Crypto I: Symmetric-Key Cryptography

Chengyu Song

Slides modified from Dawn Song, Dan Boneh, David Wagner, Doug Tygar

Administrivia

- Midterm
- Lab2

Overview

- Cryptography: secure communication over insecure communication channels
- Three goals
 - Confidentiality
 - Integrity
 - Authenticity

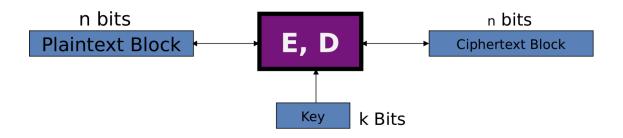
Brief history

- 2,000 years ago
 - Caesar Cypher: shift each letter forward by a fixed amount
 - Encode and decode by hand
- During World War I/II
 - Mechanical era: a mechanical device for encrypting messages (Enigma)
- After World War II
 - Modern cryptography: rely on mathematics and electronic computers

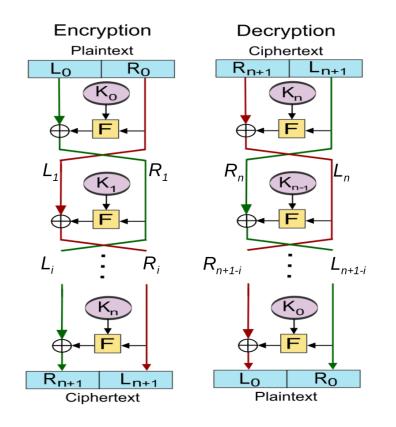
Modern cryptography

- Symmetric-key cryptography
 - The same secret key is used by both endpoints of a communication
- Public-key cryptography Two endpoints use different keys

Perfect secrecy


- Claude Shannon: the father of information theory
- Basic idea: ciphertext C should provide no "information" about plaintext M
- Have several equivalent formulations:
 - The two random variables **M** and **C** are independent
 - Knowing what values C/M takes does not change what one believes the distribution M/C is
 - Encrypting two different messages m₀ and m₁ results in exactly the same distribution

One-time pad


- **K**: random n-bit key
- **M**: n-bit message (plaintext)
- **C**: n-bit ciphertext
- Encryption: C = M xor K
- Decryption: M = C xor K
- To satisfy perfect secrecy **a key can only be used once** -> Impractical!

Block cipher

- Encrypt/Decrypt messages in fixed size blocks using the same secret key
 - k-bit secret key
 - n-bit plaintext/ciphertext

Feistel cipher

Encryption Start with (L_0, R_0) $L_{i+1}=R_i$ $R_{i+1}=L_i$ xor $F(R_i, K_i)$

Decryption Start with (R_{n+1}, L_{n+1}) $R_i = L_{i+1}$ $L_i = R_{i+1} \text{ xor } F(L_{i+1}, K_i)$

DES - Data Encryption Standard (1977)

- Feistel cipher
- Works on 64 bit block with 56 bit keys
- Developed by IBM (Lucifer) improved by NSA
- Brute force attack feasible in 1997

AES - Advanced Encryption Standard (1997)

- Rijndael cipher
 - Joan Daemen & Vincent Rijmen
- Block size 128 bits
- Key can be 128, 192, or 256 bits

Abstract block ciphers: PRPs and PRFs

- Pseudo Random Function (**PRF**): F: $K \times X \rightarrow Y$ such that:
 - Exists "efficient" algorithm to evaluate F(k,x)
- Pseudo Random Permutation (**PRP**): E: $K \times X \rightarrow X$ such that:
 - 1. Exists "efficient" algorithm to evaluate E(k,x)
 - 2. The func $E(k, \cdot)$ is one-to-one
 - 3. Exists "efficient" algorithm for inverse D(k,x)
- A block cipher is a PRP

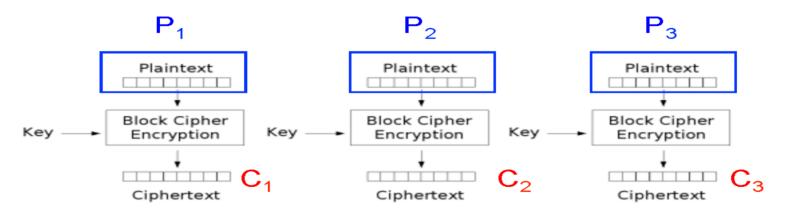
Secure PRF and secure PRP

- A **PRF** F: $K \times X \rightarrow Y$ is secure if
 - $F(k, \cdot)$ is indistinguishable from a random function $f: X \rightarrow Y$
- A **PRP** E: $K \times X \rightarrow X$ is secure if
 - E(k, ·) is indistinguishable from a random permutation $\pi: X \rightarrow X$

Take-away

- Block cipher approximates one-time pad by using a short key
 - Short secret -> long randomness
- Designing secure block cipher is not easy so
 - DO NOT EVER TRY TO DESIGN YOUR OWN BLOCK CIPHER
 - Just use AES, it's secure and fast, even has hardware support

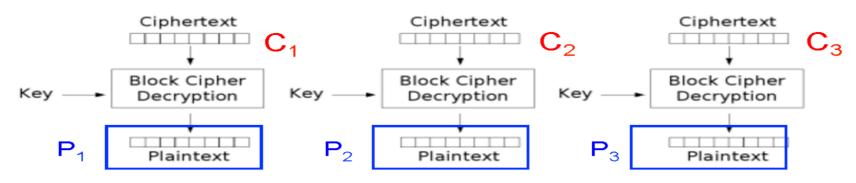
Modes of Operation


- Block ciphers encrypt fixed size blocks
- How to en/decrypt arbitrary amounts of data?
- NIST SP 800-38A defines 5 modes
 - Block and stream modes
 - Cover a wide variety of applications
 - Can be used with any block cipher

Electronic Code Book (ECB)

- Message is broken into independent blocks which are encrypted
- Each block is a value which is substituted, like a codebook
- Each block is encoded independently of the other blocks

ECB


• Encryption

Electronic Codebook (ECB) mode encryption

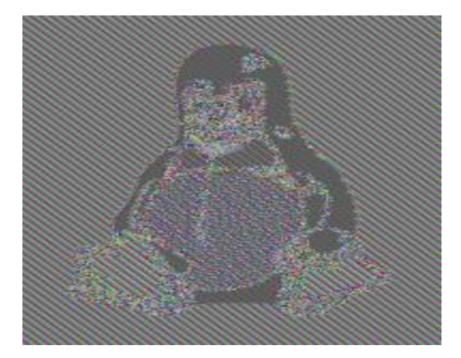
ECB

• Decryption

Electronic Codebook (ECB) mode decryption

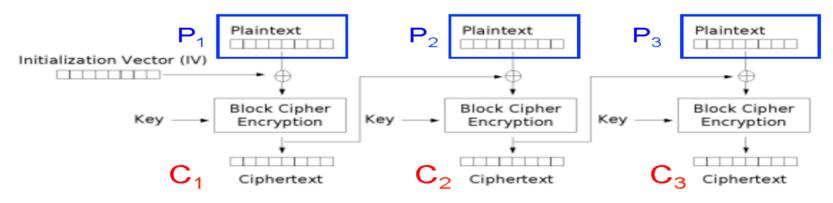
Problems of ECB

- Message repetitions may show in ciphertext
 - If aligned with message block
 - Particularly with data such graphics
 - Or with messages that change very little
- Breaks the requirement of **one-time**
- Not recommended


Example of ECB failure

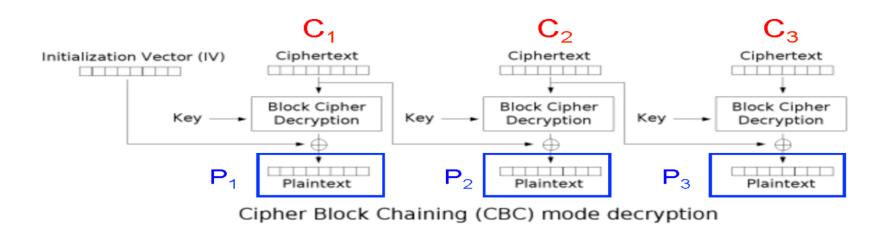
Original image

Example of ECB failure



Encrypted with ECB

Cipher Block Chaining (CBC)


Encryption

Cipher Block Chaining (CBC) mode encryption

ECB

• Decryption

Advantages and Limitations of CBC

- Ciphertext block depends on *all* blocks before it
- Change to a block affects all following blocks
- Need Initialization Vector (IV)
 - Random numbers
 - Must be known to sender & receiver

Example of CBC

Original image

Example of CBC

Encrypted with CBC

Stream modes

- Block modes encrypt entire block
- May need to operate on smaller units
 - Real time data
- Convert block cipher into stream cipher
 - Counter (CTR) mode
- Use block cipher as PRNG (Pseudo Random Number Generator)

Counter (CTR)

- Encrypts counter value
- Need a different key & counter value for every plaintext block
 - $O_i = EK(IV+i)$
 - $C_i = P_i \text{ xor } O_i$
- Uses: high-speed network encryption

Advantages and Limitations of CTR

- Efficiency
 - Can do parallel encryptions in h/w or s/w
 - Can preprocess in advance of need
 - Good for bursty high speed links
- Random access to encrypted data blocks
- Must ensure never reuse key/counter values, otherwise could break

For next class ...

• Crypto II: Asymmetric Key Cryptography