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ABSTRACT
The probability that a failure will occur before the end of the
computation increases as the number of processors used in a
high performance computing application increases. For long
running applications using a large number of processors, it is
essential that fault tolerance be used to prevent a total loss
of all finished computations after a failure. While check-
pointing has been very useful to tolerate failures for a long
time, it often introduces a considerable overhead especially
when applications modify a large amount of memory be-
tween checkpoints and the number of processors is large. In
this paper, we propose an algorithm-based recovery scheme
for the High Performance Linpack benchmark (which modi-
fies a large amount of memory in each iteration) to tolerate
fail-stop failures without checkpointing. It was proved by
Huang and Abraham that a checksum added to a matrix
will be maintained after the matrix is factored. We demon-
strate that, for the right-looking LU factorization algorithm,
the checksum is maintained at each step of the computa-
tion. Based on this checksum relationship maintained at
each step in the middle of the computation, we demonstrate
that fail-stop process failures in High Performance Linpack
can be tolerated without checkpointing. Because no peri-
odical checkpoint is necessary during computation and no
roll-back is necessary during recovery, the proposed recov-
ery scheme is highly scalable and has a good potential to
scale to extreme scale computing and beyond. Experimen-
tal results on the supercomputer Jaguar demonstrate that
the fault tolerance overhead introduced by the proposed re-
covery scheme is negligible.
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1. INTRODUCTION
Fault tolerance is becoming more important as the num-

ber of processors used for a single calculation increases [26].
When more processors are used, the probability that one will
fail increases [14]. Therefore, it is necessary, especially for
long-running calculations, that they be able to survive the
failure of one or more processors. One critical part of recov-
ery from failure is recovering the lost data. General methods
for recovery exist, but for some applications specialized opti-
mizations are possible. There is usually overhead associated
with preparing for a failure, even during the runs when no
failure occurs, so it is important to choose the method with
the lowest possible overhead so as not to hurt the perfor-
mance more than necessary.

There are various approaches to the problem of recover-
ing lost data involving saving the processor state periodi-
cally in different ways, either by saving the data directly
[9,20,25,28] or by maintaining some sort of checksum of the
data [6,8,17,21] from which it can be recovered. A method
that can be used for any application is Plank’s diskless check-
pointing [4,11,12,15,22,25, 27], where a copy of the data is
saved in memory, and when a node is lost the data can be
recovered from the other nodes. However, its performance
degrades when there is a large amount of data changed be-
tween checkpoints [20], as in for instance matrix operations.
Since matrix operations are an important part of most large
calculations, it is desirable to make them fault tolerant in a
way that has lower overhead than diskless checkpointing.

Chen and Dongarra discovered that, for some algorithms
that perform matrix multiplication, it is possible to add a
checksum to the matrix and have it maintained at every step
of the algorithm [5, 7]. If this is the case, then a checksum
in the matrix can be used in place of a checkpoint to re-
cover data that is lost in the event of a processor failure. In
addition to matrix multiplication, this technique has been
applied to the Cholesky factorization [17]. In this paper,
we extend the checksum technique to the LU decomposition
used by High Performance Linpack (HPL) [23].

LU is different from other matrix operations because of
pivoting, which makes it more costly to maintain a column
checksum. Maintaining a column checksum with pivoting
would require additional communication. However, we show
in this paper that HPL has a feature that makes the column
checksum unnecessary. We prove that the row checksum is



maintained at each step of the algorithm used by HPL, and
that it can be used to recover the required part of the matrix.
Therefore, in this method we use only a row checksum, and
it is enough to recover in the event of a failure. Additionally,
we show that two other algorithms for calculating the LU
factorization do not maintain a checksum.

The checksum-based approach that we have used to pro-
vide fault tolerance for the dense matrix operation LU fac-
torization has a number of advantages over checkpointing.
The operation to perform a checksum or a checkpoint is the
same or similar, but the checksum is only done once and
then maintained by the algorithm, while the checkpoint has
to be redone periodically. The checkpoint approach requires
that a copy of the data be kept for rolling back, whereas
no copy is required in the checksum method, nor is rolling
back required. The operation of recovery is the same for
each method, but since the checksum method does not roll
back its overhead is less. Because of all of these reasons, the
overhead of fault tolerance using a checksum is significantly
less than with checkpointing.

The rest of this paper will explain related work that leads
to this result in section 2; the features of HPL that are
important to our application of the checksum technique in
section 3; the type of failure that this work is able to handle
in section 4; the details of adding a checksum to the matrix
in sections 5; proof that the checksum is maintained in sec-
tion 6; and analysis of the performance with experimental
results in sections 7 and 8.

2. RELATED WORK

2.1 Diskless Checkpoint
In order to do a checkpoint, it is necessary to save the

data so that it can be recovered in the event of a failure.
One approach is to save the data to disk periodically [28].
In the event of a failure, all processes are rolled back to the
point of the previous checkpoint, and their data is restored
from the data saved on the disk. Unfortunately, this method
does not scale well. For most scientific computations, all
processes make a checkpoint at the same time, so that all
of the processes will simultaneously attempt to write their
data to the disk. Most systems are not optimized for a large
amount of data to go to the disk at once, so this is a serious
bottleneck, made worse by the fact that disk accesses are
typically extremely slow.

In response to this issue diskless checkpointing [25] was
introduced. Each processor saves its own checkpoint state
in memory, thereby eliminating the need for a slow write
to disk. Additionally, an extra processor is used just for
redundancy, which would be parity, checksum, or some other
appropriate reduction. Typically there would be a number of
such processors, each one for a different group of the worker
processors. This way, upon the failure of a processor in one
group, all of the other processors can revert to their stored
checkpoint, and the redundant data along with the data of
all the other processors in the group is used to recover the
data of the failed processor.

Diskless checkpointing has several similarities to the checksum-
based approach. When a checksum row is added to a pro-
cessor grid, each checksum processor plays the role of the re-
dundancy processor in a diskless checkpoint. The difference
is that the redundancy of the checksum data is maintained
naturally by the algorithm. Therefore there are two main

benefits: the working processors do not have to use extra
memory keeping their checkpoint data, and less overhead
is introduced in the form of communication to the check-
point processors when a checkpoint is made. A key factor in
the performance of diskless checkpointing is the size of the
checkpoint. The overhead is reduced when only data that
has been changed since the last checkpoint is saved [10].
However, matrix operations are not susceptible to this opti-
mization [20], since many elements, up to the entire matrix,
could be changed at each step of the algorithm. When the
checkpoint is large, the overhead is large [24].

2.2 Algorithm-Based Fault Tolerance
Algorithm-based fault tolerance [1–3, 16, 18, 19, 21] is a

technique that has been used to detect miscalculations in
matrix operations. This technique consists of adding a check-
sum row or column to the matrices being operated on. For
many matrix operations, some sort of checksum can be shown
to be correct at the end of the calculation, and can be used
to find errors after the fact. A checksum of a matrix can
be used to locate and correct entries in the solution matrix
that are incorrect, although we are most interested in recov-
ery. Failure location is determined by the message passing
library in the case of the failure of a processor.

The existence of a checksum that is correct at the end
raises the question: is the checksum correct also in the mid-
dle? It turns out that it is not maintained for all algo-
rithms [8], but there do exist some for which it is main-
tained. In other cases, it is possible to maintain a checksum
with only minor modifications to the algorithm, while still
keeping an advantage in overhead over a diskless checkpoint.
It may also be possible to use a checksum to maintain re-
dundancy of part of the data, while checkpointing the rest.
Even a reduction in the amount of data needing to be check-
pointed should give a gain in performance. The checksum
approach has been used for many matrix operations to de-
tect errors and correct them at the end of the calculation,
which indicates that it may be possible to use it for recovery
in the middle of the calculation as well.

2.3 Applications of Checksum-Based Recov-
ery

It has been shown in [8] how a checksum is maintained in
the outer product matrix-matrix multiply. It is also made
clear that not all algorithms will maintain the checksum in
the middle of the calculation, even if the checksum can be
shown to be correct at the end. So it is important to ensure
that the algorithm being used is one for which a checksum is
maintained before using a checksum for recovery. Another
application of a checksum is described in [17]. Here a check-
sum is used to recover from a failure during the ScaLAPACK
Cholesky decomposition.

3. HIGH PERFORMANCE LINPACK
HPL performs a dense LU decomposition using a right-

looking partial pivoting algorithm. The matrix is stored in
two-dimensional block-cyclic data distribution. These are
the most important features of HPL to our technique.

3.1 2D Block-Cyclic Data Distribution
For many parallel matrix operations, the matrix involved

is very large. The number of processors needed for the op-
eration may be selected based on how many it takes to have



Figure 1: Global and local matrices under the 2D
block cyclic distribution [8].

enough memory to fit the entire matrix. It is common to
divide the matrix up among the processors in some way, so
that the section of the matrix on a particular processor is
not duplicated anywhere else. Therefore an important fact
about recovering from the failure of a processor is that a part
of the partially finished matrix is lost, and it is necessary to
recover the lost part in order to continue from the middle of
the calculation rather than going back to the beginning.

Matrices are often stored in 2D block cyclic fashion [8,17,
20]. Block cyclic distribution is used in HPL. This storage
pattern creates a good load balance for many operations,
since it is typical to go through the matrix row by row or
column by column (or in blocks of rows or columns). With
a block cyclic arrangement, matrix elements on a particular
processor are accessed periodically throughout the calcula-
tion, instead of all at once. An example of 2D block cyclic
distribution is shown in figure 1. As this figure indicates,
the global matrix will not necessarily divide evenly among
the processors. However, we currently are assuming matri-
ces that divide evenly along both rows and columns of the
processor grid to simplify the problem. The block size is how
many contiguous elements of the matrix are put in a pro-
cessor together. Blocks are mapped to processors cyclically
along both rows and columns.

3.2 Right-looking Algorithm
In Gaussian elimination, the elements of L are found by

dividing some elements of the original matrix by the element
on the diagonal. If this element is zero the division is clearly
not possible, but with floating point numbers a number that
is very close to zero could be on the diagonal and not be
obvious as a problem. In order to ensure that this does
not happen, algorithms for LU factorization use pivoting,
where the row with the largest element in a the current
column is swapped with the current row. The swaps are not
done in the L matrix, which enforces our idea that it is not
necessary to be able to recover it. The equation Ax = b can
be rewritten as LUx = b using the LU decomposition, where
Ux = y, so that Ly = b. The algorithm transforms b to y, so
that L is not needed to find x at the end. The factorization
is performed in place, which means that the original matrix
is replaced by L and U .

The right-looking variation is the version of LU that up-
dates the trailing matrix. When one row and column are
factored in basic Gaussian elimination, the remaining piece
of the original matrix is updated by subtracting the product
of the row and column. It is possible to put off the update
of a particular section of the matrix until that section is

Figure 2: Three different algorithms for LU decom-
position [20]. The part of the matrix that changes
color is the part that is modified by one iteration.
Unlike right-looking, left- and top-looking variants
change only a small part of the matrix in one itera-
tion.

going to be factored. However, this approach means that
large sections of the matrix are unchanged after each itera-
tion. Figure 2 shows how the matrix is changed in each of
the three variations. Because of the data distribution, the
load balance is best when each processor does some work
on its section of the matrix during each iteration. When
the trailing matrix is not updated at each step, the work
of updating it has to be done consecutively by a small set
of processors when the factorization reaches each new part.
When the update is done at every step, the work is done at
the same time that other processors are doing factorization
work, taking less total time.

4. FAILURE MODEL
The type of failure that we focus on in this work is a fail-

stop failure, which means that a process stops and loses all
of its data. The main task that we are able to perform is
to recover the lost data. Another type of failure that this
technique could handle is a soft failure, where one or more
numbers become incorrect without any outwardly detectable
signs. A checksum can be used to detect and correct these
types of errors as well. However, it has higher overhead than
handling only fail-stop failures. Detecting a soft failure re-
quires that all elements of the matrix be made redundant
by two different checksums, where different elements of the
matrix go into each checksum. The other way in which the
overhead of detecting and recovering from soft failures is
greater than recovering from fail-stop failures is that detect-
ing soft failures requires periodically checking to see if a fail-
ure has occurred. This does not have to be done every step,
but it should be done often enough that a second failure is
not likely to occur and make it impossible to recover.



Figure 3: Global view of a matrix with checksum
blocks and diagonal blocks marked. Because of the
checksum blocks, the diagonal of the original matrix
is displaced in the global matrix.

Soft failures are a task for later research, although the idea
behind having multiple sums for the same set of elements is
similar. Instead, we are focused on recovering from one hard
failure, where the fact of the failure and the processor that
failed are provided by some other source, presumably the
MPI library. The ability to continue after a process failure
is not something that is currently provided by most MPI
implementations. However, for testing purposes it is possible
to simulate a failure in a reasonable manner. When one
process fails, no communication is possible, but the surviving
processes can still do work. Therefore, the general approach
to recovery is to have the surviving processes write a copy
of their state to the disk. This information can then be
used to restart the computation. The state of the surviving
processes is used to recover the failed process.

5. CHECKSUM
Adding checksums to a matrix stored in block cyclic fash-

ion is most easily done by adding an extra row, column, or
both of processors to the processor grid. The extra proces-
sors hold an element by element sum of the local matrices
on the processors in the same row for a row checksum or the
same column for a column checksum. This way processors
hold either entirely checksum elements or entirely normal
matrix elements. If this were not the case it might make
recovery impossible.

The block cyclic distribution makes it so that the check-
sum elements are interpreted as being spread throughout the
global matrix, rather than all in the last rows or columns as
they would be in a sequential matrix operation. Figure 3
shows the global view of a matrix with a row checksum.
The width of each checksum block in the global matrix is
the block size nb. The block size is also used as the width of a
column block that is factored in one iteration. Periodically
during the calculation checksum elements may need to be
treated differently from normal elements. In the LU factor-
ization, when a checksum block on the main diagonal is come
to, that iteration can be skipped because the work done in it
is not necessary to maintaining the checksum. When there
is only a row checksum, as in this case, the elements on the
diagonal of the original matrix are not all on the diagonal of
the checksum matrix. Instead of considering every element
ai,i of the matrix during Gaussian elimination, the element
is ai,i+c·nb, where c is the number of checksum blocks to the
left of the element under consideration.

Another feature of the matrix storage for LU that is worth
noting is that the factorization is done in place, so that L
and U replace the original matrix one panel at a time. An
implication of this fact is that the local matrix in a particular
processor may have sections of all three matrices. However,
both U and the original matrix A are recovered using row
checksums, so the elements of L in the row are simply set to
zero so that they do not affect the outcome. The recovery
is done by a reduce across the row containing the failed
process.

The checksum is most useful when it is maintained at
every step of the calculation. The shorter the period of
time when the checksum is not correct or all processors do
not have the information necessary to update the checksum,
the less vulnerable the method is. This period of time is
equivalent to the time it takes to perform a checkpoint when
the checkpointing method is used. If a failure occurs during
the checkpoint, it is likely that the data cannot be recovered.
The same might be true for the checksum method.

Specifically for HPL, it is necessary to take some extra
steps to reduce this vulnerability. One iteration of the fac-
torization is broken down into two parts: the panel factor-
ization and the trailing matrix update. During the panel
factorization, only the panel is changed, and the rest of the
matrix is not affected. This operation makes the checksum
incorrect. Fortunately, simply keeping a copy of the panel
before factorization starts is enough to eliminate this prob-
lem. The size of the panel is small compared to the total
matrix. HPL already keeps copies of panels for some of the
variations available for optimization.

Once the panel factorization is completed, the factored
panel is broadcast to the other processors, and the panel is
used to update the trailing matrix. If a failure occurs while
the panel is being factored, recovery consists of replacing the
partially factored panel with its stored earlier version, then
using the checksums to recover the part of the matrix that
was kept on the failed processor.

It is not guaranteed that the checksum can be maintained
for any algorithm for calculating the LU decomposition. The
method relies on whole rows of the matrix being operated
on in the same iteration.

The right-looking LU factorization can be used with our
technique, but the left-looking LU factorization cannot. In
the left-looking variation, columns to the left of the currently
factored column are not updated. So the row checksum will
not be maintained, and it will not be possible to recover U.

6. ALGORITHMS FOR LU DECOMPOSI-
TION

Like all matrix operations, there are different algorithms
for the LU decomposition, not all of which will necessarily
maintain a checksum at each step. However, there is at
least one algorithm for LU that maintains the checksum in
a way that is useful for recovery. This is the right-looking
algorithm with partial pivoting. If pivoting is not used at
all, the right-looking algorithm also maintains a checksum,
but without pivoting the outcome of the algorithm is not as
numerically stable.

The right-looking algorithm for LU maintains a checksum
at each step as is required because each iteration operates
on entire rows and columns. If an entire row is multiplied
by a constant, or rows are added together, the checksum



will still be correct. The same is true of columns. When an
operation finishes factoring a part of the matrix into part
of L or U, the checksums in that part will be sums on L
or U only. Elements belonging to L will go into column
checksums only, and elements belonging to U will go into
row checksums only. The elements of L and U that are not
stored in the matrix-ones on the diagonal of L and zeros
above or below the diagonal-also go into the checksums.

Left-looking and top-looking LU decomposition do not
maintain a checksum because various parts of the matrix
are not updated in a given step, shown in figure 2 by the
sections that do not change color. When some sections of the
matrix are changed and others are not, a sum that includes
elements from both sections will not be maintained. Only
the right-looking variant updates the entire matrix at every
step, maintaining the checksum. Interestingly, this charac-
teristic makes the right-looking variant the least favorable
for diskless checkpointing.

6.1 Proof
Right-looking LU factorization maintains a checksum at

each step, as shown below. This version is also faster than
the others, left-looking and top-looking.

The right-looking algorithm is:

for i = 1 to n-1

A(i+1:n,1) = A(i+1:n,1)/A(i,i)

A(i+1:n,i+1:n) = A(i+1:n,i+1:n)

- A(i+1:n,i)*A(i,i+1:n)

In an iteration of the loop, the original matrix is:

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

∑n
j=1 a1j

a21 a22 . . . a2n

∑n
j=1 a2j

...
...

...
...

an1 an2 . . . ann

∑n
j=1 anj

⎞
⎟⎟⎟⎠

Dividing it up by the sections that are relevant to the step,
this matrix is

(
a11 A12

∑
A12

A21 A22

∑
A22

)

where

A12 =
(

a12 . . . a1n

)

∑
A12 =

( ∑n
j=1 a1j

)

A21 =

⎛
⎜⎝

a21

...
an1

⎞
⎟⎠

A22 =

⎛
⎜⎝

a22 . . . a2n

...
...

an2 . . . ann

⎞
⎟⎠

∑
A22 =

⎛
⎜⎝

∑n
j=1 a2j

...∑n
j=1 anj

⎞
⎟⎠

The first part of the iteration makes the matrix into

(
a11 A12

∑
A12

A21/a11 A22

∑
A22

)

The second step modifies the trailing matrix as follows:

(
A22

∑
A22

)− (
A21/a11

) (
A12

∑
A12

)
=

(
A22

∑
A22

)− (
A21A12/a11 A21/a11

∑
A12

)
=

(
A22 − A21A12/a11

∑
A22 − A21/a11

∑
A12

)
Note that A22 − A21A12/a11 = aij − ai1a1j/a11 for i =

2, . . . n and j = 2, . . . n.
The term representing the sums is

∑
A22 −A21/a11

∑
A12

=

⎛
⎜⎝

∑n
j=1 a2j

...∑n
j=1 anj

⎞
⎟⎠−

⎛
⎜⎝

a21/a11

...
an1/a11

⎞
⎟⎠( ∑n

j=1 a1j

)

=

⎛
⎜⎝

∑n
j=1 a2j − a21a1j/a11

...∑n
j=1 anj − an1a1j/a11

⎞
⎟⎠

=

⎛
⎜⎝

∑n
j=2 a2j − a21a1j/a11

...∑n
j=2 anj − an1a1j/a11

⎞
⎟⎠

The first term of each sum is zero. Therefore they be-
come sums of the elements in the trailing matrix only. The
trailing matrix contains correct checksums at the end of the
iteration. The row that became part of U has a checksum
for itself. The column that is part of L no longer has a
checksum that it is part of, but with the HPL algorithm it
is no longer needed for the final result.

7. PERFORMANCE
One way to evaluate the relative merit of the checkpoint-

ing and checksum techniques is to compare their overhead.
The most straightforward way of measuring overhead is to
find how much longer a run on the same matrix size takes
with fault tolerance than without. This way all of the effects
of the additional work will be included.

A problem with this comparison is that the optimal rate
of checkpointing depends on the expected rate of failure,
among other factors. The time between checkpoints that
gives the best performance is given in [13]. This means that
it is impossible to absolutely state that checkpointing has
higher overhead. However, it is possible to show that the in-
terval would have to be extremely long, which is only possi-
ble when the failure rate is extremely low, for checkpointing
to achieve overhead as low as that of the checksum method.

Making a checkpoint is the same operation as making the
checksum, the difference being that a checksum is only done
once while the checkpoint is done many times. Aside from
that fact, the difference lies in the fact that the checksum
needs to have some work done to keep it correct, while the
checkpoint ends with doing the sum periodically. The extra
work comes from the fact that the blocks with the sums in
them are treated as part of the matrix. However, no extra



iterations are added because it is possible to skip over the
sum blocks and keep the sums correct. So the number of
steps is the same; the only difference is how much longer
each step takes when there are more processors in the grid.

The only parts of an iteration that are affected by there
being more processors are the parts with communication.
There are broadcasts in both rows and columns, but only
broadcasting in rows is affected because there are no column
checksums. If the original matrix dimension is P, then with a
checksum added it is P+1. So the overhead of each iteration
is the difference between a broadcast among P+1 processors
and a broadcast among P processors. Depending on the
implementation, the value varies. With a binomial tree, the
overhead would be log(P + 1) − logP . Using pipelining,
where the time for the broadcast is nearly proportional to
the size of the message, the overhead is even smaller.

The total overhead of the checksum technique is

TP+1 + (TP+1 − TP ) · N
nb

where TP is the time for either a broadcast or a reduce on P
processors, N is the matrix dimension, and nb is the block
size. N/nb is the number of iterations. It seems reasonable
to assume that TP+1−TP is a very small quantity. Whether
this term is significant depends on the exact value and the
number of iterations, but for certain ranges of matrix size
the overhead is essentially the time to do one reduce across
rows. The total overhead of checkpointing is

TP+1 · N
nb

/I

where I is the number of iterations in the checkpointing in-
terval. There is an interval for which these overheads are
the same:

TP+1 + (TP+1 − TP ) · N
nb

= TP+1 · N
nb

/I

I =
TP+1 · N

nb

TP+1 + (TP+1 − TP ) · N
nb

If N
nb

is large, the number of iterations required in the

interval would be approximately
TP+1

TP+1−TP
, which could be

a very large number, depending on the implementation of
broadcast and reduce.

Another consideration is how the overhead scales. If the
checkpoint is done at the same interval regardless of the ma-
trix size, then the overhead would remain nearly constant.
However, when more processors are added, the expected rate
of failure increases, so that in practice the checkpoint inter-
val would likely have to be shorter when a larger matrix is
used. In contrast, the fraction of total time that is over-
head in the checksum technique should decrease as the size
of the matrix increases. Since much of the overhead comes
from making the sum at the beginning of the calculation,
the overhead as a fraction of the total time will decrease as
the length of the calculation increases.

Even when there is no failure, the process of preparing for
one has a cost. For this method, the cost is performing the
checksum at the beginning, as well as the extra processors
required to hold the checksums. The checksum is done by
a reduce. The number of extra processors required is the
number of rows in the processor grid, since an extra proces-
sor is added to each row. The number of iterations is not

increased because the checksum rows are skipped. Perform-
ing the factorization on checksum blocks is not necessary for
maintaining a correct checksum, so the work done in that
step would be pointless.

This method competes with diskless checkpointing for over-
head. Because the extra processors do the same sort of tasks
as the normal processors in the same row, the time to do an
iteration is not significantly increased by adding the check-
sums. In contrast, in order to do a checkpoint it is necessary
to do extra work periodically to update the checkpoint. If
the checkpoint is done every iteration, then the cost of re-
covery is the same as with a checksum, but the cost during
the calculation is clearly higher.

When no error occurs, the overhead of performing a check-
point is the time it takes to do one checkpoint multiplied by
the number of checkpoints done. For checkpointing, the op-
timum interval depends on the failure rate and the time it
takes to do a checkpoint. The more frequently failures are
likely to occur, the smaller the interval must be. The longer
the checkpoint itself takes, the fewer checkpoints there should
be in the total running time, so the interval is longer for a
larger checkpoint. Whatever the optimum interval is, the
additional overhead from the checkpoint when no failure oc-
curs is Ntc, where N is the total number of checkpoints and
tc is the time to perform one checkpoint.

The checksum technique, in contrast, does not take any
extra time to keep the sum up to date. The only overhead
when no failure occurs is the time to calculate the sum at
the beginning. Since both the sum and the checkpoint oper-
ation will use some sort of reduce, the time to calculate the
checksum is comparable to the time to perform one check-
point.

In addition to the time overhead, both techniques have
the overhead of additional processors that are required to
hold either the checksum or checkpoint. However, with the
trend of using more and more processors, processors can be
considered cheap. Additionally, the overhead in number of
processors for the checksum is approximately

√
P , where

P is the number of processors, so the relative increase in
processors is smaller the more processors there are.

Whether fault tolerance is used or not, a failure means
that some amount of calculation time is lost and has to be
repeated. When no fault tolerance is used, the time that has
to be repeated is everything that has been done up to the
point of the failure. The higher the probability of failure,
the less likely it is that the computation will ever be able to
finish.

Both checkpoint and checksum methods make it so that at
any particular time, only a small part of the total execution
is vulnerable to a failure. With either method, only the time
spent in the most recent interval can be lost. With a check-
point this interval depends on the failure rate of the system,
but with a checksum the interval is always one iteration.
For the checksum method, the checksums are consistent at
the beginning of each iteration. To recover from a failure,
it is necessary to go back to the beginning of the current
iteration and restart from there.

Both checkpoint and checksum recoveries use a reduce of
some sort to calculate the lost values, so that the recovery
time tr is comparable for the two methods.

The other aspect of the overhead of recovery, beside tr, is
the amount of calculation that has to be redone. Since the
checkpoint interval can be varied while the checksum interval



Table 1: Jaguar: local matrix size 2000× 2000, block
size 64

N P Total
time
(s)

Checksum
time (s)

Overhead
(%)

Performance
(Gflops)

192000 9312 161.83 1.22 0.759 29160

216000 11772 186.24 1.24 0.670 36070

240000 14520 206.08 1.26 0.615 44720

264000 17556 238.56 1.29 0.541 51420

Table 2: Jaguar: local matrix size 4000× 4000, block
size 64

N P Total
time
(s)

Checksum
time (s)

Overhead
(%)

Performance
(Gflops)

384000 9312 913.16 5.72 0.630 41340

432000 11772 995.98 5.70 0.576 53960

480000 14520 1137.26 5.69 0.503 64830

528000 17556 1254.81 5.91 0.473 78200

cannot, it seems that this overhead could favor one method
or the other depending on the circumstances. However, the
optimum checkpointing interval is determined partly by the
time it takes to perform a checkpoint, and one of the main
points emphasized in this paper is that the time to perform
a checkpoint is very long for matrix operations because of
the large amount of data that changes between checkpoints.
Therefore it is reasonable to assume that the interval re-
quired by the checkpoint will be larger than that of the
checksum method, and the overhead introduced by the re-
peated work will be less with the checksum method.

There are two ways in which the overhead of the checksum
method is less than that of checkpointing: the time added
even when there is no failure, and the time lost when a failure
occurs.

8. EXPERIMENTS

8.1 Platforms
We evaluate the proposed fault tolerance scheme on the

following platforms:
Jaguar at Oak Ridge National Laboratory (ranks No. 2

in the current TOP500 Supercomputer List): 224,256 cores
in 18,688 nodes. Each node has two Opteron 2435 ”Istan-
bul” processors linked with dual HyperTransport connec-
tions. Each processor has six cores with a clock rate of 2600
MHz supporting 4 floating-point operations per clock period
per core. Each node is a dual-socket, twelve-core node with
16 gigabytes of shared memory. Each processor has directly
attached 8 gigabytes of DDR2-800 memory. Each node has
a peak processing performance of 124.8 gigaflops. Each core
has a peak processing performance of 10.4 gigaflops. The
network is a 3D torus interconnection network. We used
Cray MPI implementation MPT 3.1.02.

Kraken at the University of Tennessee (ranks No. 8 in the
current TOP500 Supercomputer List): 99,072 cores in 8,256

Table 3: Jaguar: local matrix size 2000× 2000, block
size 128

N P Total
time
(s)

Checksum
time (s)

Overhead
(%)

Performance
(Gflops)

192000 9312 162.52 1.29 0.800 29030

216000 11772 184.92 1.28 0.697 36330

240000 14520 210.50 1.29 0.617 43780

264000 17556 244.63 1.33 0.547 50140

nodes. Each node has two Opteron 2435 ”Istanbul” pro-
cessors linked with dual HyperTransport connections. Each
processor has six cores with a clock rate of 2600 MHz sup-
porting 4 floating-point operations per clock period per core.
Each node is a dual-socket, twelve-core node with 16 giga-
bytes of shared memory. Each processor has directly at-
tached 8 gigabytes of DDR2-800 memory. Each node has a
peak processing performance of 124.8 gigaflops. Each core
has a peak processing performance of 10.4 gigaflops. The
network is a 3D torus interconnection network. We used
Cray MPI implementation MPT 3.1.02.

Ra at Colorado School of Mines: 2,144 cores in 268 nodes.
Each node has two 512 Clovertown E5355 quad-core proces-
sor at a clock rate of 2670 MHz supporting 4 floating-point
operations per clock period per core. Each node has 16
GB memory. Each node has a peak processing performance
of 85.44 gigaflops. The network uses a Cisco SFS 7024 IB
Server Switch. We used Open MPI 1.4.

8.2 Overhead without recovery
We ran our code on both a larger scale (Jaguar and Kraken)

and on a smaller scale (Ra). Since the time required to per-
form the checksum can be kept almost constant when the
matrix size is increased, the larger scale shows lower over-
head as a fraction of the total time.

Tables 1, 2, and 3 show the overhead of making a check-
sum at the beginning of the calculation for a matrix of size
N × N on P processes. The processes are arranged in a a
grid of size p × (p + 1) = P . The sum is kept on the ex-
tra processes in the last column of the processor grid. When
the local matrix on each process is the same size, the time to
perform the checksum is nearly the same for different total
matrix sizes. The overhead of the checksum method consists
almost entirely of the time taken to perform the checksum
at the beginning, so it decreases as a fraction of the total
time. Changing the block size has very little effect on the
overhead. However, when the local matrix on each process
is increased from 2000×2000 to 4000×4000, the overhead is
less for the same number of processes, while the performance
is greater.

Table 4 shows the results on a different large system. Here
also the overhead is typically less than 1%. Table 5 shows
the results for small matrices. Even with few processes the
overhead is low, and it decreases as the size increases.

Figure 4 shows runtimes with and without fault tolerance.
The difference in times between the two cases is smaller than
the variation that can arise from other causes, as in the case
of sizes 264000 and 288000, where the untouched code took
longer for some reason.



Table 4: Kraken: local matrix size 2000× 2000, block
size 64

N P Total
time
(s)

Checksum
time (s)

Overhead
(%)

Performance
(Gflops)

144000 5256 214.71 1.16 0.543 9272

168000 7140 195.06 1.18 0.609 16210

192000 9312 256.91 1.17 0.457 18370

216000 11772 307.34 1.18 0.385 21860

240000 14520 342.28 1.18 0.346 26930

Table 5: Ra: local matrix size 4000× 4000, block size
64

N P Total
time
(s)

Checksum
time (s)

Overhead
(%)

Performance
(Gflops)

16000 20 36.51 2.16 6.29 74.81

20000 30 44.44 1.84 4.32 120.0

24000 42 54.98 1.97 3.72 167.7

28000 56 65.82 2.23 3.51 222.4

32000 72 77.20 2.43 3.25 283.0

36000 90 89.95 2.46 2.81 345.8

40000 110 81.44 2.27 2.87 523.9

Figure 4: On Jaguar, when run with and without
checksum fault tolerance, the times are very simi-
lar. In fact, variations in the runtime from other
causes are greater than the time added by the fault
tolerance, with all effects included.

192000 216000 240000 264000 288000 312000

with checksum
without

matrix size

tim
e 

(s
)

0
50

10
0

15
0

20
0

25
0

Table 6: Jaguar: local matrix size 2000× 2000, block
size 64

N P Total time (s) Recovery time (s)

192000 9312 161.83 1.19

216000 11772 186.24 1.24

240000 14520 206.08 1.24

264000 17556 238.56 1.25

Table 7: Ra: local matrix size 4000× 4000, block size
64

N P Total time (s) Recovery time (s)

16000 20 36.51 1.52

20000 30 44.44 1.94

24000 42 54.98 2.60

28000 56 65.82 3.03

32000 72 77.20 3.41

36000 90 89.95 4.25

8.3 Overhead with recovery
Tables 6 and 7 show simple recovery times for a single

failure. Here the recovery is done at the end of an iteration,
and requires only a reduce. Consequently, the time needed
to recover is very similar to the time needed to perform the
checksum in the beginning. In order to find the recovery
time, we did the recovery operation to a copy of the local
matrix of an arbitrary process, using this to both time the
recovery operation and to check its correctness by comparing
to the original local matrix.

By this measure, the recovery time is only the time needed
for a reduce. In the case of a real failure it may be neces-
sary to repeat at most one iteration. As an example of the
amount of work that is repeated, the first entry in table 6
did 3000 iterations, which means that each iteration took
less than 0.05 seconds, which is not very significant com-
pared to the other cost of recovery.

8.4 Algorithm-based recovery versus diskless
checkpointing

According to [29], an approximation for the optimum check-
point interval is

I =

√
2tc(P )M

P

where tc(P ) is the time to perform one checkpoint when
there are P processes and M is the mean time to failure of
one process, assuming that the process failures are indepen-
dent so that, if the failure rate of one is 1

M
, then the failure

rate for the entire system is P
M
. This formula illustrates the

balance between the two main factors that determine the op-
timum interval. The longer it takes to perform a checkpoint,
the less often it should be done for the sake of overhead. The
term M/P is the mean time to failure for the entire system.
When the expected time until a failure is less, checkpoints
need to be done more often for the optimum expected run-
time. Since the time to perform a checkpoint only increases
slightly as the number of processes increases, the significant



Figure 5: Fault tolerance overhead without re-
covery: Algorithm-based recovery versus diskless
checkpointing
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Figure 6: On smaller runs on Ra, the difference be-
tween checksum and checkpoint can be easily seen.
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factor is the number of processes, which makes failures more
likely and decreases the length of the checkpoint interval.

As an example of possible checkpoint overhead, figure 5
shows the overhead when the mean time to failure is 10000
hours for one process. Because both the operation to cre-
ate the backup (checksum or checkpoint) and the operation
to recover from a failure are essentially the same between
the two different approaches, using the same values for both
the checksum and the checkpoint approach gives an approx-
imation for how the overheads compare that is fair to the
checkpointing approach.

The checkpoint interval decreases as more processes are
added because the probability of a failure increases. This
means that the amount of work repeated because of one
failure is less, but the expected number of failures during
the run increases. On average, half of the checkpoint inter-
val will have to be repeated. The running time increases
as the problem size is larger, while the checkpoint interval
decreases. So there will be an increasing number of check-
points, and therefore the overhead increases as the num-
ber of processes increases. With the checksum method, on

Figure 7: Fault tolerance overhead with recovery:
Algorithm-based recovery versus diskless check-
pointing
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the other hand, the overhead decreases as the number of
processes increases. Figure 6 shows the results of smaller
runs, comparing checksum and checkpoint overhead with-
out a failure. Figure 7 shows the cost of one recovery with
the algorithm-based recovery scheme. Here the overhead is
less than one percent for each case, compared to at least 15
percent with a checkpoint.

9. CONCLUSION
By adding a row checksum to the matrix, we are able to

make the right-looking LU decomposition with partial pivot-
ing fault tolerant. We can recover lost data from the original
matrix and from U resulting from one process failure. The
overhead of the method consists mostly of the time to cal-
culate the checksum at the beginning, using a reduce. The
time to perform the checksum is approximately proportional
to the size of the local matrix stored on one process, so that
the overhead time can be kept almost constant when the
matrix size is increased, decreasing the overhead as a frac-
tion of the total time. This method can perform with much
lower overhead than diskless checkpointing, which is a very
good option in general. Although this method is specific
to matrix operations, it can offer much better performance
than diskless checkpointing for those operations.

In this work we have used only one checksum to handle
one failure. However, with weighted checksums it is possible
to recover from multiple failures, or to use the additional
checksums to detect as well as recover from errors. These
possibilities will be explored in future work.
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