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ABSTRACT
Data-only attacks are emerging as a new threat to the security of

modern operating systems. As a typical data-only attack, memory

corruption attacks can compromise the integrity of kernel data,

which effectively breaks the premises of access control systems.

Unfortunately, the prevalence of memory corruption vulnerabilities

allows attackers to exploit them and bypass access control mech-

anisms. Given the arbitrary memory access capability, attackers

can overwrite access control policies or illegally access the kernel

resources protected by the access control systems.

This paper presents PeTAL, a practical access control integrity

solution against data-only attacks on the ARM-based Linux kernel.

PeTAL is designed to ensure access control integrity by provid-

ing policy integrity and complete enforcement of access control

systems. PeTAL first identifies kernel data used as access control

policies and kernel data protected by access control policies, based

on the user interfaces of the Linux kernel. Then, PeTAL leverages

the ARM Pointer Authentication Code (PAC) and Memory Tagging

Extension (MTE) to comprehensively protect the integrity of the

identified kernel data and pointers. We implemented the prototype

of PeTAL and evaluated the performance and the security impact of

PeTAL on real AArch64 hardware with PAC and MTE support. Our

evaluation results show that PeTAL can effectively thwart memory-

corruption-based attacks on access control systems with reasonable

performance overheads at most 4% on average in user applications,

demonstrating its efficient prospects for kernel security.
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1 INTRODUCTION
Access control is a cornerstone of modern operating systems. Fol-

lowing the principle of least privilege, the policy of access control

is designed to ensure that user processes are granted minimal ac-

cess permissions to perform a certain task. With the access control

enforcements, user processes can read or write kernel resources

only if the policy permits it. Modern operating systems implement

access control systems to practice the best least privilege while

accommodating unique engineering challenges per operating sys-

tem. Particularly in the Linux kernel, which is the major focus of

this paper, several access control systems are employed, including

discretionary access control (DAC), Capabilities, and Linux Secu-

rity Modules (LSMs), each of which has a unique protection and

isolation scope.

A secure and robust access control systems should ensure the

following two properties: i) policy integrity and ii) complete en-

forcement. Policy integrity requires that access control policy is

not corrupted, and complete enforcement requires that every user

access to kernel resource is protected by access control enforcement.

We refer to these two properties together as access control integrity.
Unfortunately, attackers often compromise access control in-

tegrity, particularly through memory corruption attacks [36]. First,

policy can be illegally updated, allowing attackers to escalate their

permissions or set the access permissions of kernel resources to

their favor. Second, complete enforcement can fail when attack-

ers access kernel resources without undergoing necessary access

control enforcement. Both violations could result in unauthorized

access to privileged kernel resources, including tasks, files, and

security-critical configurations.

Several mitigations have been proposed and integrated into the

Linux kernel to thwart memory corruption attacks, but those pro-

vide limited protection against access control attacks. Control-flow
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integrity (CFI) ensures that runtime control-flows adhere to static

control-flow graphs [20, 24, 33, 37, 56, 81]. By enforcing legitimate

control-flow, CFI thwarts attacks that illegally jump to policy up-

date code or skip access control enforcements. Nevertheless, CFI

does not guarantee legitimate data-flow, leaving open doors for

data-only attacks that illegally access access control policies or

kernel resources. Recent kernel attacks (e.g., Bad Binder [57] and

DirtyCred [59]) have demonstrated the potentials of data-only at-

tacks, even in the presence of CFI. These findings underscore that

CFI, while crucial, is not a silver bullet for kernel security.

Data-flow integrity (DFI) is another mitigation technique that

enforces legitimate data-flows, e.g., a memory write within a de-

vice driver should not overwrite user credentials [4, 17, 55, 63, 77].

Kenali [77] is a DFI solution that protects data used in permis-

sion checks, thus ensuring policy integrity. However, Kenali does

not guarantee complete enforcement; Attackers can still exploit

memory corruptions to illegally read or write kernel resources, by-

passing access control enforcement. To the best of our knowledge,

no solution fully guarantees complete access control integrity in

the Linux kernel against data-only attacks.

This paper proposes PeTAL
1
, a practical DFI solution to pro-

vide access control integrity in the Linux kernel. PeTAL exhibits

a reasonable performance overhead, and provide good compatibil-

ity with the Linux kernel. Notably, PeTAL runs with the state-of-

the-art CFI techniques (e.g., PAL [89] and Clang/LLVM CFI [20]),

ensuring access control integrity across both control- and data-

flows. PeTAL can be summarized with the following key design

features. First, comprehensively analyzing control-flow and data-

only attacks against access control integrity, PeTAL identifies the

protection scope of DFI leveraging well-defined user interfaces.

Second, PeTAL designs a robust and effective framework to enforce

DFI rules on the identified kernel metadata, orchestrating two re-

cent ARM hardware extensions: ARMv8.3 Pointer Authentication

Code (PAC) [67] and ARMv8.5 Memory Tag Extension (MTE) [10].

More specifically, the novelty of PeTAL lies in its ability to offer

access control integrity. PeTAL thwart real-world access control

attacks performing privilege escalation, such as DirtyCred [59] and

Bad Binder [57]. PeTAL further prevent attacks illegally accessing

critical kernel resources, such as modprobe_path and randomize_-

va_space, which were not protected by any existing solutions.

The prototype of PeTAL is implemented on Android Linux ker-

nel version 5.10.136, and evaluated on a real MTE/PAC-supported

device, Samsung Galaxy S22 [71].
2
Our evaluation results on the

real device show that PeTAL provides comprehensive protection

against both control-flow attack and data-only attacks with a rea-

sonable performance overhead: 32% for kernel workloads and 4% for

user space workloads. When compared to Kenali [77], a state-of-the-

art DFI on the Linux kernel, PeTAL shows a 35%-51% performance

gain on kernel benchmark, highlighting the efficiency and practical

effectiveness of PeTAL. According to our security analysis, PeTAL

can prevent majority of the memory corruption attack vectors,

preventing attacks on kernel access control integrity.

1
PeTAL is open-sourced at https://github.com/compsec-snu/petal

2
This device is commercially available with PAC support, but MTE is disabled. Our eval-

uations were conducted on an MTE-enabled device provided by Samsung Electronics.

2 BACKGROUND
PeTAL leverages two ARM hardware features, Memory Tagging

Extension (MTE) and Pointer Authentication Code (PAC). In this

section, we provide a brief overview of these features.

Memory Tagging Extension. MTE is a hardware-accelerated

memory tagging feature introduced in ARMv8.5. MTE assigns a

4-bit tag per 16-byte memory region and stores the tag in the top

byte of a pointer. On memory access, MTE checks if the pointer’s

tag matches the memory region’s tag and raises an exception when

they do not match. In synchronous mode, the exception is raised

immediately at the memory access; in asynchronous mode, the

exception is logged and raised later. MTE also provides a match-

all tag enabled by setting the TCMA bits in TCR_EL1 register [48]. If

TCMA1 is set, memory access in the kernel space is not tag-checked

when the pointer contains the match-all tag (i.e., 0xf).

Pointer Authentication Code. PAC is a hardware-based pointer

protection introduced in ARMv8.3-A. It reserves the top bits of a

pointer for a pointer signature called PAC. PAC is a cryptographic

signature to detect pointer corruption. ARM provides two sets

of instructions, PAC* and AUT*, to sign and authenticate pointers.

PAC* instructions create PAC for a pointer by using the original

pointer value, a 64-bit modifier (i.e., a context), and a 128-bit key,

and store the PAC at the top bits of the pointer. AUT* instructions

authenticate the pointer by computing the PAC using the pointer

value, the context, and the key. The computed PAC is compared with

the PAC stored at the top bits of the pointer ([54:39]). If the PAC is

valid, AUT* instructions return the pointer in which the PAC bits are

stripped out. Otherwise, an exception is raised, detecting pointer

corruption. Before ARMv8.6-A FPAC extension, an error bit is set

on the pointer top bit on authentication failure, which triggers a

translation failure when the pointer is dereferenced. With FPAC

extension, AUT* instructions immediately raise an authentication

failure exception.

3 ACCESS CONTROL SYSTEMS AND ATTACKS
Following the principle of least privilege, Linux kernel implements

access control systems that restrict unprivileged user’s access to

privileged kernel resources. Therefore, a primary goal of unpriv-

ileged attackers is bypassing the access control system so as to

access resources that were previously not accessible. This section

first introduces the Linux kernel access control systems (§3.1) and

then describes the real-world access control bypassing attacks even

when the state-of-the-art mitigation techniques are in place (§3.2).

3.1 Access Control Systems
An access control system is responsible for protecting kernel re-

sources when serving user requests. In general, it is structured with

three components: policy, mechanism, and resources [74].

Policy is access control rules that determine who can access

which resources and how. For instance, policies are often defined

by credentials, which are kernel data specifying the privileges

associated with a user process or a kernel resource. Other ex-

amples of policies include resource’s runtime states (e.g., bpf

register state).

2
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1 long do_sys_open(const char *filename, int flags) {
2  int error, fd;
3  struct file *file;
4  struct inode *inode;
5  fd = get_unused_fd(flags);
6  
7  // look up the inode from inode_hashtable
8  inode = lookup_open(filename, file, flags);
9

10  // enforce DAC mechanisms -> acl_permission_check()
11  if (!may_open(inode, flags)) 
12    goto out;
13
14  if (!vfs_open(inode, file))
15   goto out;
16 
17  // update file descriptor with the user input
18  file->f_mode = flags | FMODE_OPENED;
19
20  // install the file descriptor
21  current->files->fdt->fd[fd] = file;
22  return fd;
23
24 out: 
25   return error;
26 }
27 int acl_permission_check(struct inode *inode, int mask) {
28  unsigned int mode = inode->i_mode;
29  if (current->cred->uid == inode->i_uid)
30    mode >>= 6;
31  if ((mask & ~mode & 
32        (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 
33    return 0;      // success
34  return –EACCES;  // fail
35 }

 user input  policy .  enforcement  resource .

Figure 1: A simplified kernel implementation of system call open.

Mechanism is the enforcement of access control policies

through permission checks. Permission checks are kernel code

that determines whether to allow user requests based on access

control policies (i.e., credentials). If the permission check is suc-

cessful, the kernel accesses the requested kernel resource on

behalf of the user. Otherwise, the kernel declines the request

and returns an error code (e.g., -EPERM or -EACCES).

Resources are kernel data protected by access control systems

from unprivileged users. Resources include system configura-

tions (e.g., executable paths), credentials (e.g., UID), and files

(e.g., /etc/shadow). Any kernel code that reads or writes these

resources on behalf of a user must be preceded by access control

mechanisms. This ensures that the resources can be accessed

by the user request approved by the policy.

It is worth noting that the kernel manages a subset of policies

as resources, allowing privileged users to configure the policies.

For instance, while a user’s UID and the file owner’s UID determine

the policy of Discretionary Access Control (DAC), they are also

kernel resources that can be updated by privileged users through

system calls (e.g., setuid and chown, respectively). To ensure that

only authorized users can update these policy data, the kernel

introduces yet another layer of access control; Capability [50] of

the current user is checked before updating the policies.
3

3
User’s UID and the file’s owner can be updated if the current user’s permitted capability

set includes CAP_SETUID and CAP_CHOWN, respectively. Capabilities ensure that its policy

(i.e., the user’s permitted capability set) cannot be escalated once the policy is set.

current

struct 
task_struct

cred

struct inode
inode_hashtable

struct 
files_struct

fdt
fd

struct 
fdtable

files

i_mode
i_uid

modprobe_path

struct cred

uid
struct file

f_mode

Pointer
Register / 

Global Object
Stack/Heap 

Object
Policy Resource

Figure 2: Policies and Resources in open.

Example: open(). Figure 1 is a simplified implementation of the

open syscall that creates a file descriptor from a file name and access

mode. Figure 2 illustrates the policies, resources, and pointers in

this example. A file descriptor is a kernel resource that represents

an opened file with an access mode, which can be accordingly used

by other syscalls (e.g., read, write). To prevent an unauthorized file

access, the kernel enforces DAC on file descriptors.

At line 1 of Figure 2, open takes a file name (i.e., filename) and

access mode (i.e., flags) as arguments (Figure 1). At line 8, ker-

nel retrieves the file’s inode (i.e., struct inode) located by the

file name from inode_hashtable. At line 11, the kernel enforces

DAC checks in may_open(), where the actual checks are done in

acl_permission_check(). DAC utilizes the following data as poli-

cies: (i) the user process’s UID (i.e., current->cred->uid), (ii) the

file owner’s UID (i.e., inode->i_uid), and (iii) the access mode of

the file owner and others (i.e., inode->i_mode). At line 29, acl_-

permission_check compares the user process’s UID with the file

owner’s UID. If the UIDs match, the access mode of the file owner is

used (mode »= 6); otherwise, the access mode of others is used. At

line 31, the file access mode (i.e., mode) is checked to see if it includes

the access mode requested by the user (i.e., mask). If the check is

successful, the kernel allows the user request and update the file

descriptor accordingly. At line 18, the access mode of the file descrip-

tor (i.e., file->f_mode) is initialized with the user-provided data

(i.e., flags). At line 21, the file descriptor is installed at the user’s

file descriptor table (i.e., current->files->fdt). If the check is un-

successful, acl_permission_check returns an error code -EACCES

(i.e., Permission Declined), and the kernel declines the request.

3.2 Attacks on Access Control Systems
Access Control Integrity. Before we discuss the attacks on access

control systems, we first define access control integrity, a property
that access control systems require to be robust against memory

corruption. Access control integrity is defined as the following two

properties.

Policy integrity. The access control policies should only be

updated through a legitimate control and data-flow. Ensuring

policy integrity, the attacker cannot corrupt the policy of the

user process or the kernel resource.

3



Complete enforcement.The access control mechanism should

always be enforced before a user accesses kernel resources.With

complete enforcement, every access to the kernel resources is

preceded by permission checks.

Unfortunately, attackers often find and exploit kernel vulnera-

bilities and violates access control integrity. In the following, we

explore two attack types, control-flow attacks and data-only attacks.

3.2.1 Control Flow Attacks. Control flow attacks divert the con-

trol flow by corrupting the return address or function pointers. Due

to the adoption of Control-Flow Integrity (CFI) [2, 20, 33, 65, 81, 89]

across major operating systems (including Linux [28], Android [6],

Microsoft Windows [56], Apple XNU [8], etc), the effectiveness of

control-flow attacks is severely limited [18, 41, 49, 57, 88].

Breaking Policy Integrity. Policy integrity can be violated by

illegally jumping to a write instruction. With Return-Oriented Pro-

gramming (ROP) gadgets, the attacker can manipulate the source

and destination of the write instruction, thereby illegally updating

policies. For instance, the attacker can modify a user credential

object (i.e., struct cred) with the highest privilege (i.e., root).

Breaking Complete Enforcement. Control flow attacks can

break complete enforcement by illegally jumping to the kernel

code that accesses kernel resources, thus bypassing the necessary

enforcement mechanisms. For instance, attackers can skip the DAC

enforcement by directly jumping to the code that initializes the file

descriptor with the desired file and access modes.

3.2.2 Data-Only Attacks. Data-only attacks [41, 42] pose a sig-

nificant threat to the Linux kernel security. Unlike control flow

attacks, data-only attacks compromise non-control data (e.g., nu-

merical data or data pointers) to achieve their malicious goal, by-

passing CFI mitigation techniques. The most alarming aspect of

data-only attacks is that there is currently no effective protection

against them in the Linux kernel. Recent incidents of data-only

attacks [49, 57–59] have emphasized the severity of this problem.

In the following, we take a closer look into the data-only attacks

that break access control integrity.

Breaking Policy Integrity. Policy integrity is compromised when

attackers manipulate policies with arbitrary write vulnerabilities.

In particular, attackers can forge user credentials to escalate their

privilege, or corrupt the credentials of kernel resource to down-

grade the necessary privilege to access the resource. For instance,

simply corrupting UID to 0 (i.e., root) would allow illegally bypass-

ing DAC on root-only files. Similarly, attackers can modify the file

credentials; change the owner UID of a file to illegally match with

the attacker’s UID, or change the access mode of a file to 0x666 (i.e.,

readable and writable by everyone). This would allow bypassing

DAC when opening the file with the corrupted policies.

To clearly illustrate, we show a real-world example of policy

integrity violation using Bad Binder [57], which illegally updates

user credentials (Figure 3a). Bad Binder offers an arbitrary write

primitive (line 6), where both destination and source operands can

be crafted by the attacker via vulnerable binder ioctl calls: i) des-

tination (i.e., buf) is manipulated to be a pointer of the current

user credential pointer (i.e., &current->cred), where the current

user credential object is unprivileged. and ii) source (i.e., data) is

 overwritten pointer  policy .

init_cred

uid: 0

 1 void copy_page_to_iter_iovec() 
 2 {
 3  char * buf; // &current->cred
 4  u64 data; // &init_cred
 5  
 6  *buf = data;
 7 } 

&user_cred

user_credcurrent

buf

&init_cred

current

uid: 1000

(a) Breaking policy integrity with Bad Binder (CVE-2019-2215).

// filp points to a file object 
(/tmp/xx) in write mode
1 void do_write(struct file *filp)
2 {
3  if (!(filp->f_mode & FMODE_WRITE))
4    return –EBADF;

struct file
(/tmp/xx)

(Freed)

 pointer  dangling pointer  resource .

// allocate a file object 
// (/etc/passwd)
// in read mode
new_filp = alloc();

f_mode: WRITE

struct file
(/etc/passwd)

f_mode: READ

filp

filp

new_filp

f_mode: WRITE

①

③

Thread 1

Thread 2

// free the file object 
// (/tmp/xx)
free(filp);

②

⑤

④

(b) Breaking complete enforcement with DirtyCred (CVE-2021-4154).

Figure 3: Examples of data-only privileged escalation attacks

manipulated to be a pointer of the init credential object pointer (i.e.,

&init_cred), where the init credential object has the highest privi-

lege. When the write instruction is executed at line 6, the current

user credential will be corrupted and point to the init credential ob-

ject, effectively replacing the unprivileged credential to the highest

privileged credential (i.e., updating UID to 0). Therefore, this attack

breaks policy integrity (i.e., user credential), allowing attackers to

bypass DAC and overwrite root-only files.

Breaking Complete Enforcement. Complete enforcement is

violated when kernel resources are accessed via data-only attacks

without undergoing the necessary access control mechanisms. An

example of this attack is DirtyCred [49], which is a recent data-

only attack on file descriptors, the kernel resources protected by

DAC (Figure 3b). In thread 1, the attacker opens a writable victim

file (e.g., /tmp/xx) in a write mode, successfully passing the DAC

enforcement and creating a file descriptor with WRITE mode ( 1 ).

As the file descriptor is opened with WRITE mode, the kernel allows

write ( 2 ). Before the kernel proceeds with the write operation, in

thread 2, the attacker frees the file descriptor ( 3 ) and allocates a

new one for a read-only target file (e.g., /etc/passwd) with read

mode, triggering a race condition ( 4 ). When thread 1 is resumed,

use-after-free is triggered with the dangling file descriptor pointer

(i.e., filp), processing the write operation with the read-only target

4



file ( 5 ). As a result, the attacker corrupts the file descriptor without

going through DAC enforcement, breaking complete enforcement

and gaining write access to the read-only target file. Similarly, at-

tackers with arbitrary write capability can also corrupt the current

file descriptor table pointer (i.e., current->files->fdt) or file de-

scriptor pointers registered in the table (i.e., fdt->fd[fd]) to obtain

arbitrary file descriptors, allowing them to bypass DAC.

Another example of complete enforcement violation is corrupt-

ing or leaking kernel resources that are accessible via pseudo file

systems, such as procfs and sysfs. Pseudo file systems allow users

to read or write kernel resources leveraging existing the Linux file

system and its access control (i.e., DAC). For instance, modprobe_-

path [69] is a kernel resource writable through a sysctl file (i.e.,

/proc/sys/kernel/modprobe_path). This variable contains the path

to an executable binary file that runs with the root privilege. Con-

sequently, the DAC policies associated with the sysctl file are set

up to permit only the root to write. However, leveraging data-only

attacks, a non-root attacker can directly overwrite modprobe_path

variable with the path of an attacker-controlled binary. This would

allow attackers to bypass DAC and control modprobe_path, allow-

ing them arbitrary code execution capability with root privilege.

modprobe_path exploit is widely used in real-world privilege esca-

lation attacks [69]. However, to the best of our knowledge, there is

no general protection solution that provides complete enforcement

for access control systems.

4 THREAT MODEL
PeTAL is designed for a kernel developer who desires to protect

the kernel against attacks violating access control integrity. Our

threat model is similar to those used in privilege escalation mitiga-

tion [66, 77], considering an attacker with the lowest user privilege

in the system who attempts to illegally gain higher user privilege

(e.g., root). Our focus is more specific to access control, considering

an attacker to exploit memory corruption vulnerabilities, obtain

arbitrary read and write primitives, and violate access control in-

tegrity, either policy integrity or complete enforcement.

We assume that the Linux kernel runs with state-of-the-art self-

protection techniques, including Control-Flow Integrity (CFI) [2,

6, 20, 33, 65, 81, 89], Kernel Address Space Layout Randomization

(KASLR) [27], and NX/SMAP/SMEP [1, 22]. We assume CFI would

prevent all control-flow attacks, so we only focus on preventing

data-only attacks.We assume the hardware is the trusted computing

base thus exploits against hardware vulnerabilities such as micro-

architectural attacks [45, 51] are out-of-scope.

PeTAL operates on recent ARM processors with MTE and PAC

support. PeTAL orchestrates MTE and PAC to protect kernel data

and pointers. Both extensions have known security issues that may

allow bypass attacks. We assume the kernel source code does not

reveal the kernel MTE random tags, thus the attacker does not

have any MTE oracle. PAC key leakage [90] is mitigated when used

with PAL [89], a PAC-based CFI solution that ensures that PAC

key is not leaked to the attacker. PAC replay/reuse attacks [47]

are mitigated by binding PAC to the containing object (§5.2.2).

We do not explicitly mitigate brute-force attacks [13], since the

probability of the success is low, and the detection directly panics

the system, preventing further exploitation (§7.3). PeTAL does not
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Figure 4: Design of PeTAL

aim to prevent all privilege escalation attacks, which is infeasible

considering the various attack vectors (e.g, malicious GPU page [60]

and BPF/eBPF program [43]). However, PeTAL can be integrated

with specialized defenses, such as sensitive page protections [9, 72,

80] and BPF-hardening techniques [43, 79].

5 ENFORCING ACCESS CONTROL INTEGRITY
The design goal of PeTAL is to guarantee access control integrity to

the Linux kernel, which ensures policy integrity and complete en-

forcement (§3.2). PeTAL accomplishes this by enforcing data-flow

integrity (DFI) on access control policies and resources. PeTAL fo-

cuses on addressing twomain challenges: (i) how to find the optimal

protection scope, and (ii) how to provide effective and efficient data

flow enforcement on the identified kernel data. PeTAL addresses

these challenges by (i) Linux kernel’s user interface analysis to find

access control policies and resources, and (ii) enforcing two-level

DFI on the protection scope.

Figure 4a illustrates the overall design of PeTAL, where it takes

Linux kernel source code as input and produces a PeTAL-hardened

kernel binary. In the first phase, PeTAL performs an offline static
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analysis to identify the protection scope (i.e., policy and resources) (§5.1).

Once identified the protection scope, the second phase enforces

DFI on the protection scope, leveraging ARM’s MTE and PAC ex-

tensions (§5.2). Figure 4b shows how the policies and resources in

the open example are protected with MTE and PAC (§3.1).

5.1 Identifying Protection Scope
To ensure access control integrity, PeTAL must establish the pro-

tection scope. In the following, we outline the definition of the

protection scope for access control integrity (§5.1.1) and introduce

a user interface analysis for identifying the protection scope (§5.1.2).

5.1.1 Protection Scope for Access Control Integrity. Access con-
trol integrity requires two security properties: (i) policy integrity

and (ii) complete enforcement. Data-only attacks can break both

properties by corrupting either access control policies or resources,

even if the CFI technique is deployed (§3.2). To guarantee access

control integrity, PeTAL enforces data-flow integrity (DFI) on two

types of metadata: access control policies and kernel resources,

ensuring policy integrity and complete enforcement, respectively.

Policy integrity requires that every write to policy should only

be performed by legitimate write instructions (i.e., instructions

that are intended to update the policy). It is worth noting that CFI

alone does not ensure policy integrity. Even if CFI is employed,

data-only attacks can still illegally overwrite the policy data by

manipulating operands of a vulnerable write instruction [18, 41, 49].

Thus, enforcing DFI on policy with CFI, PeTAL guarantees that

policies are only updated through a legitimate write instruction.

Complete enforcement requires that every read and write op-

eration to kernel resources should be preceded by access control

enforcement. Similar to the case of ensuring policy integrity, CFI

alone does not guarantee complete enforcement. Data-only attacks

can directly read or write kernel resources through non-legitimate

instructions (i.e., instructions that are not supposed to read or write

kernel resources), thereby bypassing the code enforcing the ac-

cess control (e.g., bypassing the permission checks). By enforcing

DFI on resources in combination with CFI, PeTAL guarantees that

resources can only be accessed after the access control enforcement.

Limitations of Previous Works. Determining the attack surface

of data-only attacks is a non-trivial task, as discussed in previ-

ous works [46, 77, 87]. Under-approximation could miss critical

data and allow other attack vectors. Over-approximation, on the

other hand, could introduce runtime performance overheads pro-

tecting unnecessary data. Approaches based on manual specifica-

tion [66, 75, 78, 82] suffer from false negatives and scalability, largely

due to the huge complexity of the kernel. Relying on heuristic rules

to identify vulnerable data in the context of memory corruption [3]

would not thwart all memory corruptions, failing to offer robust

protection. Approaches based on permission check branches, such

as Kenali [77] find access control policies, thereby ensuring policy

integrity. However, they fall short in finding kernel resources pro-

tected by access control enforcement, such as modprobe_path, and

thus cannot provide complete enforcement (Figure 3b).

5.1.2 User Interface Analysis. To identify access control policies

and resources, PeTAL leverages the Linux kernel’s well-defined

user interfaces, namely system calls and pseudo file systems. The

key idea behind this approach is that the Linux kernel provides

hundreds of user interfaces by system calls and pseudo file systems,

each of which allows users to access kernel resources. To provide

correct and complete protection, the kernel enforces access controls

to these interfaces, allowing privileged users to access resources and

denying unprivileged users. Following describes how PeTAL iden-

tifies access control resources and then extends to finding access

control policies.

Resources. According to the definition (§3.1), resources have the

following two properties: (i) Resources can either be written or read

by users; and (ii) Before writing or reading resources, an access

control mechanism must be enforced. To find resources meeting

these two properties, PeTAL performs an analysis in two phases.

The first phase identifies kernel resources by a static taint anal-

ysis that tracks the input and output of the user interfaces based

on use-def chains [64]. Then, it returns kernel metadata (i.e., struct

fields and global variables) that users can either read or write with

the user interface. The metadata written by users are collected by

tracking the use-def chains in forward, starting from the user inter-

face input, until identifying all kernel metadata where the tracked

data is stored. The metadata read by users are collected by tracking

the use-def chains in backward from the user interface output, until

finding all kernel metadata from which the tracked data is loaded.

The second phase applies a constraint ensuring at least one ac-

cess control enforcement is applied when accessing kernel metadata

through the user interfaces. As suggested in previous works [77, 91],

PeTAL finds permission check branches that returns permission-

related error codes (i.e., -EPERM, -EACCES, and EROFS). These checks

are considered as the access control enforcement, since they allow

or deny the user’s access to the resources. Therefore, PeTAL identi-

fies the kernel metadata that is updated or retrieved after at least

one successful permission check. If a successful permission check

is found in the control flow from the interface entry to the kernel

metadata access, PeTAL regards the identified kernel metadata as

resource. Since the error codes indicate the failure of permission

checks across the Linux kernel (§3.1), this analysis is agnostic to spe-

cific access control mechanisms. Therefore, PeTAL can effectively

identify the resources protected by various access control mecha-

nisms, including Capabilities, DAC, and LSMs. We provide concrete

examples of the identified resources in the evaluation (§7.1).

In addition to the two-phased analysis, PeTAL further ensures

complete enforcement against pointer corruption. Thus, PeTAL

collects the chain of pointers given the identified resources by

tracking the use-def chains in backward, starting from the input

data, until finding all the pointers from which the tracked data is

loaded. The analysis is recursively performed to collect the chain of

pointers and terminates when all the tracked pointers reach global

variables or special registers (e.g., SP_EL0).

Access Control Policies. According to the definition (§3.1), access
control policy determines the permission check results, deciding

if a user’s request to access resources should be granted or de-

nied. To identify the access control policies, PeTAL first collects

the permission check branches that guard resources, and extracts

the kernel metadata that determines the branch results. These per-

mission check branches are drawn from the second phase of the

analysis for finding resources. From the collected branches, PeTAL
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Figure 5: Privileged object protection

performs a static taint analysis to find the kernel metadata used

as the branch predicate. This analysis tracks the permission check

branch predicates by following the use-def chains in backwards, to

find the kernel metadata from which the tracked data is loaded. The

resulting kernel metadata are identified as access control policies.

PeTAL further ensures policy integrity against pointer corruption

by recursively tracking the pointers to the policies, in the same way

the pointers to resources are collected.

5.2 Enforcing Two-Level Data-Flow Integrity
Based on the identified protection scope, PeTAL enforces selective

data flow integrity (DFI) to protect access control integrity. Defining

a safe data-flow for DFI is challenging due to the dynamic creation

and destruction of kernel objects at runtime, as well as their inter-

connections through pointers. Moreover, it is crucial to maintain

low performance overhead and high compatibility with the existing

kernel code. To address these challenges, PeTAL designs a two-level

DFI enforcement: privileged object protection and privileged pointer
protection. PeTAL orchestrates two different hardware-based secu-

rity features, ARM’s Memory Tagging Extension (MTE) [10] and

Pointer Authentication Code (PAC) [67] to provide robust security

guarantees while optimizing the performance overhead.

The first layer is MTE-based protection on privileged objects
(i.e., kernel objects containing access control policy, resource data

or pointers to such data) (§5.2.1), and the second layer is PAC-

based protection on privileged pointers (i.e., pointers to policy or

resource) (§5.2.2). Each layer distinguishes privileged and unpriv-

ileged access and enforces data-flow integrity accordingly. Both

layers are fully compatible with existing control-flow integrity

(CFI) techniques, including Clang/LLVM CFI [20] and PAC-based

CFI [52, 89]. Figure 4b provides a high-level overview of PeTAL,

protecting the privileged objects and pointers in the open example.

5.2.1 Privileged Object Protection. The first layer aims to protect

the integrity of access control policy and resource data. To achieve

this, PeTAL isolates kernel objects holding policy and resource data

with ARM’s Memory Tagging Extension (MTE) [10].

Privileged Object. PeTAL enforces MTE-based DFI on privileged
objects, the kernel objects storing access control policy, resource,

and the pointers to them. All objects appeared in the open exam-

ple are considered as privileged objects (e.g., struct file, struct

cred, and struct task_struct). Non-privileged objects are the rest
of the kernel objects.

Enforcing Tag Match. PeTAL assigns a unique random MTE

tag to privileged objects and the default tag 0 to non-privileged

objects. When a privileged object is allocated, a non-zero random
tag (ranging from 0x1 to 0xe) is assigned to the object and this tag is

stored at the top bits of the pointer. The tag is propagated with the

pointer, and checked at the time of memory access to ensure that

the pointer is pointing to a valid object. When a privileged object

is freed, its tag is cleared by assigning tag 0 to the freed memory.

When a non-privileged object is allocated, the object is not tagged,

having the default tag 0, and the tag 0 is stored at the pointer top

bits. When freed, the object is not tagged as well, and the freed

memory has the default tag 0. By assigning a random tag only to

privileged objects, PeTAL isolates them from non-privileged objects

and further separates privileged objects from each other.

To further isolate privileged objects from non-privileged objects,

PeTAL classifies memory access instructions into three types: Non-
privileged access, Privileged access, and Mixed access, and enforces

tag checks accordingly (Figure 5). Non-privileged access is the

memory access instruction accessing non-privileged objects. For

non-privileged access, PeTAL set the pointer tag to 0, restricting

the access to non-privileged objects. This causes a tag mismatch if

the instruction attempts to access privileged objects (Figure 5- 1 ).

Privileged access is the memory access instruction accessing

privileged objects (§5.2.2). In this case, PeTAL checks if the pointer

tag matches with the object tag (Figure 5- 2 ).

Mixed access is the memory access instruction accessing both

privileged and non-privileged objects. For mixed access, enforcing

tag 0 to the pointer can cause compatibility issues, as the pointer

may point to privileged objects tagged with a non-zero tag. There-

fore, PeTAL does not enforce tag 0 to the pointer, and checks if the

pointer tag matches with the object tag, as in the case of privileged

access (Figure 5- 3 ). Mixed access can potentially introduce secu-

rity risks, such that a corrupted non-privileged pointer accesses

privileged objects. However, as we discuss in §7.2, the probability

of this risk is significantly low when combined with the privileged

pointer protection in §5.2.2.

Example of Privileged Object Protection. In the open exam-

ple (Figure 4b), struct cred and struct inode are privileged ob-

jects because they contain access control policies (e.g., user and file

credentials). Similarly, struct file and modprobe_path are privi-

leged objects because they contain resources (e.g., access modes

of a file descriptor and root-only writable variable). struct task_-

struct, struct files_struct, and struct fdtable are privileged

objects since they contain pointers to privileged objects. PeTAL

assigns a random non-zero tag to each privileged object and cor-

responding pointer. When the pointer is dereferenced, the tag is

matched with the object tag, mitigating data-only attacks on policy

and resources. In DirtyCred attack (Figure 3b), use-after-free ac-

cess on struct file object would cause a tag mismatch when the

pointer is dereferenced. The tag mismatch occurs when accessing

i) freed area tagged with 0, ii) a newly allocated non-privileged

object tagged with 0, or iii) a newly allocated privileged object (e.g.,

struct file) tagged with a different random tag.
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5.2.2 Privileged Pointer Protection. As the second layer, PeTAL

enforces data-flow integrity regarding the pointers in the protection

scope, including the integrity of the MTE tag in the pointers. To

this end, PeTAL leverages ARM’s Pointer Authentication Code

(PAC) to sign and authenticate the pointers (Figure 6). This layer

is fully compatible with CFI techniques that apply PAC on control

pointers (i.e., function pointers and return addresses) [89], since the

protection of PeTAL does not overlap with that of CFI (i.e., PeTAL

protects data pointers with PAC).

Privileged Pointer. PeTAL enforces data-flow integrity on privi-
leged pointers, which are the pointers pointing to privileged objects.

As described in §5.2.1, privileged objects contain access control

policy and resource, or pointers to other privileged pointers (e.g.,

struct task_struct*, struct cred*, struct file*). We call the

remaining pointers non-privileged pointers.
Enforcing Pointer Integrity. PeTAL uses Pointer Authentication

Code (PAC) to preserve the integrity of privileged pointers (Fig-

ure 6). All privileged pointers are PAC-signed at store and authen-

ticated at load, preventing attackers from injecting pointers or

corrupting existing ones. PeTAL additionally uses the 64-bit tagged

address of the containing object as the PAC context. This context

scheme offers two security features. First, the context is spatially

unique—i.e., two objects placed at different memory addresses have

different PAC contexts, because the context includes the object

address. Second, the context is temporally unique—i.e., two objects

placed at the same memory address but allocated at the different

time have different PAC contexts, because the context includes the

MTE tag embedded in the 64-bit address. Thus, the PAC context of

PeTAL binds the privileged pointer to the containing object at the

specific memory address and allocation time, which offers unique

security advantages to PeTAL to prevent PAC reuse attacks.

Memory access instructions that store or load privileged pointers

(i.e., privileged pointer access) are modified to enforce pointer in-

tegrity. When storing a privileged pointer, PeTAL signs the pointer

with the stored address. When loading a privileged pointer, the PAC

in the pointer is authenticated with the load address. If a privileged

pointer contains a correct PAC (i.e., the PAC is generated with the cor-

rect context), the authentication succeeds and the PAC is removed

from the pointer (Figure 6- 1 ). If a privileged pointer contains a

corrupted PAC, either due to an invalid target address (e.g., has

been corrupted by non-privileged pointer access), or due to context

mismatch (e.g., not written with the valid context), the authentica-

tion fails, and PeTAL detects the pointer corruption (Figure 6- 2 ).

Other memory instructions (i.e., non-privileged pointer access) do
not enforce PAC checks, due to performance overheads. Potential

corruption of a non-privileged pointer is mitigated by enforcing

MTE tag 0 to the pointer when dereferenced (Figure 5).

Attackers cannot corrupt privileged pointers through PAC reuse

attacks [12, 67]. Spatial reuse of PAC, such that an existing PAC-

signed pointer is copied to a different memory location, illegally

constructing a new PAC-signed pointer, is prevented. Since PAC is

bound to the original memory location, authentication fails when

the new PAC-signed pointer is loaded from the different memory

location. Temporal reuse of PAC, signing and authenticating the

pointer in temporally distinct contexts, is also prevented. For in-

stance, a privileged pointer is signed by a valid context (i.e., a valid

pointer) and stored before, but a use-after-free vulnerability can

illegally load the pointer and authenticate it with a wrong context

(i.e., a dangling pointer). Since the objects containing privileged

pointers randomly tagged privileged objects, the context would

contain a random non-zero tag. If the MTE tag of the dangling

pointer mismatches with the tag of the original pointer, the PAC

context differs, triggering PAC authentication failure.

Pointers that are difficult to determine whether they are privi-

leged or not, such as void * pointers or list type pointers, are ex-

cluded from pointer integrity enforcement. Protecting all of these

pointers with PAC are likely to cause compatibility issues. There-

fore, PeTAL focuses on protecting pointers explicitly typed as priv-

ileged pointers. This design may leave some void pointers unpro-

tected, allowing pointer corruption attacks on them. We discuss

the potential security risks of not protecting void pointers in §7.2.

Example of Privileged Pointer Protection. As shown in Fig-

ure 4b, current and cred are privileged pointers since they point to

the access control policies (i.e., user credentials). inode_hashtable

is also a privileged pointer pointing to the access control policies

(i.e., file credentials). files, fdt, and fd are privileged pointers

pointing to the resources (i.e., access modes of the file descriptor).

PeTAL enforces PAC sign and authentication on privileged pointer

access to prevent attacks on privileged pointers. As a result, PeTAL

can prevent pointer corruption attacks on both policy and resources.

Bad Binder attack (Figure 3a) is detected when the corrupted cred

pointer is loaded and authenticated, because its PAC is not signed

with the correct context.

5.2.3 Spilled Register Protection. Data in registers can be com-

promised when they are spilled to memory, triggering a Time-of-

Check to Time-of-Use (TOCTOU) attack [14, 16, 89]. If a register

contains data protected with MTE or PAC, the protection can be

bypassed by corrupting the register data spilled to the memory. To

prevent this, PeTAL extends its protection scope to spilled registers.

First, on interrupt, registers are spilled to the interrupted task’s

stack and restored after the interrupt is handled. PeTAL preserves

the spilled registers by PAC-signing the registers and authenticating

them when they are restored, as done in PAL [89] and the XNU ker-

nel [7]. As in PAL, registers are signed in a chained manner, where

a previously PAC-signed register is used as the PAC context for the

next register. To prevent replay attacks, a CPU cycle counter (i.e.,

cntpct_el0) is used together as the PAC context. Thus, corrupting

spilled registers is detected by PAC authentication failure. How-

ever, the confidentiality of spilled registers is not ensured, as spilled

registers are not encrypted. To further provide the confidentiality,

an isolated interrupt stack [61] can be used.
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Second, on the context switch in AArch64, registers are spilled to

the process descriptor object (i.e., struct task_struct). As struct

task_struct is a privileged object, the spilled registers are already

protected by the random MTE tag (§5.2.1).

Third, registers can be spilled to the stack by the compiler. Compiler-

induced spills are not explicitly protected by PeTAL, but exploiting

such spills is challenging. The attack window is short, and the

attacker needs to leak the stack pointer, which is stored in the

MTE-protected process descriptor. To further reduce the attack

surface, potential register spills can be identified and patched by

static binary analysis [89] or compiler backend analysis [30].

6 IMPLEMENTATION
PeTAL is implemented based on Android Linux kernel v5.10.136.

Three LLVM passes are developed with LLVM/Clang-14.0.0 for all

static analyses and instrumentation. All analyses are path-insensitive

and field-sensitive, covering the whole kernel heap, stack, global

memory, and assembly code. We leveraged wllvm [68] to extract

a single LLVM IR bytecode from the kernel source code and used

PeX [91] for indirect call resolution. We provide implementation

details on source code instrumentation at §A.2.

User Interface Analysis. User interface analysis collects ac-

cess control policies, resources, and their pointers from user in-

terfaces (§5.1). The input is the kernel LLVM IR bytecode, and the

output is a list of privileged objects and pointers in a struct type or

a global variable name format. It first collects interface handlers,

the kernel functions implementing specific system calls and file

operations, which are collected from global interface handler tables:

tid_base_stuff for proc file system, sysctl_base_table for sysfs

file system, and sys_call_table for system calls. For each interface

handler, static taint analysis and constraint analysis are performed

to find the access control policies and the protected resources.

The static taint analysis is inter-procedural, context-sensitive,

and field-sensitive, propagating the taint through LLVM’s use-def

chain [64]. Taint is propagated forward or backward depending on

the taint source (§5.1.2). Indirect calls are resolved using a indirect

call resolution analysis [91]. For context-sensitivity, the analysis

maintains a trace of use-def chains from the source to the current

taint. To avoid indefinitely propagating the taint in recursions or

loops, a use-def edge is ignored if it is revisited in the same context.

For field-sensitivity, the analysis maintains an access path [19, 25],
a sequence of fields to access the tracked data from a given pointer.

Leveraging the access path, the analysis tracks data-flow through

a chain of memory objects (e.g., Figure 2). For instance, suppose a

user input variable, x, is initially tainted. Since the variable itself is

tracked, x is tainted with an empty access path {}. If x is stored to

ptr1->field1, ptr1 is tainted with the access path {->field1}. If

ptr1 is stored to ptr2->field2, ptr2 is tainted with the access path

{->field2->field1}. When ptr2->field2->field1 is later loaded

into y, y is tainted with the empty access path {}. Therefore, the

analysis can track the data-flow from x to y, mediated by a chain of

memory objects. To resolve pointer aliases in the chain of memory

objects, the analysis performs an on-demand backward analysis as

suggested by FlowDroid [11]. When tainting an object, the analysis

recursively tracks its pointer backward to find the root object of

the chain. The root object, identified by memory allocation or a

global variable, is then tracked with the computed access path.

To apply the static taint analysis to the Linux kernel, we made

several simplifications that may introduce false positives and neg-

atives. First, we assumed a linear chain of memory objects in the

on-demand backward analysis. Therefore, in a complex object re-

lationship, where a single object is linked to multiple root objects,

the analysis only identifies one root object. According to our evalu-

ation, we observed one such false negative case in dentry related

code (§7.1). This can be addressed by improving the backward anal-

ysis to handle multiple root objects. Second, for variable-offset

pointer arithmetic, the analysis treats the offset as 0, which may

introduce false positives and negatives. However, in the Linux ker-

nel, many pointer arithmetic operations use constant offsets for

struct fields, while variable offsets are mostly array indexes. By

treating variable offsets as 0, the analysis over-approximates all

array elements as a single object, which has a minimal impact on

the result, as it only requires the object’s type or name information.

Constraint analysis determines whether access to kernel meta-

data occurs after a successful permission check. For kernel meta-

data accessed through system calls, the analysis returns true i) if a

permission check branch is reachable from the system call entry

point, and ii) if the access is reachable from the permission check’s

successful branch. For kernel metadata accessed through pseudo

file systems, which by default enforce DAC checks, the analysis

returns true when the file’s access mode is owner-only read or

write. The returned information can be used as a constraint to find

the kernel metadata only accessible by privileged users (e.g., file

owner). For instance, sysctl_base_table stores the access mode

of /proc/sys/kernel/modprobe as 644 (i.e., owner-only write). The

constraint analysis would confirm that the write is only allowed

for the file owner, and thus the kernel metadata updated by user

through the interface (i.e., modprobe_path) is identified as resource.

PrivilegedObject Protection. Privileged object protection (§5.2.1)
assigns a non-zero random MTE tag to privileged objects and tag 0

to non-privileged objects. Kernel allocators are modified to assign

tag 0 at the allocated object’s pointer by default, and reset the tag

to 0 when a tagged object is deallocated. Privileged objects in the

global, heap, and stack are tagged at allocation by instrumentation.

Global objects are tagged once at the kernel boot time. Heap objects

are tagged at allocation and the tag is reset with 0 at deallocation.

Stack objects are tagged and reset at the object’s first and last usage

identified by llvm.lifetime intrinsics.

PeTAL enforces tag 0 on non-privileged object access to isolate

non-privileged and privileged objects. To this end, we classified

memory access instructions into non-privileged access, privileged
access, and mixed access based on whether the memory access uses

non-privileged pointers, privileged pointers, or both. We first col-

lected privileged and non-privileged pointers from (1) function

argument, (2) return value, (3) local variable, and (4) global vari-

able. We classified the pointers based on their type information

and global variable names. For generic pointers, such as void* and

list-type struct pointers (e.g., struct list_struct), we classified

them based on their cast types. If the pointer is cast to a privileged

pointer type, it is considered as a privileged pointer, and the same

applies to the non-privileged pointer types. If not cast, the pointer is
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conservatively considered as a privileged pointer to avoid enforcing

tag 0 on benign privileged access.

Then, we conducted a comprehensive points-to analysis on the

kernel code to collect memory access instructions using either

non-privileged pointers, privileged pointers, or both. Based on the

result, we classified memory instructions into three categories: Non-

privileged access exclusively using non-privileged pointers, privi-

leged access exclusively using privileged pointers, and mixed access

using both privileged and non-privileged pointers. We enforced tag

0 on non-privileged access by performing a bitwise AND operation

on the pointer with instrumentation. Privileged and mixed access

expect the pointer to contain the matching tag of the accessed

object, so they are not modified.

To preserve compatibility with the kernel memory management

internals, we globally set TCMA1 to allow the match-all tag (i.e„ 0xf)

to skip the MTE tag check. Although match-all tag may introduce

a security risk, pointers contain the tag ranging from 0x0 to 0xe, so

another memory corruption to forge the match-all tag is required.

We evaluate the risk of allowing match-all tag in §7.2.2.

Privileged Pointer Protection. To implement privileged pointer

protection (§5.2.2), we classified memory access instructions into

privileged and non-privileged pointer access. Similar to privileged

object protection, we first identified privileged pointers based on

their type and global variable name. Then, we collected memory

instructions accessing privileged pointers from points-to analysis.

Privileged pointer load/store instructions are modified to authen-

ticate/sign the pointer using the 64-bit memory address as a PAC

modifier. As the PAC is bound to the memory address, copy in-

structions (e.g., memcpy and memmove) should preserve the pointer

integrity while copying a privileged pointer to a different address.

We selectively re-signed pointers for legitimate pointer copy in-

structions.With the points-to analysis, we collected the instructions

that potentially copy privileged pointers, along with the offsets of

the privileged pointers in the copied memory. These copy instruc-

tions are modified to load and authenticate privileged pointers in

the given offsets, re-sign the pointer, and store the new pointer

in the destination memory. This does not introduce arbitrary PAC

signing gadgets, as authentication failure during copy is detected.

In-pointer Metadata. Android Linux kernel uses 39-bit virtual

address space, and PeTAL uses the top 8-bits (Bit[63:56]) and 16-bits

(Bit[54:39]) for the MTE tag and PAC, respectively.

Linux Kernel and LLVMModifications. Several minor modi-

fications were made in LLVM and the Linux kernel to ensure the

16-byte alignment of kernel objects, handle container_of macro,

and preserve type information in LLVM IR. We further removed

knownMTE tag software side-channels in the kcmp system call [53].

7 EVALUATION
This section evaluates PeTAL, focusing on its security and perfor-

mance. First, we evaluate the protection scope of the static anal-

ysis (§7.1). Next, we evaluate the security of PeTAL theoretically

and empirically (§7.2). Then, we demonstrate the effectiveness of

PeTAL with real-world exploits (§7.3). Finally, we evaluate the per-

formance of PeTAL for kernel and user-space workloads (§7.4). We

show the instrumentation overheads in the appendix (§A.1).

7.1 Effectiveness of Protection Scope
Analysis Results. PeTAL utilizes the Linux kernel’s user inter-

faces to identify access control policies and resources (§5.1). From

Android Linux kernel v5.10.136, we analyzed 35 files from proc, 322

files from sysfs, and 416 system calls. Our analysis identified 507

kernel struct types, 449 stack objects, and 350 global objects and

and 141 global pointers as privileged, out of 9,371 struct types and

104,820 global variables. Our results include well-known kernel

objects and pointers that are known to be privileged (Figure 4b).

We manually inspected the results to identify false negatives and

false positives. To identify false negatives, we referenced the Linux

man page [44] to understand the semantics of each user interface,

such as which argument should update what kernel metadata, and

whether any privilege check is performed. Based on this domain

knowledge, we cross-checked the identified privileged objects and

pointers with the user interface source code. To identify false posi-

tives, we checked whether the user interface code can indeed read

or write the identified privileged objects and pointers. As a result,

we found three false negatives and no false positives. For three

false positives, dac_mmap_min_addr and struct dentry_hashtable

were missed due to complex data flows
4
, which can be handled

by improving the static taint analysis. struct cgroup_root was

missed since directory creation (i.e., mkdir) operation was not ana-

lyzed, which can be handled by adding support in the future. The

analysis confirmed no false positives, indicating that all identified

privileged objects and pointers are indeed used as access control

policies, resources, or the pointers.

Compared to the previous approach focused on access control

policies [77], PeTAL newly uncovered resources protected by the

policies (314 struct types and 220 global variables). From proc, we

identified process-specific resources whose access is managed by

DAC. From /proc/[pid]/syscall, we identified struct syscall_-

info, which contains system call arguments of a process that might

contain sensitive information. From sysfs, we identified critical

root-only system configurations such as modprobe_path and randomize_-

va_space from /proc/sys/kernel/modprobe and /proc/sys/kernel/randomize_-

va_space, respectively. Corrupting modprobe_path would allow ar-

bitrary execution in root-privilege [69], while corrupting randomize_-

va_space would disable ASLR [27].

From system calls, we identified resources managed by various

access control systems. From setsockopt, whose permission is man-

aged by SELinux, we identified socket-related resources. One exam-

ple is struct sock_npa_vendor_data, which contains network traf-

fic information used by Samsung Knox Network Platform Analysis

(NPA) [70]. Illegal memory access on this object can leak or manip-

ulate sensitive network traffics monitored by NPA. From prctl, we

identified struct mm_struct protected by Capabilities (i.e., CAP_-

SYS_RESOURCE). mm_struct contains sensitive memory mapping in-

formation, which can be used to bypass KASLR or ASLR [21].

7.2 Security Analysis
We evaluate the security effectiveness of PeTAL by enumerating

all theoretical attack vectors (§7.2.1). Next, based on the theoretical

4dac_mmap_min_addr was missed because the use-def analysis stops when it reaches a

global variable. struct dentry_hashtable was missed because the on-demand back-

ward analysis does not handle multiple root objects in the object chain.
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Table 1: Success rate of PeTAL against attack vectors

(a) Object Corruption Attack

Access Type
Pointer Type Non-priv. Priv. Mixed

Priv. N/A Match tag Match tag

(7.14%) (7.14%)

Non-priv. Enforce tag 0 N/A Match tag

(0.00%) (0.00%)

Void Enforce tag 0 Match tag Match tag

(0.00%) (0.00% or 7.14%) (0.00% or 7.14%)

(b) Pointer Corruption Attack

Access Type
Pointer Type Non-priv. Priv. Mixed

Priv. N/A PAC Auth PAC Auth

(0.002% or 7.14%) (0.002% or 7.14%)

Non-priv. Enforce tag 0 N/A No protection
(0.00%) (100.00%)

Void Enforce tag 0 No protection No protection
(0.00%) (100.00%) (100.00%)

security analysis, we further evaluate the empirical security impacts

exploiting vulnerable cases of PeTAL (§7.2.2).

7.2.1 Theoretical Security Analysis. In this security analysis, we

enumerate all theoretically possible attack vectors to bypass the

protection of PeTAL. Specifically, the attacker’s goal is to illegally

access privileged objects leveraging a vulnerable memory access,

such as out-of-bound access or use-after-free. Further, following

the threat model (§4), it is assumed that the attacker does not know

the tag of the privileged object.

To achieve the attacker’s goal, there can be two general attack

methods. The first attack is object corruption, where the vulnerable

memory access directly accesses the privileged object (e.g., use-

after-free access to the privileged object). The second attack is

pointer corruption, where the attacker first corrupts a pointer and

uses the corrupted pointer to access the privileged object (e.g.,

corrupting a neighboring pointer with out-of-bounds access).

Object Corruption Attacks. Object corruption attacks illegally

access a privileged object with a vulnerable memory access, with-

out corrupting any pointers. As shown in Table 1, this attack can

be further categorized depending on (i) the type of pointer to ac-

cess the privileged object (i.e., privileged, non-privileged, and void

pointers) and (ii) the type of the vulnerable memory access (i.e.,

non-privileged, privileged, and mixed access).

If a privileged pointer is used, the memory access is either priv-

ileged or mixed (there are no non-privileged access using a priv-

ileged pointer in PeTAL). In both cases, the pointer contains a

non-zero tag, and PeTAL matches the tag in the pointer with the

one in the pointed privileged object. As the tag is randomly as-

signed among 14 tags, the attack is successful when two tags match,

with a rate of 1/14 (7.14%).

When a non-privileged pointer is used, the memory access is

either non-privileged or mixed. In the non-privileged access, PeTAL

enforces tag 0 to the pointer, thus this attack cannot access the

privileged object with non-zero tag (0.00%). In the mixed access,

PeTAL does not enforce tag 0, but the non-privileged pointer would

contain tag 0, thus the attack fails (0.00%).

When a void pointer is used, the memory access can be either

non-privileged, privileged, or mixed. In the non-privileged access,

PeTAL enforces tag 0 to the void pointer, thus it cannot access

the privileged object (0.00%). In the privileged or mixed accesses,

PeTALmatches the void pointer’s tag with the one in the privileged

object. If the void pointer has a tag 0, the attack cannot succeed

(0.00%). If the void pointer has a non-zero tag, the attack success

rate is 1/14 (7.14%).

Pointer Corruption Attacks. Pointer corruption attacks first

corrupt a pointer with vulnerable memory access, and later use

the corrupted pointer to illegally access a privileged object. We

assume that the corrupted pointer is in a non-privileged object.

We do not consider the case that the corrupted pointer is in a

privileged object, because such an attack is an object corruption

attack that we analyzed above. Similar to the categorization of

the object corruption attack, we categorize the pointer corruption

attacks based on (i) the type of the corrupted pointer and (ii) the

type of the illegal memory access using the corrupted pointer.

If a privileged pointer is corrupted, the pointer corruption is

detected by PAC authentication failure by PeTAL at the time of

pointer load. If the attacker has to guess the correct 16-bit PAC to

bypass the PAC authentication, the success rate is 1/65,536 (0.002%).

If the attacker spatially reuses the previously signed PAC by copying

a privileged pointer from one address to another, the attack is

detected by PAC context mismatch, unless PAC collision occurs

(0.002%). If the attacker temporally reuses the previously signed PAC

from the previous allocation, such as use-after-free, the attack is

detected by PAC context mismatch when the tag of two allocations

are different. Thus, the success rate is 1/14 (7.14%).

If a non-privileged pointer is corrupted, the pointer corruption is

not detected because PeTAL does not authenticate non-privileged

pointers. This non-privileged pointer can be used by either non-

privileged or mixed access. In case of non-privileged access, the

attack always fails to access the privileged object since the pointer

is enforced with tag 0 (0%). However, if the corrupted pointer is used

in mixed access, the attack succeeds if the pointer tag is corrupted

with match-all tag (0xf) to access the privileged object.

Similarly, when a void pointer is corrupted, the pointer corrup-

tion is not detected by PeTAL, as void pointers are not authenticated

by PAC. The void pointer can be used in either non-privileged,

privileged, or mixed access. If the corrupted pointer is used in

non-privileged access, the attack always fails since the pointer is

enforced with tag 0 (0.00%). However, if the corrupted pointer is

used in privileged or mixed access, the attack succeeds due to the

same problem of the non-privileged pointer—i.e., the attacker can

embed the match-all tag (0xf). §7.2.2 further empirically evaluates

unprotected memory accesses, and shows their security impact is

fairly limited in practice.

7.2.2 Empirical Security Analysis. To understand the unpro-

tected attack vectors (§7.2.1), we further show their empirical se-

curity impacts. We particularly focused on whether a successfully

corrupted pointer would be used in memory access, allowing to

access privileged objects. Specifically, PeTAL has three types of un-

protected attack vectors: i) non-privileged pointer corruption with

mixed access, ii) void pointer corruption with privileged access,

and iii) void pointer corruption with mixed access. We assume the

attacker corrupts a pointer to contain a match-all tag (0xf) and the

address of a privileged object, and uses the corrupted pointer to

illegally access the privileged object.
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Next, we analyzed the exploitability of each unprotected attack

vector. An attacker vector is considered exploitable if the corrupted

pointer does not raise any PAC authentication failure later. Specifi-

cally, if the corrupted pointer is used to load any privileged pointer,

the pointer would be authenticated by PAC. In this case, if the cor-

rupted pointer points to a different type of object not containing

the privileged pointer, the PAC authentication would fail. If the

corrupted pointer points to the same type of object that contains a

PAC-signed privileged pointer, the mismatching PAC context (the

corrupted MTE tag value 0xf) would fail the PAC authentication.

Among total memory access, 7.52% were mixed access using po-

tentially corruptible non-privileged pointers, 2.96% were privileged

access using potentially corruptible void pointers, and 9.43% were

mixed access using potentially corruptible void pointers. However,

the exploitable accesses that do not involve subsequent PAC authen-

tication were around 3%. Specifically, 2.51% were exploitable for

non-privileged pointer corruption with mixed access, 0.17% were

exploitable for void pointer corruption with privileged access, and

0.77% were exploitable for void pointer corruption with mixed ac-

cess. This result shows that the majority of data-flows are protected

by PeTAL, significantly reducing the attack surface.

7.3 Concrete Attack Analysis
We show the effectiveness of PeTAL against data-only attacks with

two real-world attacks: Bad Binder [57] and DirtyCred attacks [49].

The attacks were evaluated on QEMU [15] with 4 CPU cores.

Breaking Policy Integrity with Bad Binder. We tested the Bad

Binder attack [57] for policy integrity violation as described in §3.2.

The attack overwrites the struct cred pointer with the address

of init_cred. While the attack is successful on the vanilla Linux

kernel, it fails on PeTAL-hardened Linux kernel. PeTAL classifies

struct cred pointer as a privileged pointer since it stores various

credential data used in permission checks. Therefore, the corrupted

pointer is authenticated when it is used, and the authentication fails

since the pointer is not generated by the legitimate PAC signing

instruction, with the probability of 99.998%.

Breaking Complete Enforcement with DirtyCred. We tested

DirtyCred attack [49] that violates complete enforcement (§3.2).

The attack leverages a use-after-free vulnerability on struct file,

exploiting two different file descriptors pointing to the same struct

file object. While successful on the vanilla Linux kernel, the attack

was always detected on PeTAL-hardened Linux kernel on 100 runs.

This is because PeTAL protects struct file as a privileged object,

randomly tagging the object, so the use-after-free access on the file

descriptor failed with 13/14 probability due to MTE tag mismatch.

Even when the MTE tags collided, when the file descriptor was

freed, the memory tag is reset to 0, which is detected when the

dangling pointer is dereferenced. A successful attack would require

additional techniques to avoid access on the freed memory.

7.4 Runtime Overhead
Evaluation Setup. We applied PeTAL on Android Linux v5.10.136

for Samsung Galaxy S22 Pamir (SM-S906B), an Exynos chip-based

device supporting both ARMv8 MTE and PAC. Backward-edge

CFI is applied on the baseline kernel [52]. Forward-edge CFI is

implemented by integrating PAL [89], which leverages ARMPointer

Table 2: Performance overhead (x) on LMBench

Obj Obj+Ptr Obj+Ptr+PAL
Test async sync async sync async sync Kenali

Null syscall 1.03 1.46 1.06 1.50 1.12 1.50 1.00

read 1.07 1.12 1.09 1.41 1.10 1.42 n/a

write 1.42 1.41 1.44 1.45 1.44 1.56 n/a

fstat 1.24 1.35 1.38 1.41 1.41 1.41 n/a

open_close 1.30 1.48 1.32 1.50 1.32 1.53 2.76

select_10 1.02 1.32 1.17 1.39 1.17 1.41 1.42

sig_install 1.08 1.32 1.25 1.43 1.25 1.43 1.3

sig_catch 1.02 1.05 1.13 1.16 1.13 1.24 2.23

unix_sock 1.03 1.01 1.01 1.01 1.01 1.01 n/a

fork_exit 1.00 1.03 1.03 1.04 1.03 1.06 2.18

fork_execve 1.10 1.10 1.10 1.10 1.10 1.10 2.26

Average 1.11 1.23 1.17 1.30 1.18 1.32 1.78

Authentication (PAC). The default Android kernel’s CFI [6], which

is based on Clang/LLVM CFI [20], is also compatible with PeTAL,

because PeTAL’s MTE and PAC-based protection does not interfere

with the function signature-based CFI checks.

We measured runtime overhead of each benchmark by com-

paring the results from vanilla kernel [73] (baseline) and PeTAL-

hardened kernel (PeTAL). Maximum six distinct settings varied

in the protection (Obj, Obj+Ptr, Obj+Ptr+PAL), and the MTE mode

(async, or sync). In Obj, only privileged object protection is ap-

plied, while in Obj+Ptr, full protection of PeTAL is applied. In

Obj+Ptr+PAL, PeTAL is applied in combination with PAL, which

provides forward-edge CFI protection. The backward-edge CFI [2] is

applied on the baseline. async, and sync denote that MTE is enabled

in asynchronous mode and synchronous mode, respectively. Asyn-

chronous mode detects a tag mismatch at context switch, whereas

synchronous mode detects the mismatch at memory access time.

The user-application benchmarks were evaluated in Obj+Ptr+PAL
and sync. All benchmark performance were averaged over 20 runs.

Memory Overhead. We measured runtime memory overhead

of PeTAL caused by 16-byte alignments on kernel objects, lever-

aging /proc/meminfo’s Slab field. After booting, PeTAL adds 324

KB (1.42%) from the baseline kernel (22,836 KB). After LMBench,

PeTAL adds 328 KB (1.43%) from the baseline kernel (22,924 KB).

The results shows that PeTAL incurs a negligible memory overhead.

Micro-Benchmark: LMBench. Table 2 shows the performance

overheads of kernel workloads in PeTAL-hardened kernel com-

pared to the baseline. Each overhead was measured in both MTE

sync and async modes. Several system calls that showed inconsis-

tent results in baseline (e.g., pipe, fork+shell) were excluded.

The overhead of PeTAL with PAL was 1.32x on average, where

most of the overhead was caused by MTE tag check. The highest

overhead was observed in open_close, as file systems operate on

many access control policies and resources protected by PeTAL.

The lowest overhead was observed in fork_exit. We believe this is

because the experiment was conducted on a real Android device,

where various factors (e.g., scheduling) can affect the performance

of such system calls. Furthermore, we compared the performance

overhead of PeTAL with Kenali, a software DFI solution for Linux

designed to protect sensitive control and non-control data [77]. The

result showed that PeTAL, when combined with PAL, has a 35%-

51% performance gain over Kenali, highlighting the efficiency of

PeTAL’s hardware-assisted DFI solution. In real-world settings, the
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Table 3: Performance evaluation on user-application benchmarks (Obj+Ptr+PAL and sync)

(a) NBench

Test Base (s) PeTAL (s)

NumSort 20.0 20.0 (1.00x)

StrSort 87.7 87.3 (1.00x)

BitFld 25.5 25.4 (1.00x)

FPEmu 127.3 127.0 (1.00x)

Fourier 142.7 142.4 (1.00x)

Assign 58.7 59.0 (1.00x)

Idea 70.1 70.0 (1.00x)

Huff 92.4 91.1 (1.01x)

Nnet 163.5 161.4 (1.01x)

LUDec 187.5 186.8 (1.00x)

Average 1.00x

(b) LevelDB

Test Base (us) PeTAL (us)

fillseq 5.0 5.4 (1.06x)

fillsync 36.4 37.6 (1.03x)

fillrandom 6.0 6.3 (1.05x)

overwrite 6.3 6.6 (1.05x)

readrandom 2.4 2.4 (1.01x)

readseq 0.2 0.2 (1.00x)

readreverse 0.3 0.3 (1.00x)

Average 1.03x

(c) Apache httpd

# Req, Size Base (ms) PeTAL (ms)

500, 1KB 3.2 3.28 (1.03x)

500, 10KB 3.28 3.29 (1.00x)

500, 1000KB 8.41 8.98 (1.07x)

1000, 1KB 4.2 4.54 (1.08x)

1000, 10KB 4.23 4.29 (1.02x)

1000, 1000KB 8.53 9.02 (1.06x)

Average 1.04x

performance overhead of PeTAL can be further reduced with MTE

Asynchronous mode (1.18x on kernel workloads). In asynchronous

mode, the tag check is deferred to the context switch, where the

kernel manually checks the tag fault status register (TFSR_EL1).

Switching to asynchronous mode would not affect the security

guarantees of PeTAL. The kernel only updates TFSR_EL1 during

boot and after handling the tag check fault, and CFI prevents invalid

control flow to such kernel code, mitigating the risk of clearing the

tag fault status register [5].

Application Benchmark: NBench. We evaluated the impact of

PeTAL on CPU-centric user application using NBench [62]. The re-

sult, suggests that the performance overhead introduced by PeTAL

was negligible, being less than 1% (Table 3a). This minimal over-

head can be attributed to the nature of NBench, a CPU-centric

benchmark, which does not frequently invoke system calls.

Application Benchmark: LevelDB. To measure the performance

of PeTAL on I/O intensive applications, we used LevelDB [35], a

key-value database Table 3b. The performance overhead introduced

by PeTAL was 1.03x on average, 1.05x for write operations, and

1.02x for read operations.

ApplicationBenchmark:Apachehttpd. Performance on network-

intensive applications, specifically on a widely used web server,

Apache httpd [32] are also evaluated. With ApacheBench [31], we

tested 500 and 1,000 requests on files with sizes ranging from 1KB

to 1MB. The results are shown in Table 3c, where PeTAL showed

an overall performance overhead of 1.04x.

8 DISCUSSION
This section discusses the current limitations of PeTAL and further

outlines potential solutions to address them.

MTE Security. PeTAL utilizes 4-bit MTE tags to safeguard privi-

leged objects. If attackers leak an MTE tag of the target privileged

object, they could set the leaked MTE tag at an unprotected data

pointers and access the target object. However, MTE tags stored

in kernel pointers are difficult to leak as the Linux kernel does

not expose kernel pointers to user-space, and memory corruption-

based information leakage is limited due to MTE enforcement. Still,

the attackers can guess the MTE tags to access privileged objects,

with at most a 1/14 chance of correctly guessing the MTE tag. We

believe this still makes real-world attacks significantly challenging,

especially to bypass every MTE and PAC enforcement related to

the exploitation, as shown in §7.2.2 and §7.3.

Limitation of Type-based Data-Flow Integrity. As a type-based
DFI solution, PeTAL avoids compatibility issues with unsafe C

codes, but does not strictly enforce DFI on generic pointers. How-

ever, as discussed in §7.2.2, attack surface leveraging generic point-

ers is small due to the combined enforcement of MTE and PAC.

In addition, this limitation is similar to those of the de-facto fine-

grained forward CFI techniques [20, 33, 81], which provide a con-

servative protection scheme based on function prototypes. Future

work could explore a more fine-grained DFI enforcement by sepa-

rating the generic pointers for the privileged and non-privileged

usages, leveraging well-defined wrappers (e.g., list_add).

In-Kernel Virtual Execution. In-kernel virtual execution, with
BPF/eBPF [23, 54] (referred to as BPF hereafter) as a representative

example, is yet another attack vector of the Linux kernel [39, 43]. By

exploiting BPF verification bugs or corrupting BPF programs, attack-

ers can execute arbitrary code in the kernel. Although PeTAL does

not directly protect BPF, as MTE and PAC are enforced throughout

the kernel, memory corruption attacks through BPF still go through

MTE checks and cannot forge a PAC-signed pointer. However, by

attacking void pointers that are not protected by PeTAL, or set-

ting the match-all MTE tag (0xf), attackers could bypass PeTAL’s

protection. While the kernel restricts unprivileged BPF usage [38],

to completely mitigate such attacks, specialized defenses, such as

enforcing CFI [43] and validating the verifier logic [79], can be

employed in conjunction with PeTAL.

9 RELATEDWORK
ARMPointer Authentication andMemory Tagging. ARMv8.5-

A and v9-A support pointer authentication code (PAC) and memory

tagging extension (MTE). Previous works have proposed various

security solutions based on ARM PAC and MTE. PARTS [47] intro-

duced the concept of pointer integrity protection with PAC. PAL [89]

is a PAC-based kernel control flow integrity. HAKC [55] confined

untrusted kernel modules with PAC and MTE. Capacity [26] devel-

oped intra-process isolation based on MTE and PAC.

Data-only Attacks. With the common use of control-flow in-

tegrity (CFI) in modern systems, attackers have shifted their focus

to data-only attacks. Chen et al. [18] first proposed the concept and

impact of data-only attacks. Evans et al. [29] bypassed code pointer

integrity (CPI) with data pointer manipulation. FLOWSTITCH [41]

and BOP [42] proposed the concept of Data-Oriented Programming
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(DOP) and constructed Turing-complete data-only exploits for ar-

bitrary programs. DirtyCred [49] is a kernel privilege escalation

attack that swaps file descriptors with data-only attacks. Some

works focused on finding objects vulnerable to data-only attacks.

AlphaEXP [83] identifies kernel objects that can be used for data-

only attacks given a vulnerability. Viper [87] and DPP [3] find data

vulnerable to data-oriented attacks in user space.

Data-Flow Integrity. Castro et al. [17] proposed data-flow In-

tegrity (DFI) by enforcing the data-flow based on static analysis.

WIT [4] enforced code-level write integrity. To reduce the perfor-

mance overhead, HDFI [78] and Kenali [77] proposed hardware-

assisted DFI solutions. Intra-process isolation have been studied

and implemented based on various hardware features, such as Intel

MPK [34, 40, 75, 76, 82], Intel CET [85], Intel Extended Page Ta-

bles [66], SMAP/PAN [61, 84, 86], and MTE+PAC [26, 55]. However,

Intra-process isolation cannot prevent memory corruption within

the same security domain. Guoren et al. [46] proposed an alias

analysis to automatically identify global variables that can be set

as read-only. PeTAL focuses on providing access control integrity

by selectively protecting kernel objects with ARM MTE and PAC.

10 CONCLUSION
PeTAL is a practical data-flow integrity (DFI) technique to provide

access control integrity–i.e., policy integrity and complete enforce-

ment. PeTAL orchestrates ARM Pointer Authentication Code (PAC)

andMemory Tagging Extension (MTE) on ARM-based Linux kernel.

The runtime overhead of PeTAL is at most 4% on average in user

applications, demonstrating its effectiveness for kernel security.

We believe PeTAL has strong potential to be employed in practice,

which would significantly raise the security bar for kernel attacks.
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1 void *__petal_set_random_tag(void *ptr, size_t size)
2 {
3 // Generate a random tag
4 u8 tag = irg();
5 // Set the tag to the object
6 mte_set_mem_tag_range(ptr, size, tag);
7 // Set the tag to the pointer
8 return __tag_set(ptr, tag);
9 }
10

11 struct cred *prepare_creds(void)
12 {
13 // Privileged object allocation
14 struct cred *new = kmem_cache_alloc(cred_jar, GFP_KERNEL);
15 // Set random tag to the object and the pointer
16 + new = __petal_set_random_tag(new, sizeof(struct cred));
17 }

(a) Instrumentation for privileged object allocation

1 inline void *__petal_enforce_zero(void *ptr)
2 {
3 return __tag_set(ptr, 0xf0);
4 }
5 struct binder_node *binder_init_node_ilocked()
6 {
7 struct binder_node *node;
8 binder_uintptr_t cookie = fp ? fp->cookie : 0;
9 ...
10 - node->cookie = cookie;
11 + __petal_enforce_zero(node)->cookie = cookie;
12 }

(b) Instrumentation for non-privileged access

1 // Sign the pointer with the address
2 void *__petal_sign_ptr(void *ptr, void *addr)
3 {
4 return pacda(ptr, addr);
5 }
6

7 // Authenticate the pointer with the address
8 void *__petal_auth_ptr(void *ptr, void *addr)
9 {
10 return autda(ptr, addr);
11 }
12

13 int copy_creds(...)
14 {
15 ...
16 - p->cred = get_cred(new);
17 + p->cred = __petal_sign_ptr(get_cred(new), &p->cred);
18 }
19 void revert_creds(...)
20 {
21 const struct cred *override;
22 - override = current->cred;
23 + override = __petal_auth_ptr(current->cred, &current->cred);
24 }

(c) Instrumentation for privileged pointer access

Figure 7: Instrumentation implementation for PeTAL.

A APPENDIX
A.1 Instrumentation Overhead

Table 4: Instrumentation Overhead

Priv. Obj Protection Priv. Ptr Protection

Instance Total Priv. Obj Priv. Ptr

struct type 9,371 507 (5.41%) 507 (5.41%)

global variable 104,820 350 (0.33%) 141 (0.13%)

Memory alloc/free Total Priv. Obj

heap alloc 4,723 385 (8.15%)

heap free 7,723 931 (12.05%)

stack variable 22,346 453 (2.03%)

Memory access Total Non-priv Priv. Ptr

load 535,612 194,153 (36.25%) 41,238 (7.70%)

store 228,677 74,373 (32.52%) 8,952 (3.91%)

copy 6,758 2,020 (29.89%) 369 (5.46%)

Table 4 shows the instrumentation overhead of PeTAL, which is

measured from the android Linux kernel v5.10.136, with the whole-

kernel LLVM IR bytecode. Total struct type number is measured

by counting struct type objects that are allocated in the kernel,

specifically from struct-typed heap allocations, stack variables, and

global variables. The number of total global variables in the kernel

is measured by counting the global variable definitions. From user

interface analysis, 507 struct types were collected as privileged

objects and pointers. 350 global variables were collected as priv-

ileged objects, and 141 global variables as privileged pointers. In

privileged object protection, we instrumented 8.15% of heap alloca-

tions, 12.05% of heap frees, and 2.03% of stack variables to insert

the random tag at allocation and clear the tag at free. Then, we

instrumented 36.25% of loads, 32.52% of stores, and 29.89% of copies

to enforce tag 0 for non-privileged access. In privileged pointer

protection, we instrumented memory access to privileged point-

ers, which are 7.70% of loads, 3.19% of stores, and 5.46% of copy

instructions.

A.2 Code Instrumentation
Figure 7 demonstrates the code changes with the instrumen-

tation for PeTAL. For privileged object allocation (Figure 7a), we

inserted the __petal_set_random_tag function to assign a random

tag to the allocated object. For non-privileged access (Figure 7b), we

inserted the __petal_enforce_zero function to enforce tag 0 for

non-privileged access. For privileged pointer access (Figure 7c), we

inserted the __petal_sign_ptr and __petal_auth_ptr on pointer

load and store instructions to preserve the integrity of privileged

pointer.
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