of Section 3 for recovery without checkpointing.

Note that all stationary iterative methods are very similar.
Therefore, without loss of generality, in this paper, we will
limit our fault tolerant experiments for stationary iterative
methods to the Jacobi method.

For non-stationary iterative methods, note that the sparse
matrix An3×n3 in equation (14) is symmetric and positive
definite, therefore, the equation (14) can be used to test our
fault tolerant conjugate gradient method.

6.1 Algorithm-Based Recovery vs. Parallel-
I/O-Based Checkpointing

In this subsection, we compare the overhead of the pro-
posed algorithm-based recovery with the stable-storage-based
checkpointing on the supercomputing cluster ra.mines.edu [3]
at Colorado School of Mines.

Ra.mines.edu is a supercomputing cluster dedicated to en-
ergy sciences at Colorado School of Mines. The peak perfor-
mance of the cluster is 23 teraflops. The achieved LINPACK
benchmark [1] performance is about 17 teraflops. The par-
allel file system used on ra.mines.edu is Lustre [4]. The MPI
implementation on the cluster is Open MPI version 1.3.4.

Table 1: Fault Tolerant Jacobi on Ra.

num. ckp size time time per rollback time per
of per proc per ckp ckp rcv per rcv alg rcv
proc (bytes) (secs) (secs) (secs) (secs)
100 80004 0.60 0.49 298 0.0026
200 320004 1.02 0.89 297 0.0039
300 720004 1.51 1.04 301 0.0055
400 1280004 2.12 1.18 300 0.0073
500 2000004 5.43 1.26 299 0.0081
600 2880004 7.60 1.48 301 0.0088
700 3920004 11.1 1.51 300 0.0102
800 5120004 20.6 1.56 297 0.0112
900 6480004 27.1 1.92 302 0.0125
1000 8000004 35.2 1.99 301 0.0135

Table 2: Fault Tolerant CG on Ra.

num. ckp size time time per rollback time per
of per proc per ckp ckp rcv per rcv alg rcv
proc (bytes) (secs) (secs) (secs) (secs)
100 240012 1.89 1.50 301 0.0074
200 960012 2.97 2.66 302 0.0104
300 2160012 4.59 3.11 296 0.0166
400 3840012 6.24 3.54 300 0.0220
500 6000012 16.2 3.78 299 0.0248
600 8640012 22.8 4.45 298 0.0269
700 11760012 33.3 4.66 296 0.0305
800 15360012 61.8 4.91 298 0.0346
900 19440012 81.3 5.92 296 0.0380
1000 24000012 106 6.09 295 0.0401

For stable-storage-based checkpointing, checkpoints are
written in parallel by MPI_File_write_at_all(). The check-
point frequency is six checkpoints per hour. During each
hour, one recovery is simulated approximately in the middle
of two consecutive checkpoints by reconstructing all the data
necessary to continue the computation from the stable stor-
age using the parallel I/O function MPI_File_read_at_all().
The recovery frequency is one recovery per hour.

For the algorithm-based recovery scheme, a single process
failure recovery is simulated by reconstructing all the data
necessary to continue the computation on the MPI process
rank 0 using algorithms from Section 5. The recovery fre-
quency is also one recovery per hour.

Table 1 and 2 report the size of checkpoint per process, the
time for each checkpoint, the time for each checkpoint-based
recovery, the wasted computation time due to rollback, and
the time for each algorithm-based recovery. Figure 3 and 4
compare the failure-free overhead. Figure 5 and 6 compare
the total fault tolerance overhead with recovery.

Figure 3 and 4 indicate that, when no failure occurs dur-
ing the computation, the algorithm-based recovery scheme
introduces much less overhead than the stable-storage-based
checkpointing. This is because, for the algorithm-based re-
covery scheme, neither additional computations nor addi-
tional communications are introduced. But, for the stable-

Figure 3: Fault tolerance overhead for Jacobi
method without failures: checkpointing with par-
allel I/O vs. algorithm-based recovery.

Figure 4: Fault tolerance overhead for Conjugate
Gradient method without failures: checkpointing
with parallel I/O vs. algorithm-based recovery.

Figure 5: Fault tolerance overhead for Jacobi
method with failures: checkpointing with parallel
I/O vs. algorithm-based recovery.

Figure 6: Fault tolerance overhead for Conjugate
Gradient method with failures: checkpointing with
parallel I/O vs. algorithm-based recovery.

storage-based checkpointing, it takes a fair amount time to
write the checkpointing data into the stable storage.

Figure 5 and 6 demonstrate that, when there is a recovery,
the algorithm-based recovery also introduces much less over-
head than the stable-storage-based checkpointing. The main
overheads for the stable-storage-based checkpointing scheme
are: (1). the time for writting checkpoints periodically; (2).
the time for re-computing due to rollback, which is approx-
imately 5 minutes per rollback. Note that, in our experi-
ments, the checkpoint frequency is six checkpoints per hour.
Hence, a rollback of 5 minutes is the average rollback time
after a failure. But, for the algorithm-based recovery, the
computation is restarted from where the failure occurs. No
rollback is involved. Therefore, overall, it introduces much
less overhead than the stable-storage-based checkpointing.

Table 3: Fault Tolerant Jacobi on Kraken.

num. ckp size time time per rollback time per
of per proc per ckp ckp rcv per rcv alg rcv
proc (bytes) (secs) (secs) (secs) (secs)
1000 8000004 0.07 0.08 300 0.006
2000 32000004 0.30 0.33 299 0.019
3000 72000004 0.68 0.70 301 0.048
4000 128000004 1.26 1.31 300 0.085
5000 200000004 1.97 2.05 299 0.132

6.2 Algorithm-Based Recovery vs. Diskless
Checkpointing

In this section, we compare the overhead of the proposed
algorithm-based recovery with diskless checkpointing on the
current (as of January 10, 2011) world’s eighth-fastest [1] su-
percomputer Kraken [2] at the National Institute for Com-
putational Sciences (NICS).

For diskless checkpointing experiments, the checkpoints
are first stored locally in memory, and then an XOR of
these local checkpoints are computed using MPI_Reduce()

and saved into a dedicated checkpoint process. The check-

Figure 7: Fault tolerance overhead for Jacobi
method without failures: diskless checkpointing vs.
algorithm-based recovery.

Figure 8: Fault tolerance overhead for Conjugate
Gradient method without failures: diskless check-
pointing vs. algorithm-based recovery.

Figure 9: Fault tolerance overhead for Jacobi
method with failures: diskless checkpointing vs.
algorithm-based recovery.

Table 4: Fault Tolerant CG on Kraken.

num. ckp size time time per rollback time per
of per proc per ckp ckp rcv per rcv alg rcv
proc (bytes) (secs) (secs) (secs) (secs)
1000 24000012 0.22 0.24 301 0.015
2000 96000012 0.90 0.95 300 0.054
3000 216000012 2.06 2.42 299 0.138
4000 384000012 3.87 3.98 298 0.246
5000 600000012 5.89 6.00 296 0.387

Figure 10: Fault tolerance overhead for Conjugate
Gradient method with failures: diskless checkpoint-
ing vs. algorithm-based recovery.

point frequency is six checkpoints per hour. During each
hour, a single process failure recovery is simulated approx-
imately in the middle of two consecutive checkpoints. The
recovery frequency is one recovery per hour.

The algorithm-based recovery experiments are configured
the same way as in Subsection 6.1.

Table 3 and 4 report the size of checkpoint per process,
the time per checkpoint, the time for each checkpoint-based
recovery, the re-computation time due to each rollback, and
the time for each algorithm-based recovery. Figure 7 and 8
compare the failure-free overhead. Figure 9 and 10 compare
the total fault tolerance overhead with recovery.

Figure 7 and 8 demonstrate that, when no failure oc-
curs during the computation, the algorithm-based recovery
scheme introduces much less overhead than diskless check-
pointing. This is because, for the algorithm-based recov-
ery scheme, neither additional computations nor additional
communications are introduced. But, for diskless check-
pointing, it takes some time to perform the XOR encoding
of the local checkpoints.

Figure 9 and 10 demonstrate that, when there is a recov-
ery, the algorithm-based recovery also introduces much less
overhead than diskless checkpointing. The main overhead
for diskless checkpointing recovery is the time it takes to
redo the wasted computation due to rollback, which is about
5 minutes. For algorithm-based recovery, the computation
is restarted from where the failure occurs. No rollback is in-
volved. The data recovery itself also takes slightly less time

than diskless checkpointing. Therefore, overall, it introduces
much less overhead than diskless checkpointing.

7. CONCLUSION
This paper presents an algorithm-based recovery scheme

for iterative methods. It demonstrates that, for many it-
erative methods, if the parallel data partition scheme sat-
isfies certain conditions, the iterative methods themselves
can maintain enough inherent redundant information to tol-
erate failures in the computation. Neither checkpoint nor
roll-back is necessary. The computation can be restarted
from where the failure occurs. Experimental results demon-
strate that the proposed recovery scheme introduces much
less overhead than checkpointing. In the future, we would
like to extend the technique to more iterative methods.

Acknowledgment
This research is partly supported by National Science Foun-
dation (under grant #OCI-0905019) and Microsoft Corpo-
ration.

We would like thank the following organizations for the
use of their computing resources:

• The National Institute for Computational Sciences: Kraken;

• The Golden Energy Computing Organization: Ra.

8. REFERENCES
[1] http://www.top500.org.

[2] http://www.nics.tennessee.edu.

[3] http://geco.mines.edu/hardware.shtml.

[4] http://wiki.lustre.org.

[5] The International Exascale Software Project.
http://www.exascale.org.

[6] Coordinated Infrastructure for Fault Tolerant
Systems. http://www.mcs.anl.gov/research/cifts.

[7] MPICH-V. http://mpich-v.lri.fr.

[8] D. C. Arnold. Reliable, Scalable Tree-based Overlay
Networks. Ph.D. dissertation, University of
Wisconsin-Madison, 2008.

[9] J. Anfinson and F. T. Luk. A Linear Algebraic Model
of Algorithm-Based Fault Tolerance. IEEE
Transactions on Computers, v.37 n.12, p.1599-1604,
December 1988.

[10] P. Banerjee, J. T. Rahmeh, C. B. Stunkel, V. S. S.
Nair, K. Roy, V. Balasubramanian, and J. A.
Abraham. Algorithm-based fault tolerance on a
hypercube multiprocessor. IEEE Transactions on
Computers, vol. C-39:1132–1145, 1990.

[11] R. Barrett, M. Berry, T. F. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. V. der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition. SIAM, Philadelphia,
PA, 1994.

[12] S. Balay, W. D. Gropp, L. C. McInnes, and B. F.
Smith. Efficient Management of Parallelism in Object
Oriented Numerical Software Libraries. Modern
Software Tools in Scientific Computing, pp 163–202,
Birkhäuser Press, 1997.

[13] D. L. Boley, R. P. Brent, G. H. Golub, and F. T. Luk.
Algorithmic fault tolerance using the lanczos method.
SIAM Journal on Matrix Analysis and Applications,
13:312–332, 1992.

[14] G. Bronevetsky, D. Marques, K. Pingali, and P.
Stodghill. Automated Application-level Checkpointing
of MPI Programs. In Proceedings of the 2003 ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP03), San Diego,
California, June 11-13, 2003.

[15] G. Bronevetsky, D. Marques, K. Pingali, and P.
Stodghill. C3: A System for Automating
Application-level Checkpointing of MPI Programs. In
Proceedings of the 16th International Workshop on
Languages and Compilers for Parallel Computing
(LCPC03), College Station, Texas, October 2-4, 2003.

[16] G. Bronevetsky, K. Pingali, P. Stodghill.
Application-level Checkpointing for OpenMP
Programs. In Proceedings of the 20th International
Conference on Supercomputing (ICS06), Queensland,
Australia, June 28-July 1, 2006.

[17] G. Burns, R. Daoud, and J. Vaig. LAM: An Open
Cluster Environment for MPI. Proceedings of
Supercomputing Symposium, 1994.

[18] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G.
Fédak, C. Germain, T. Hérault, P. Lemarinier, O.
Lodygensky, F. Magniette, V. Néri, A. Selikhov.
MPICH-V: Toward a Scalable Fault Tolerant MPI for
Volatile Nodes. proceedings of The IEEE/ACM
SC2002 Conference, Baltimore USA, November 2002.

[19] F. Cappello. Fault Tolerance in Petascale/ Exascale
Systems: Current Knowledge, Challenges and
Research Opportunities. International Journal of High
Performance Computing Applications, Vol. 23, No. 3,
Page 212-226, 2009.

[20] F. Cappello, A. Geist, B. Gropp, L. V. Kalé, B.
Kramer, and M. Snir. Toward Exascale Resilience.
International Journal of High Performance Computing
Applications, Vol. 23, No. 4, Page 374-388, 2009.

[21] F. Cappello, H. Casanova, Y. Robert. Checkpointing
vs. Migration for Post-Petascale Machines. CoRR
abs/0911.5593, 2009.

[22] Z. Chen and J. Dongarra. Numerically stable real
number codes based on random matrices. In
Proceeding of the 5th International Conference on
Computational Science (ICCS2005), Atlanta, Georgia,
USA, May 22-25, 2005. LNCS 3514, Springer-Verlag.

[23] Z. Chen and J. Dongarra. Condition Numbers of
Gaussian Random Matrices. SIAM Journal on Matrix
Analysis and Applications, Volume 27, Number 3,
Page 603-620, 2005.

[24] Z. Chen, and J. Dongarra. Algorithm-Based
Checkpoint-Free Fault Tolerance for Parallel Matrix
Computations on Volatile Resources. Proceedings of
the 20th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2006), Rhodes Island,
Greece, April 25-29, 2006.

[25] Z. Chen, and J. Dongarra. Algorithm-Based Fault
Tolerance for Fail-Stop Failures. IEEE Transactions
on Parallel and Distributed Systems, Vol. 19, No. 12,
December, 2008.

[26] Z. Chen, and J. Dongarra. Highly Scalable

Self-Healing Algorithms for High Performance
Scientific Computing. IEEE Transactions on
Computers, July, 2009.

[27] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou,
T. Angskun, G. Bosilca, and J. Dongarra. Fault
tolerant high performance computing by a coding
approach. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, PPOPP 2005, June 14-17, 2005,
Chicago, IL, USA. ACM, 2005.

[28] Z. Chen. Scalable techniques for fault tolerant high
performance computing. Ph.D. thesis, University of
Tennessee, Knoxville, TN, USA, 2006.

[29] Z. Chen. Extending Algorithm-based Fault Tolerance
to Tolerate Fail-stop Failures in High Performance
Distributed Environments. Proceedings of the 22nd
IEEE International Parallel & Distributed Processing
Symposium, DPDNS’08 Workshop, Miami, FL, USA,
April 14-18, 2008.

[30] Z. Chen. Optimal Real Number Codes for Fault
Tolerant Matrix Operations. Proceedings of the
ACM/IEEE SC09 Conference, Portland, OR,
November 14-20, 2009.

[31] T. Davies and Z. Chen. Fault Tolerant Linear Algebra:
Recovering from Fail-Stop Failures without
Checkpointing. Proceedings of the 24th IEEE
International Parallel & Distributed Processing
Symposium, PhD Forum, Atlanta, GA, USA, April
19-23, 2010.

[32] D. Hakkarinen and Z. Chen. Algorithmic Cholesky
Factorization Fault Recovery. Proceedings of the 24th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2010), Atlanta, GA, USA, April
19-23, 2010.

[33] J. Dongarra, P. Beckman, et al. The International
Exascale Software Project Roadmap. University of
Tennessee EECS Technical Report, UT-CS-10-652,
January 6, 2010.

[34] J. Duell, P. Hargrove, and E. Roman. The Design and
Implementation of Berkeley Lab’s Linux
Checkpoint/Restart. Berkeley Lab Technical Report,
LBNL-54941, December 2002.

[35] E. N. Elnozahy, L. Alvisi,Y. M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys,
Volume 34, Issue 3, Page 375-408, 2002.

[36] R.D. Falgout, J.E. Jones, and U.M. Yang. The Design
and Implementation of hypre, a Library of Parallel
High Performance Preconditioners. Numerical
Solution of Partial Differential Equations on Parallel
Computers, pp 267–294, Springer-Verlag, 51, 2006.

[37] G. E. Fagg, E. Gabriel, Z. Chen, , T. Angskun,
G. Bosilca, J. Pjesivac-Grbovic, and J. J. Dongarra.
Process fault-tolerance: Semantics, design and
applications for high performance computing.
International Journal of High Performance Computing
Applications, 2004.

[38] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B.
Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall Open MPI: Goals,
Concept, and Design of a Next Generation MPI

Implementation. Proceedings, 11th European
PVM/MPI Users’ Group Meeting , Budapest,
Hungary, September, 2004.

[39] G. A. Gibson, B. Schroeder, and J. Digney. Failure
Tolerance in Petascale Computers.
CTWatchQuarterly, Volume 3, Number 4, November
2007.

[40] G. H. Golub and C. F. Van Loan. Matrix
Computations. The John Hopkins University Press, ,
1989.

[41] J. Gunnels, R. van de Geijn, D. Katz, E.
Quintana-Ort. Fault-Tolerant High-Performance
Matrix Multiplication: Theory and Practice
Proceedings of the 2001 International Conference on
Dependable Systems and Networks (DSN’01) ,
Washington, DC, USA, 2001.

[42] R. Gupta, P. Beckman, H. Park, E. Lusk, P. Hargrove,
A. Geist, D. K. Panda, A. Lumsdaine and J.
Dongarra. CIFTS: A Coordinated infrastructure for
Fault-Tolerant Systems. In Proceedings of the 20th
International Conference on Parallel Processing
(ICPP09), Vienna, Austria, September 22-25, 2009.

[43] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu,
T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E.
Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J.
Willenbring, A. Williams, and K. Stanley. An
overview of the Trilinos project. ACM Trans. Math.
Softw., 31(3), 2005.

[44] P. Hough and V. Howle. Fault Tolerance in
Large-Scale Scientific Computing. Parallel Processing
for Scientific Computing, M. A. Heroux, P. Raghavan,
and H. D. Simon, Eds., SIAM Press, 2006.

[45] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE
Transactions on Computers, vol. C-33:518–528, 1984.

[46] Y. Kim. Fault Tolerant Matrix Operations for Parallel
and Distributed Systems. Ph.D. dissertation,
University of Tennessee, Knoxville, June, 1996.

[47] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra.
Recovery Patterns for Iterative Methods in a Parallel
Unstable Environment SIAM Journal on Scientific
Computing, 30(1):102-116, 2007.

[48] F. T. Luk and H. Park An analysis of algorithm-based
fault tolerance techniques. SPIE Adv. Alg. and Arch.
for Signal Proc., vol. 696, 1986, pp. 222-228.

[49] H. Ltaief, E. Gabriel, and M. Garbey. Fault tolerant
algorithms for heat transfer problems. Journal of
Parallel and Distributed Computing, Volume 68 , Issue
5, Pages 663-677, 2008.

[50] J. S. Plank, Y. Kim, and J. Dongarra. Fault Tolerant
Matrix Operations for Networks of Workstations
Using Diskless Checkpointing. IEEE Journal of
Parallel and Distributed Computing, 43, 125-138, 1997.

[51] J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972–986, 1998.

[52] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, September,

[53] R. D. Schlichting and F. B. Schneider. Fail-stop
processors: an approach to designing fault-tolerant
computing systems. ACM Transactions on Computer
Systems, Volume 1 , Issue 3, pp 222-238, 1983.

[54] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems.
Proceedings of the International Conference on
Dependable Systems and Networks (DSN2006),
Philadelphia, PA, USA, June 25-28, 2006.

[55] G. Stellner. CoCheck: Checkpointing and process
migration for MPI. Proceedings of the 10th
International Parallel Processing Symposium
(IPPS’96), Honolulu, Hawaii, April, 1996.

[56] V. S. Sunderam. PVM: a framework for parallel
distributed computing. Concurrency: Pract. Exper.,
2(4):315–339, 1990.

[57] J. L. Sung and G. R. Redinbo. Algorithm-Based Fault
Tolerant Synthesis for Linear Operations. IEEE
Transactions on Computers, Volume 45 , Issue 4,
April 1996.

[58] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R.
Nishtala, and B. Lee. Performance optimizations and
bounds for sparse matrix-vector multiply. In
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, page 1-15, Baltimore, Maryland,
2002.

[59] C. Wang, F. Mueller, C. Engelmann, and S. Scot. Job
Pause Service under LAM/MPI+BLCR for
Transparent Fault Tolerance. In Proceedings of the
21st IEEE International Parallel and Distributed
Processing Symposium, March, 2007, Long Beach,
CA, USA.

	Introduction
	Background
	Redundancies in Parallel Sparse Matrix-Vector Multiplication
	Redundancies in the Residual Relationship
	Fault Tolerant Iterative Methods
	Stationary Iterative Methods
	The Preconditioned Conjugate Gradient Method
	The Preconditioned Bi-Conjugate Gradient Stabilized Method

	Experimental Evaluation
	 Algorithm-Based Recovery vs. Parallel-I/O-Based Checkpointing
	 Algorithm-Based Recovery vs. Diskless Checkpointing

	Conclusion
	References

