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Abstract—Fail-stop failures in distributed environments are often tolerated by checkpointing or message logging. In this paper, we
show that fail-stop process failures in ScaLAPACK matrix matrix multiplication kernel can be tolerated without checkpointing or message
logging. It has been proved in the previous algorithm-based fault tolerance research that, for matrix-matrix multiplication, the checksum
relationship in the input checksum matrices is preserved at the end of the computation no matter which algorithm is chosen. From this
checksum relationship in the final computation results, processor miscalculations can be detected, located, and corrected at the end
of the computation. However, whether this checksum relationship in the input checksum matrices can be maintained in the middle

of the computation or not remains open. In this paper, we first demonstrate that, for many matrix matrix multiplcation algorithms, the
checksum relationship in the input checksum matrices is not maintained in the middle of the computation. We then prove that, however,
for the outer product version matrix matrix multiplcation algorithm, the checksum relationship in the input checksum matrices can
be maintained in the middle of the computation. Based on this checksum relationship maintained in the middle of the computation,
we demonstrate that fail-stop process failures in ScaLAPACK matrix-matrix multiplcation can be tolerated without checkpointing or
message logging. Because no periodical checkpointing is involved, the fault tolerance overhead for this approach is surprisingly low.

Index Terms—Algorithm-based fault tolerance, checkpointing, fail-stop failures, parallel matrix matrix multiplication, ScaLAPACK.

✦

1 INTRODUCTION

As the number of processors in today’s high perfor-
mance computers continues to grow, the mean-time-to-
failure (MTTF) of these systems are becoming signifi-
cantly shorter than the execution time of many current
high performance computing applications. Even mak-
ing generous assumptions on the reliability of a single
processor or link, it is clear that as the processor count
in high end systems grows into the tens of thousands,
the MTTF can drop from a few years to a few days,
or less. For example, with 131,000 processors in the
system, the current IBM Blue Gene L experienced fail-
ures every 48 hours during initial deployment [28]. In
recent years, cluster of commodity off-the-shelf systems
becomes more and more popular. While the commod-
ity off-the-shelf cluster systems have excellent price-
performance ratios, there is a growing concern with
the fault tolerance issues in such systems due to the
low reliability of the off-the-shelf components used in
these systems. The recently emerging computational grid
environments [14] with dynamic computing resources
have further exacerbated the problem. However, driven
by the desire of scientists for ever higher levels of detail
and accuracy in their simulations, many computational
science applications are now being designed to run for
days or even months. To avoid restarting computations
from beginning after failures, the next generation high
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performance computing applications need to be able to
continue computations despite of failures.

Although there are many types of failures in today’s
parallel and distributed systems, in this paper, we focus
on tolerating fail-stop process failures where the failed
process stops working and all data associated with the
failed process are lost. This type of failures is common
in today’s large computing systems such as high-end
clusters with thousands of nodes and computational
grids with dynamic computing resources. In order to
tolerate such fail-stop failures, it often requires a global
consistent state of the application be available or can
be reconstructed when the failue occurs. Today’s long
running scientific applications typically tolerate such
failures by checkpoint/restart in which all process states
of an application are saved into stable storage periodi-
cally. The advantage of this approach is that it is able
to tolerate the failure of the whole system. However,
in this approach, if one process fails, usually all surviv-
ing processes are aborted and the whole application is
restarted from the last checkpoint. The major source of
overhead in all stable-storage-based checkpoint systems
is the time it takes to write checkpoints into stable
storage [23]. In order to tolerate partial failures with
reduced overhead, diskless checkpointing [23] has been
proposed by Plank et. al. By eliminating stable storage
from checkpointing and replacing it with memory and
processor redundancy, diskless checkpointing removes
the main source of overhead in checkpointing [23]. Disk-
less checkpointing has been shown to achieve a decent
performance to tolerate single process failure in [20].
For applications which modify a small amount of mem-
ory between checkpoints, it is shown in [9] that, even
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to tolerate multiple simultaneous process failures, the
overhead introduced by diskless checkpointing is still
negligible. However, the matrix-matrix multiplication
operation considered in this paper often modifys a large
mount of memory between checkpoints. Diskless check-
pointing for such applications often produces a large size
checkpoint. Therefore, even diskless checkpointing still
introduces a considerable overhead [20], [22].

It has been proved in previous research [19] that, for
some matrix operations, the checksum relationship in
input checksum matrices is preserved in the final computa-
tion results at the end of the operation. Based on this check-
sum relationship in the final computation results, Huang
and Abraham have developed the famous algorithm-
based fault tolerance (ABFT) [19] technique to detect,
locate, and correct certain processor miscalculations in
matrix computations with low overhead. The algorithm-
based fault tolerance proposed in [19] was later extended
by many researches [1], [2], [3], [5], [21].

However, previous ABFT researches have mostly fo-
cused on detecting, locating, and correcting miscalcu-
lations or data corruption where failed processors are
often assumed to be able to continue their work but
produce incorrect calculations or corrupted data. The
error detection are often performed at the end of the
computation by checking whether the final computation
results satisfy the checksum relationship or not.

In order to be able to recover from a fail-stop process
failure in the middle of the computation, a global con-
sistent state of the application is often required when
a process failure occurs. Checkpointing and message
logging are typical approaches to maintain or construct
such global consistent state in a distributed environment.
But if there exists a checksum relationship between
application data on different processes, such checksum
relationship can actually be treated as a global consistent
state. However, it is still an open problem that whether
the checksum relationship in input checksum matrices
in ABFT can be maintained during computation or not.
Therefore, whether ABFT can be extended to tolerate fail-
stop process failures in a distributed environment or not
remains open.

In this paper, we extend the ABFT idea to recover
applications from fail-stop failures in the middle of
the computation by maintaining a checksum relation-
ship during the whole computation. We show that fail-
stop process failures in ScaLAPACK [4] matrix-matrix
multiplication kernel can be tolerated without check-
pointing or message logging. We first demonstrate that,
for many matrix matrix multiplication algorithms, the
checksum relationship in input checksum matrices does
not preserve during computation. We then prove that,
however, for the outer product version matrix matrix
multiplcation algorithm, it is possible to maintain the
checksum relationship in input checksum matrices dur-
ing computation. Based on this checksum relationship
maintained during computation, we demonstrate that it
is possible to tolerate fail-stop process failures (which

are typically tolerated by checkpoting or message log-
ging) in the outer product version distributed matrix
matrix multiplcation without checkpointing or message
logging. Because no periodical checkpoint or rollback-
recovery is involved in this approach, process failures
can often be tolerated with a surprisingly low overhead.
We show the practicality of this technique by applying
it to the ScaLAPACK matrix-matrix multiplication kernel
which is one of the most important kernels for the widely
used ScaLAPACK library to achieve high performance
and scalability.

The rest of this paper is organized as follows. Section 2
explores properties of matrix matrix multiplication with
input checksum matrices. Section 3 presents the basic
idea of algorithm-based checkpoint-free fault tolerance.
In Section 4, we demonstrate how to tolerate fail-stop
process failures in ScaLAPACK matrix-matrix multi-
plcation without checkpointing or message logging. In
Section 5, we evaluate the performance overhead of
the proposed fault tolerance approach. Section 6 com-
pares algorithm-based checkpoint-free fault tolerance
with existing works and discusses the limitations of this
technique. Section 7 concludes the paper and discusses
future work.

2 MATRIX MATRIX MULTIPLICATION WITH
CHECKSUM MATRICES

In this section, we explore the properties of different
matrix matrix multiplication algorithms when the input
matrices are checksum matrices defined in [19].

It has been proved in [19] that the checksum rela-
tionship of the input checksum matrices is preserved in
the final computation results at the end of computation
no mater which algorithm is used in the operation.
However, whether this checksum relationship in input
checksum matrices can be maintained during computa-
tion or not remains open.

In this section, we demonstrate that, for many al-
gorithms to perform matrix matrix multiplication, the
checksum relationship in the input checksum matrices
does not preserve during computation. We prove that,
however, for the outer product version matrix matrix
multiplcation algorithm, it is possible to maintain the
checksum relationship in the input checksum matrices
during computation.

2.1 Maintaining Checksum at the End of Computa-
tion

Assume Im×m is the identity matrix of dimmension m,
Em×n is the m-by-n matrix with all elements being 1.
Let Hc

m = [Im×m, Em×1]
T , Hr

n = [In×n, En×1]. It’s trival
to verify Hc

m = Hr
n

T if m = n. For any m-by-n matrix A,
the column checksum matrix Ac of A is defined by Ac =
Hc

m ∗ A, the row checksum matrix Ar of A is defined by
Ar = A ∗ Hr

n, and the full checksum matrix Af of A is
defined by Af = Hc

m ∗ A ∗ Hr
n.
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Theorem 1: Assume A is an m-by-k matrix, B is a k-
by-n matrix, and C is an m-by-n matrix. If A ∗ B = C,
then Ac ∗ Br = Cf .

Proof:

Ac ∗ Br = (Hc
m ∗ A) ∗ (B ∗ Hr

n)

= Hc
m ∗ (A ∗ B) ∗ Hr

n

= Hc
m ∗ C ∗ Hr

n

= Cf .

Theorem 1 was first proved by Huang and Abraham
in [19]. We prove it here again to show that the proof
of Theorem 1 is independent of the algorithms used for
the matrix matrix multiplication operation. Therefore no
mater which algorithm is used to perform the matrix
matrix multiplication, the checksum relationship of the
input matrices will always be preserved in the final
computation results at the end of the computation.

Based on this checksum relationship in the final com-
putation result, the low-overhead ABFT technique has
been developed in [19] to detect, locate, and correct cer-
tain processor miscalculations in matrix computations.

2.2 Is the Checksum Maintained During Computa-
tion?

Algorithm-based fault tolerance usually detects, locates,
and corrects errors at the end of the computation. But in
today’s highperformance computing environments such
as PVM [27] and MPI [26], after a fail-stop process
failure occurs in the middle of the computation, it is
often required to recover from the failure first before the
continuation of the rest of the computation.

In order to be able to recover from fail-stop failures
occured in the middle of the computation, a global
consistent state of an application is often required in the
middle of the computation. The checksum relationship, if
exists, can actually be treated as a global consistent state.
However, from Theorem 1, it is still uncertain whether the
checksum relationship is preserved in the middle of the
computation or not.

In what follows, we demonstrate, for both Cannon’s
algorithm and Fox’s algorithm for matrix matrix multi-
plication, this checksum relationship in the input check-
sum matrices is generally not preserved in the middle
of the computation.

Assume A is an (n − 1)-by-n matrix, B is an n-by-
(n − 1) matrix. Then Ac = (aij)n×n, Br = (bij)n×n, and
Cf = Ac ∗Br are all n-by-n matrices. For convenience of
description, but without loss of generality, assume there
are n2 processors with each processor stores one element
from Ac, Br,and Cf respectively. The n2 processors are
organized into a n-by-n processor grid.

Consider using the Cannon’s algorithm [6] in Fig. 1 to
perform Ac ∗Br in parallel on an n-by-n processor grid.
We can prove the following Theorem 2.

Theorem 2: If the Cannon’s algorithm in Fig. 1 is used
to perform Ac ∗ Br, then there exist matrices A and

/* Calculate C = Ac
∗ Br by cannon’s algorithm. */

initialize C = 0;
for i = 0 to n − 1

left-circular-shift row i of Ac by i
so that ai,j is overwritten by ai, (j+i) mod n;

end
for i = 0 to n − 1

up-circular-shift column i of Br by i
so that bi,j is overwritten by b(i+j) mod n, j ;

end
for s = 0 to n − 1

every processor (i,j) performs cij = cij + aij ∗ bij

locally in parallel;
left-circular-shift each row of Ac by 1;
up-circular-shift each column of Br by 1;
/* Here is the end of the sth step. */

end

Fig. 1. Matrix-matrix multiplication by cannon’s algorithm
with checksum input matrices

B such that, at the end of each step s, where s =
0, 1, 2, · · · , n−2, the partial sum matrix C = (cij) in Fig. 1
is not a full checksum matrix.

Proof: This can be proved by giving a simple exam-
ple.

Let
A =

(

1 2
)

,

B =

(

3
4

)

.

Then

Ac =

(

1 2
1 2

)

,

Br =

(

3 3
4 4

)

.

In this example, n = 2, thus it is enough to just check
one case: s = 0.

When the Cannon’s algorithm in Fig. 1 is used to
perform Ac ∗ Br, at the end of s = 0th step

C =

(

3 8
8 3

)

,

which is not a full checksum matrix.
Actually, when the Cannon’s algorithm in Fig. 1 is

used to perform Ac ∗ Br in parallel for matrix A and
B in Theorem 2, it can be proved that at the end of the
sth step

cij =

s
∑

k=0

ai, (i+j+k) mod n ∗ b(i+j+k) mod n, j

It can be verified that C = (cij)n×n is not a full checksum
matrix unless s = n − 1 which is the end of the
computation. Therefore the checksum relationship in the
matrix C is generally not preserved during computation
in the cannon’s algorithm for matrix-multiplication.

Each step of Cannon’s algorithm updates the partial
sum matrix C by adding a rank one matrix T where
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each entry of Ac and each entry of Br contribute to
some different entry of the matrix T . The rank one
matrix T is a outer product between a column vector
of entries from different columns of Ac and a row
vector of entries from different rows of Br. From the
irreducibility of outer products, the rank one matrix T

cannot algebraically equals to a full checksum matrix.
Therefore, the partial sum matrix C cannot algebraically
equals to a full checksum matrix.

How about if Fox’s algorithm [16] in Fig. 2 is used to
perform Ac ∗ Br?

Theorem 3: If the Fox’s algorithm in Fig. 2 is used to
perform Ac ∗Br, then there exist matrices A and B such
that, at the end of each step s, where s = 0, 1, 2, · · · , n−2,
the partial sum matrix C = (cij) in Fig. 2 is not a full
checksum matrix.

Proof: The same example matrices A and B in the
proof of Theorem 2 can be used to prove Theorem 3.
Because n = 2, it is also enough to just check only one
case: s = 0.

When the Fox’s algorithm in Fig. 2 is used to perform
Ac ∗ Br, at the end of 0th step

C =

(

3 3
8 8

)

,

which is not a full checksum matrix.

/* Calculate Ac
∗ Br by fox’s algorithm. */

initialize C = (cij) = 0;
for s = 0 to n − 1

for i = 0 to n − 1 in parallel
processor (i, (i + s) mod n) broadcast local
t = ai, (i+s) mod n to other processors in row i;

for i, j = 0 to n − 1 in parallel
every processor (i, j)
performs cij = cij + t ∗ bij locally;

up-circular-shift each column of Br by 1;
/* Here is the end of the sth step. */

end

Fig. 2. Matrix matrix multiplication by Fox’s algorithm with
input checksum matrices

When the Fox’s algorithm in Fig. 2 is used to perform
Ac ∗ Br in parallel, it can actually be proved that at the
end of the sth step

cij =

s
∑

k=0

ai, (i+k) mod n ∗ b(i+k) mod n, j

It can be verified that C = (cij)n×n is not a full checksum
matrix either unless s = n − 1 which is the end of the
computation. Therefore the checksum relationship in the
matrix C is generally not preserved during computation
either in the Fox’s algorithm for matrix-multiplication.

It can also be demonstrated that the checksum rela-
tionship in the input matrix C is not preserved during
computation in many other parallel algorithms for ma-
trix matrix multiplication.

2.3 Maintaining Checksum During Computation

Despite the checksum relationship of the input matrices
is preserved in final results at the end of computation no
mater which algorithm is used, from last subsection, we
konw that the checksum relationship is not necessarily
preserved during computation. However, it is interesting
to ask: is there any algorithm that preserves the check-
sum relationship during computation?

Consider using the outer product version algo-
rithm [18] in Fig. 3 to perform Ac ∗ Br in parallel.
Assume the matrices Ac, Br, and C have the same data
distribution scheme as the matrices in Subsection 2.2.

Theorem 4: If the algorithm in Fig. 3 is used to perform
Ac ∗Br, then the partial sum matrix C = (cij) in Fig. 3 is
a full checksum matrix at the end of each step s, where
s = 0, 2, · · · , n − 1.

Proof: Let A(:, 1 : s) be the first s columns of A,
B(1 : s, :) be the first s rows of B, and C(s) be the partial
sum matrix C at the end of the sth step of the outer
product version algorithm in Fig. 2. Then

C(s) = Ac(:, 1 : s) ∗ Br(1 : s, :)

= (Hc
n−1 ∗ A(:, 1 : s)) ∗ (B(1 : s, :) ∗ Hr

n−1)

= Hc
n−1 ∗ (A(:, 1 : s) ∗ B(1 : s, :)) ∗ Hr

n−1

which is the full checksum matrix of the matrix A(:, 1 :
s) ∗ B(1 : s, :).

/*Calculate C = Ac
∗ Br by outer product algorithm.*/

initialize C = 0;
for s = 0 to n − 1

row broadcast the sth row of Ac;
column broadcast the sth column of Br ;
every processor (i,j) performs cij = cij + ais ∗ bsj

locally in parallel;
/* Here is the end of the sth step. */

end

Fig. 3. Matrix-matrix multiplication by outer product algo-
rithm with checksum input matrices

Theorem 4 implies that a coded global consistent state
of the critical application data (i.e. the checksum re-
lationship in Ac, Br, and Cf ) can be maintained in
memory at the end of each iteration in the outer product
version matrix matrix multiplication if we perform the
computation with the checksum input matrices.

However, in a high performance distributed environ-
ment, different processes may update their data in local
memory asynchronously. Therefore, if a failure happens
at a time when some processes have updated their local
matrix in memory and other processes are still in the
communication stage, then the checksum relationship in
the distributed matrix will be damaged and the data on
all processes will not form a global consistent state.

But this problem can be solved by simply performing
a synchronization before performing local memory up-
date. Therefore, it is possible to maintain a coded global
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consistent state ( i.e. the checksum relationship) of the
matrix Ac, Br and Cf in the distributed memory at
any time during computation. Hence, a single fail-stop
process failure in the middle of the computation can be
recovered from the checksum relationship.

Note that it is also the outer product version algorithm
that is often used in today’s highperformance computing
practice. The outer product version algorithm is more
popular due to both its simplicity and and it’s efficiency
in modern high performance computer architecture. In
the widely used parallel numerical linear algebra library
ScaLAPACK [4], it is also the outer product version
algorithm that is chosen to perform the matrix matrix
mulitiplication.

More importantly, it can also be proved that similar
checksum relationship exists for the outer product ver-
sion of many other matrix operations (such as Cholesky
and LU factorization).

3 ALGORITHM-BASED CHECKPOINT-FREE
FAULT TOLERANCE FOR FAIL-STOP FAILURES

In this section, we develop some general princples for re-
covering fail-stop failures in the middle of computation
by maintaining checksum relationship in the algorithm
instead of checkpointing or message logging.

3.1 Failure Detection and Location

Handling fault-tolerance typically consists of three steps:
1) fault detection, 2) fault location, and 3) fault recovery.
Fail-stop process failures can often be detected and
located with the aid of the programming environment.
For example, many current programming environments
such as PVM [27], Globus [15], FT-MPI [12], and Open
MPI [17] provide this type of failure detection and loca-
tion capability. We assume the loss of partial processes in
the message passing system does not cause the aborting
of the survival processes and it is possible to replace
the failed processes in the message passing system and
continue the communication after the replacement. FT-
MPI [12] is one such programming environments that
support all these functionalities.

In this paper, we use FT-MPI to detect and locate
failures. FT-MPI is a fault tolerant version of MPI that
is able to provide basic system services to support
fault survivable applications. FT-MPI implements the
complete MPI-1.2 specification, some parts of the MPI-2
document and extends some of the semantics of MPI
for allowing the application the possibility to survive
process failures. FT-MPI can survive the failure of n-1
processes in a n-process job, and, if requested, can re-
spawn the failed processes. However, the application is
still responsible for recovering the data structures and
the data of the failed processes. Interested readers are
refered to [12], [13] for more detail on how to recover
FT-MPI programming environment. In the rest of this
paper, we will mainly focus on how to recover the lost
data in the failed processes.

3.2 Failure Recovery

Consider the simple case where there will be only one
process failure. Before the failure actually occurs, we do
not know which process will fail, therefore, a scheme to
recover only the lost data on the failed process actually
need to be able to recover data on any process. It seems
difficult to be able to recover data on any process without
saving all data on all processes somewhere. However, if
we assume, at any time during the computation, the data
on the ith process Pi satisfies

P1 + P2 + · · · + Pn−1 = Pn, (1)

where n is the total number of process used for the
computation. Then the lost data on any failed process
would be able to be recovered from formula (1). Assume
the jth process failed, then the lost data Pj can be
recovered from

Pj = Pn − (P1 + · · · + Pj−1 + Pj+1 + · · · + Pn−1)

In this very special case, we are lucy enough to be able
to recover the lost data on any failed process without
checkpoint due to the special checksum relationship (1). In
practice, this kind of special relationship is by no means
natural. However, it is natural to ask: is it possible to
design an application to maintain such a special checksum
relationship throughout the computation on purpose?

Assume the original application is designed to run on
n processes. Let Pi denotes the data on the ith compu-
tation process. In some algorithms for matrix operations
(such as the outer product version algorithm for matrix-
matrix multiplication), the special checksum relationship
above can actually be designed on purpose as follows

• step 1: Add another encoding process into the appli-
cation. Assume the data on this encoding process is
C. For numerical computations, Pi is often an array
of floating-point numbers, therefore, at the begin-
ning of the computation, we can create a checksum
relationship among the data of all processes by
initializing the data C on the encoding process as

P1 + P2 + · · · + Pn = C (2)

• step 2: During the execution of the application,
redesign the algorithm to operate both on the data of
computation processes and on the data of encoding
process in such a way that the checksum relation-
ship (2) is always maintained during computation.

The specially designed checksum relationship (2) ac-
tually establishes an equality between the data Pi on
computation processes and the encoding data C on
the encoding process. If any processor fails then the
equality (2) becomes an equation with one unknown.
Therefore, the data in the failed processor can be recon-
structed through solving this equation.

The above fault tolerance technique can be used to
tolerate single fail-stop process failure in parallel matrix-
matrix multiplication without checkpointing or message
logging. The special checksum relationship between the
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data on different processes can be designed on purpose
by: (1). using the checksum matrices of the original
matrices as the input matrices, and (2). choosing the
outer product version algorithm to perform the matrix-
matrix multiplication. Section 2.3 is the application of the
technique to the case where each element of the matrix is
on a different process. In the next section, we will apply
this technique to the case where matrices are distributed
onto processes according to the two-dimensional block
cyclic distribution.

4 INCORPORATING FAULT TOLERANCE INTO
THE SCALAPACK MATRIX-MATRIX MULTIPLI-
CATION

In this section, we apply the algorithm-based checkpoint-
free technique developed in Section 3 to the ScaLAPACK
matrix-matrix multiplication kernel which is one of the
most important kernels for the widely used ScaLAPACK
library to achieve high performance and scalability.

Actually, it is also possible to incorporate fault toler-
ance into many other ScaLAPACK routines through this
approach. However, in this section, we will restrict our
presentation to the matrix-matrix multiplication kernel.
For the simplicity of presentation, in this section, we only
discuss the case where there is only one process failure.
However, it is straightforward to extend the result here
to the multiple simultaneous process failures case by
simply using a weighted checksum scheme [11].

4.1 Two-Dimensional Block-Cyclic Distribution

It is well-known [4] that the layout of an application’s
data within the hierarchical memory of a concurrent
computer is critical in determining the performance and
scalability of the parallel code. By using two-dimensional
block-cyclic data distribution [4], ScaLAPACK seeks to
maintain load balance and reduce the frequency with
which data must be transferred between processes.

0 1 2 3 4 6

0 1 2

3 4 5

0     1      2

0

1

(a). One-dimensional process array      (b). Two-dimensional process grid

Fig. 4. Process grid in ScaLAPACK

For reasons described above, ScaLAPACK organizes
the one-dimensional process array representation of an
abstract parallel computer into a two-dimensional rect-
angular process grid. Therefore, a process in ScaLA-
PACK can be referenced by its row and column coor-
dinates within the grid. An example of such an organi-
zation is shown in Fig. 4.

The two-dimensional block-cyclic data distribution
scheme is a mapping of the global matrix onto the rect-
angular process grid. There are two pairs of parameters
associated with the mapping. The first pair of parameters

Fig. 5. Two-dimensional block-cyclic matrix distribution

is (mb, nb), where mb is the row block size and nb is
the column block size. The second pair of parameters is
(P, Q), where P is the number of process rows in the
process grid and Q is the number of process columns
in the process grid. Given an element aij in the global
matrix A, the process coordinate (pi, qj) that aij resides
can be calculated by

{

pi = b i
mbc mod P,

qj = b j
nbc mod Q,

The local coordinate (ipi
, jqj

) which aij resides in the
process (pi, qj) can be calculated according to the fol-
lowing formula

{

ipi
= b

b i
mb

c

P c . mb + (i mod mb),

jqj
= b

b j

nb
c

Q c . nb + (j mod nb),

Fig. 5 is an example of mapping a 9-by-9 matrix onto
a 2-by-3 process grid according two-dimensional block-
cyclic data distribution with mb = nb = 2.

4.2 Encoding Two-Dimensional Block Cyclic Matri-
ces

In this section, we will construct different encoding
schemes which can be used to design checkpoint-free
fault tolerant matrix computation algorithms in ScaLA-
PACK. The purpose of encoding is to creat the checksum
relationship proposed in the step 1 of Section 3.2.

Assume a matrix M is originally distributed in a P -
by-Q process grid according to the two dimensional
block cyclic data distribution. For the convenience of
presentation, assume the size of the local matrices in
each process is the same. We will explain different coding
schemes for the matrix M with the help of the example
matrix in Fig. 6. Fig. 6 (a) shows the global view of all
the elements of the example matrix. After the matrix is
mapped onto a 2-by-2 process grid with mb = nb = 1,
the distributed view of this matrix is shown in Fig. 6 (b).

Suppose we want to tolerate a single process failure.
We dedicate another P + Q+ 1 additional processes and
organize the total PQ+P +Q+1 process as a P +1-by-
Q+1 process grid with the original matrix M distributed
onto the first P rows and Q columns of the process grid.

The distributed column checksum matrix M c of the matrix
M is the original matrix M plus the part of data on the
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0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

0           1

0

1

(a). Original matrix from global view           (b). Original matrix from distributed view

Fig. 6. Two-dimensional block cyclic distribution of an
example matrix

(P + 1)th process row which can be obtained by adding
all local matrices on the first P process rows. Fig. 7 (b)
shows the distributed view of the column checksum
matrix of the example matrix from Fig. 6. Fig. 7 (a) is
the global view of the column checksum matrix.
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2 2 3 3
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0           1
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1

2

(a). Column checksum matrix from global view       (b). Column checksum matrix from distributed view

Fig. 7. Distributed column checksum matrix of the exam-
ple matrix

The distributed row checksum matrix M r of the matrix M

is the original matrix M plus the part of data on the (Q+
1)th process columns which can be obtained by adding
all local matrices on the first Q process columns. Fig. 8 (b)
shows the distributed view of the row checksum matrix
of the example matrix from Fig. 6. Fig. 8 (a) is the global
view of the row checksum matrix.
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(a). Row checksum matrix from global view     (b). Row checksum matrix from distributed view

Fig. 8. Distributed row checksum matrix of the original
matrix

The distributed full checksum matrix Mf of the matrix
M is the original matrix M , plus the part of data on the
(P + 1)th process row which can be obtained by adding
all local matrices on the first P process rows, plus the
part of data on the (Q + 1)th process column which can
be obtained by adding all local matrices on the first Q

process columns. Fig. 9 (b) shows the distributed view
of the full checksum matrix of the example matrix from
Fig. 6. Fig. 9 (a) is the global view of the full checksum
matrix.
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(a). Full checksum matrix from global view          (b). Full checksum matrix from distributed view

Fig. 9. Distributed full checksum matrix of the original
matrix

b

B j
T

B

A b
A j

= +C ( j+1) C ( j ) A j B j
T

Fig. 10. The jth step of the blocked outer product version
parallelmatrix-matrix multiplication algorithm

4.3 Parallel Matrix Multiplication Algorithm in
ScaLAPACK

To achieve high performance, the matrix-matrix multi-
plication in ScaLAPACK uses a blocked outer product
version of the matrix matrix multiplication algorithm.
Let Aj denote the jth column block of the matrix A

and BT
j denote the jth row block of the matrix B.

Fig. 11 is the algorithm to perform the matrix matrix
multiplication. Fig. 10 shows the jth step of the matrix
matrix multiplication algorithm.

for j = 0, 1, . . .
row broadcast Aj ;
column broadcast BT

j ;
local update: C = C + Aj ∗ BT

j ;
end

Fig. 11. Blocked outer product version parallel matrix-
matrix multiplication algorithm

4.4 Maintaining Global Consistent States by Com-
putation

Many algorithms can be used to perform parallel matrix
matrix multiplication. But, as shown in Section 2.2, the
checksum relationship may not be maintained in the
middle of the computation if inappropriate algorithms
are chosen to perform the operation. However, if the
outer product version algorithm is used to operate on
the encoded checksum matrices, the redesigning of the
algorithm to maintain checksum during computation
(step 2 of Section 3.2) becomes a very simple task.

Assume A, B and C are distributed matrices on a
P by Q process grid with the first element of each



IEEE TRANSCATIONS ON PARALLEL AND DISTRIBUTED SYSYTEMS 8

matrix on process (0, 0). Let Ac, Br and Cf denote
the corresponding distributed checksum matrix. Let Ac

j

denote the jth column block of the matrix Ac and Br
j

T

denote the jth row block of the matrix Br. We first prove
the following fundamental theorem for matrix matrix
multiplication with checksum matrices.

Theorem 5: Let Sj = Cf +
∑j−1

k=0 Ac
k ∗ Br

k
T , then Sj is

a distributed full checksum matrix.
Proof: It is straightforward that Ac

k ∗ Br
k

T is a
distributed full checksum matrix and the sum of two
distributed full checksum matrices is a distributed check-
sum matrix. Sj is the sum of j +1 distributed full check-
sum matrices, therefore is a distributed full checksum
matrix.

b

Br
j
T

Br

Ac b
Ac

j

= +C f ( j+1) C f ( j ) Ac
j Br

j
T

Fig. 12. The jth step of the fault tolerant matrix-matrix
multiplication algorithm

Theorem 5 tells us that at the end of each iteration
of the blocked outer product version matrix matrix
multiplication algorithm with checksum matrices, the
checksum relationship of all checksum matrices are still
maintained. This tells us that a coded global consistent
state of the critical application data is maintained in
memory at the end of each iteration of the matrix matrix
multiplication algorithm if we perform the computation
with related checksum matrices.

However, in a distributed environment, different pro-
cess may update there local data asynchronously. There-
fore, if when some process has updated their local matrix
and some process is still in the communication stage,
a failure happens, then the relationship of the data in
the distributed matrix will not be maintained and the
data on all processes would not form a consistent state.
But this could be solved by simply performing a syn-
chronization before performing local update. Therefore,
in the following algorithm in Fig. 13, there will always
be a coded global consistent state ( i.e. the checksum
relationship) of the matrix Ac, Br and Cf in memory.
Hence, a single process failure at any time during the
matrix matrix multiplication would be able to be recov-
ered from the checksum relationship. Fig. 12 shows the
jth step of the fault tolerate matrix matrix multiplication
algorithm.

4.5 Overhead and Scalability Analysis

In this section, we analysis the overhead introduced by
the algorithm-based checkpoint-free fault tolerance for
matrix matrix multiplication.

construct checksum matrices Ac, Br , and Cf ;
for j = 0, 1, . . .

row broadcast Ac
j ;

column broadcast Br
j

T ;
synchronize;
local update: Cf = Cf + Ac

j ∗ Br
j

T ;
end

Fig. 13. A fault tolerant matrix-matrix multiplication algo-
rithm

For the simplicity of presentation, we assume all three
matrices A, B, and C are square. Assume all three matri-
ces are distributed onto a P by P process grid with m by
m local matrices on each process. The size of the global
matrices is Pm by Pm. Assume all elements in matri-
ces are 8-byte double precision floating-point numbers.
Assume every process has the same speed and disjoint
pairs of processes can communicate without interfering
each other. Assume it takes α + βk seconds to transfer
a message of k bytes regardless which processes are
involved, where α is the latency of the communication
and 1

β is the bandwidth of the communication. Assume a
process can concurrently send a message to one partner
and receive a message from a possibly different partner.
Let γ denote the time it takes for a process to perform
one floating-point arithmetic operation.

4.5.1 Time Complexity for Parallel Matrix Matrix Multipli-
cation

Note that the sizes of all three global matrices A, B, and
C are all Pm, therefore, the total number of floating-
point arithmetic operations in the matrix matrix multi-
plication is 2P 3m3. There are P 2 processes with each pro-
cess executing the same number of floating-point arith-
metic operations. Hence, the total number of floating-
point arithmetic operations on each process is 2Pm3.
Therefore, the time Tmatrix comp for the computation in
matrix matrix multiplication is

Tmatrix comp = 2Pm3γ.

In the parallel matrix matrix multiplication algorithm
in Fig. 11, the columns of A and the rows of B also
need to broadcast to other column and row processes
respectively. To broadcast one block columns of A us-
ing a simple binary tree broadcast algorithm, it takes
2(α + 8bmβ) log2 P , where b is the row block size in
the two dimensional block cyclic distribution. Therefore,
the time Tmatrix comm for the communication in matrix
matrix multiplication is

Tmatrix comm = 2α
Pm

b
log2 P + 16βPm2 log2 P.

Therefore, the total time to perform parallel matrix
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matrix multiplication is

Tmatrix mult = Tmatrix comp + Tmatrix comm

= 2Pm3γ + 2α
Pm

b
log2 P

+16βPm2 log2 P. (3)

4.5.2 Overhead for Calculating Encoding
To make matrix matrix multiplication fault tolerant, the
first type of overhead introduced by the algorithm-
based checkpoint-free fault tolerance technique is (1)
constructing the distributed column checksum matrix Ac

from A; (2) constructing the distributed row checksum
matrix Br from B; (3) constructing the distributed full
checksum matrix Cf from C;

The distributed checksum operation involved in con-
structing all these checksum matrices performs the sum-
mation of P local matrices from P processes and saves
the result into the (P + 1)th process. Let Teach encode

denote the time for one checksum operation and
Ttotal encode denote the time for constructing all three
checksum matrices Ac, Br, and Cf , then

Ttotal encode = 4Teach encode

By using a fractional tree reduce style algorithm [25],
the time complexity for one checksum operation can be
expressed as

Teach encode = 8m2β

(

1 + O

(

(

log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ)

Therefore, the time complexity for constructing all
three checksum matrices is

Ttotal encode = 32m2β

(

1 + O

(

(

log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ). (4)

In practice, unless the size of the local matrices m is
very small or the size of the process grid P is extremely
large, the total time for constructing all three checksum
matrices is almost independent of the size of the process
grid P .

The overhead (%) Rtotal encode for constructing check-
sum matrices for matrix matrix multiplication is

Rtotal encode =
Ttotal encode

Tmatrix mult

= O(
1

Pm
) (5)

From (5), we can conclude

1) If the size of the data on each process is fixed (m
is fixed), then as the number of processes increases
to infinite (that is P → ∞), the overhead (%) for
constructing the checksum matrices decreases to
zero with a speed of O( 1

P )
2) If the number of processes is fixed (P is fixed), then

as the size of the data on each process increases

to infinite (that is m → ∞) the overhead (%) for
constructing the checksum matrices decreases to
zero with a speed of O( 1

m )

4.5.3 Overhead for Performing Computations on En-
coded Matrices

The fault tolerant matrix matrix multiplication algorithm
in Fig. 13 performs computations using checksum ma-
trices which have larger size than the original matrices.
However, the total number of processes devoted to com-
putation also increases. A more careful analysis of the
algorithm in Fig. 13 indicates that the number of floating-
point arithmetic operations on each process in the fault
tolerant algorithm (Fig. 13) is actually the same as that
of the original non-fault tolerant algorithm (Fig. 11).

As far as the communication is concerned, in the
original algorithm (in Fig. 11), the column (and row)
blocks are broadcast to P processes. In the fault tolerant
algorithms (in Fig. 13), the column (and row) blocks now
have to be broadcast to P + 1 processes.

Therefore, the total time to perform matrix matrix
multiplication with checksum matrices is

Tmatrix mult checksum = 2Pm3γ + 2α
Pm

b
log2(P + 1)

+16βPm2 log2(P + 1).

Therefore, the overhead (time) to perform computa-
tions with checksum matrices is

Toverhead matrix mult = Tmatrix mult checksum

−Tmatrix mult

= 2α
Pm

b
log2(1 +

1

P
)

+16βPm2 log2(1 +
1

P
). (6)

The overhead (%) Roverhead matrix mult for performing
computations with checksum matrices in fault tolerant
matrix matrix multiplication is

Roverhead matrix mult =
Toverhead matrix mult

Tmatrix mult

= O(
1

Pm
) (7)

From (7), we can conclude that

1) If the size of the data on each process is fixed (m
is fixed), then as the number of processes increases
to infinite (that is P → ∞), the overhead (%) for
performing computations with checksum matrices
decreases to zero with a speed of O( 1

P )
2) If the number of processes is fixed (P is fixed), then

as the size of the data on each process increases
to infinite (that is m → ∞) the overhead (%) for
performing computations with checksum matrices
decrease to zero with a speed of O( 1

m )
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4.5.4 Overhead for Recovery

The failure recovery contains two steps: (1) recover the
programming environment; (2) recover the application
data.

The overhead for recovering the programming envi-
ronment depends on the specific programming envi-
ronment. For FT-MPI [12] which we perform all our
experiment on, it introduce a negligible overhead (refer
to Section 5).

The procedure to recover the three matrices A, B,
and C is similar to calculating the checksum matrices.
Except for matrix C, it can be recovered from either
the row checksum or the column checksum relationship.
Therefore, the overhead to recover data is

Trecover data = 24m2β

(

1 + O

(

(

log2 P

m2

)1/3
))

+O(α log2 P ) + O(m2γ) (8)

In practice, unless the size of the local matrices m is
very small or the size of the process grid P is extremely
large, the total time for recover all three checksum
matrices is almost independent of the size of the process
grid P .

The overhead (%) Rrecover data for constructing check-
sum matrices for matrix matrix multiplication is

Rrecover data =
Trecover data

Tmatrix mult

= O(
1

Pm
) (9)

which decreases with the speed of O( 1
Pm ).

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the per-
formance overhead of applying the algorithm-based
checkpoint-free fault tolerance technique to the ScaLA-
PACK matrix-matrix multiplication kernel. We per-
formed four sets of experiments to answer the following
five questions:

1) What is the performance overhead of constructing
checksum matrices?

2) What is the performance overhead of performing
computations with checksum matrices?

3) What is the performance overhead of recovering
FT-MPI programming environments?

4) What is the performance overhead of recovering
checksum matrices?

For each set of experiments, the size of the problems and
the number of computation processes used are listed in
TABLE 1.

All experiments were performed on a cluster of 64
dual-processor nodes with AMD Opteron(tm) Processor
240. Each node of the cluster has 2 GB of memory and
runs a Linux operating system. The nodes are connected
with Myrinet. The timer we used in all measurements is
MPI Wtime.

TABLE 1
Experiment Configurations

Process grid Process grid Size of the Size of the
w/out FT w/ FT original matrix checksum matrix
2 by 2 3 by 3 12,800 19,200
3 by 3 4 by 4 19,200 25,600
4 by 4 5 by 5 25,600 32,000
5 by 5 6 by 6 32,000 38,400
6 by 6 7 by 7 38,400 44,800
7 by 7 8 by 8 44,800 51,200
8 by 8 9 by 9 51,200 57,600
9 by 9 10 by 10 57,600 64,000
10 by 10 11 by 11 64,000 70,400

The programming environment we used is FT-
MPI [12]. A process failure is simulated by killing one
process in the middle of the computation. After a process
failure is detected, MPI Comm dup() is called to recover
the communication environment. The lost data on the
failed process is then recovered by solving the checksum
equation in Section 3.2.

Fig. 14 shows the flow of control and the state tran-
sition diagram for our fault tolerant program. Upon
failure, the system error recovery module replaces dead
processes and transfers control to a recovery point in
the surviving processes More details on how to write
fault tolerant applications using FT-MPI can be found in
reference [10], [12].

FT Application Layer
state.process = MPI_Init();

if ( state.process == RESTART )    /* FT Codes */

Restarted_process_initialization();

else 

Normal_Initialization(); 

Call_Numerical_Lib();

FT Numerical_Lib Layer
setjmp(state);     /* FT Codes */

if ( state.system == RECOVER )    

fault_recovery_here();

while not finished {

do_computation(); 

}

FT-MPI Layer

Fault_detection_here();

MPI ErrorHandler

state.system = RECOVER;

state.process = SURVIVAL;

longjmp(state);

process  failure detected

restarted  procs

surviving

processes

Fig. 14. Fault tolerant application control flow

5.1 Overhead for Constructing Checksum Matrices

The first set of experiments is designed to evaluate the
performance overhead of constructing checksum matri-
ces. We keep the amount of data in each process fixed
(that is the size of local matrices m fixed), and increase
the size of the test matrices (hence the size of process
grid).

Fig. 15 reports the time for performing computations
on original matrices and the time for constructing the
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Fig. 15. The overhead (time) for constructing checksum
matrices

Fig. 16. The overhead (%) for constructing checksum
matrices

three checksum matrices Ac, Br, and Cf . Fig. 16 reports
the overhead (%) for constructing the three checksum
matrices.

From Fig. 15, we can see that, as the size of the global
matrices increases, the time for constructing checksum
matrices increases only slightly. This is because, in the
formula (4), when the size of process grid P is small,
32m2β is the dominate factor in the time to constructing
checksum matrices.

Fig. 16 indicates that the overhead (%) for constructing
checksum matrices decreases as the number of processes
increases, which is consistent with our theoretical for-
mula (5) for the overhead for constructing checksum
matrices in Section 4.5.2.

5.2 Overhead for Performing Computations on En-
coded Matrices

The algorithm-based checkpoint-free fault tolerance
technique involve performing computations with check-
sum matrices, which introduces some overhead into the
fault tolerance scheme. The purpose of this experiment
is to evaluate the performance overhead of performing
computations with checksum matrices.

Fig. 17 reports the execution time for performing com-
putations on original matrices and the execution time for
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Fig. 17. The overhead (time) for performing computations
with encoded matrices

Fig. 18. The overhead (%) for performing computations
with encoded matrices

performing computations on checksum matrices for dif-
ferent size of matrices. Fig. 18 reports the overhead (%)
for performing computations with checksum matrices.

Fig. 17 indicates the amount of time increased for per-
forming computations with checksum matrices increases
slightly as the size of matrices increases. The reason for
this increase is that, when perform computations with
checksum matrices, column blocks of Ac (and row blocks
of Br) have to be broadcast to one more process. The
dominate time for parallel matrix matrix multiplication
is the time for computation which is the same for both
fault tolerant algorithm and non-fault tolerant algorithm.
Therefore, the amount of time increased for fault tolerant
algorithm increases only slightly as the size of matrices
increases. This experimental results agree with our pre-
vious theretically analysis in Section 4.5.3.

Fig. 18 shows that the overhead (%) for perform-
ing computations with checksum matrices decreases as
the number of processes increases, which is consistent
with our previous theoretical results (formula (7) in
Section 4.5.3).

5.3 Overhead for Recovering FT-MPI Environment

The overhead for recovering programming environ-
ments depends on the specific programming environ-
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ments. In this section, we evaluate the performance
overhead of recovering FT-MPI environment.
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Fig. 19. The overhead (time) for recovering FT-MPI
environment

Fig. 20. The overhead (%) for recovering FT-MPI environ-
ment

Fig. 19 reports the time for recovering FT-MPI com-
munication environment with single process failure. Fig.
20 reports the overhead (%) for recovering FT-MPI
communication environment. Fig. 20 indicates that the
overhead for recovering FT-MPI is less than 0.2% which
is negligible in practice.

5.4 Overhead for Recovering Application Data

The purpose of this set of experiments is to evaluate
the performance overhead of recovering application data
from single process failure.

Fig. 21 reports the time for recovering the three check-
sum matrices Ac, Br, and Cf in the case of single process
failure. Fig. 22 reports the overhead (%) recovering the
three checksum matrices Ac, Br, and Cf .

Fig. 21 indicates that, as the number of processes
increases, the time for recovering checksum matrices
increases slightly. Fig. 22 indicates that, as the number of
processes increases, the overhead for recovering check-
sum matrices decreases, which confirmed our theoretical
analysis in Section 4.5.4.
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Fig. 21. The overhead (time) for recovering application
data

Fig. 22. The overhead (%) for recovering application data

5.5 Total Overhead for Fault Tolerance

When there is no failure occurs, the total overhead
equals to the overhead for calculating encoding at the
begining plus the overhead of performing computation
with encoded matrices. If there are failures occur, then
the total performance overhead equals the overhead
without failures plus the overhead for recovering FT-
MPI Environment and the overhead for recovering the
application data.

Fig. 23 reports the execution times of the original
matrix-matrix multiplication, the fault tolerant version
matrix-matrix multiplication without failures, and the
fault tolerant version matrix-matrix multiplication with
a single process failure. Fig. 24 reports the total overhead
(%) for the proposed algorithm-based checkpoint-free
fault tolerance.

Fig. 24 demonstrates that, as the number of processes
increases, the total overhead (%) decreases. This is be-
cause, as the number of processors increases, except
the overhead for recovering FT-MPI Environment, all
other overhead decreases (as indicated in Section 5.1,
Section 5.2, and Section 5.3). The overhead for recovering
FT-MPI Environment is less than 0.2% which is not the
dominant overhead in the total fault tolerant overhead.
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Fig. 23. The total overhead (time) for fault tolerance

Fig. 24. The total overhead (%) for fault tolerance

6 DISCUSSION

The idea of tolerating failures by modifying applications
to operate on encoded data comes from the algorithm-
based fault tolerance [19]. While Huang and Abraham
proved in [19] that the checksum relationship of the
input checksum matrices is preserved in the final com-
putation results at the end of computation, in this paper,
we demonstrated that for many matrix matrix multipli-
cation algorithms the checksum relationship in the input
checksum matrices does not preserve in the middle of
the computation. We further proved that, for the outer
product version matrix matrix multiplcation algorithm,
it is possible to maintain the checksum relationship
in the input checksum matrices in the middle of the
computation. Based on our checksum relationship in the
middle of the computation, we demonstrate that fail-stop
process failures (which are often tolerated by checkpoint-
ing or message logging) in ScaLAPACK matrix-matrix
multiplcation can be tolerated without checkpointing or
message logging.

The algorithm-based checkpoint-free fault tolerance
technique presented in this paper involves solving sys-
tem of linear equations to recover multiple simultaneous
process failures. Therefore, the practical numerical issues
involved in recovering multiple simultaneous process
failures have to be addressed. Techniques proposed
in [7], [8], [11] addressed part of this issue.

Compared with the typical checkpoint/restart ap-
proaches, the algorithm-based checkpoint-free fault tol-
erance in this paper can only tolerate partial process
failures. It needs the support from programming envi-
ronments to detect and locate failures. It requires the
programming environments to be robust enough to sur-
vive node failures without suffering complete system
failure. Both the overhead of and the additional effort
to maintain a coded global consistent state of the critical
application data in algorithm-based checkpoint-free fault
tolerance is usually highly dependent on the specific
characteristic of the application.

Unlike in typical checkpoint/restart approaches which
involve periodical checkpoint, there is no checkpoint in-
volved in this approach. Furthermore, in the algorithm-
based checkpoint-free fault tolerance in this paper, when-
ever process failures occur, it is only necessary to recover
the lost data on the failed processes. Therefore, for many
applications, it is possible for this approach to achieve a
much lower fault tolerant overhead than typical check-
point/restart approaches. As shown in Section 4 and
Section 5, for matrix matrix multiplication, which is one
of the most fundamental operations for computational
science and engineering, as the size N of the matrix
increases, the fault tolerance overhead decreases toward
zero with the speed of 1

N .

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a checkpoint-free approach
for fault tolerant matrix matrix multiplication in which,
instead of taking checkpoint periodically, a coded global
consistent state of the critical application data is main-
tained in memory by modifying applications to operate
on encoded data. Because no periodical checkpoint or
rollback-recovery is involved in this approach, process
failures can often be tolerated with a surprisingly low
overhead. We showed the practicality of this technique
by applying it to the ScaLAPACK matrix-matrix multi-
plication kernel which is one of the most important ker-
nels for ScaLAPACK library to achieve high performance
and scalability. Experimental results demonstrated that
the proposed checkpoint-free approach is able to survive
process failures with a very low performance overhead.

There are many directions in which this work could be
extended. The first direction is to extend this checkpoint-
free approach to more applications. The second direction
is to extend this technique to tolerate multiple simu-
taneous failures. Furthermore, it is also interesting to
extend the approach to tolerate failures occured during
synchronization and recovery.
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