CS255: Computer Security

Chengyu Song 01/24/2022

Memory Errors

» Spatial errors: out-of-bound memory access
o Stack buffer overflow

e HeartBleed

 [emporal erros
* Use-before-initialization (UBI)

e Use-after-free (UAF)

https://heartbleed.com/

HeartBleed
A simple bug in the OpenSSL library

* A out-of-bound memory read vulnerability in the implementation of the
heartbeat extension (RFC6520) of the TLS (Transportation Layer Security)
protocol

e Allows attackers to steal sensitive information from the vulnerable website
(e.g., the private key of a X509 certificate)

* |t was introduced into the software in 2012 and publicly disclosed in April
2014

HeartBleed

Impacts

System administrators were frequently slow to patch their systems. As of 20 May 2014,
1.5% of the 800,000 most popular TLS-enabled websites were still vulnerable to
Heartbleed.l®l As of 21 June 2014, 309,197 public web servers remained vulnerable.

[101 As of 23 January 2017, according to a reportl!!! from Shodan, nearly 180,000
internet-connected devices were still vulnerable.l12l13] As of 6 July 2017, the number had
dropped to 144,000, according to a search on shodan.io for "vuln:cve-2014-0160".['4 As
of 11 July 2019, Shodan reported!(s] that 91,063 devices were vulnerable. The U.S. was
first with 21,258 (23%), the top 10 countries had 56,537 (62%), and the remaining
countries had 34,526 (38%). The report also broke the devices down by 10 other
categories such as organization (the top 3 were wireless companies), product (Apache
httpd, nginx), or service (https, 81%).

https://en.wikipedia.org/wiki/Heartbleed#cite_note-9
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Graham-2014-06-21-10
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Shodan-report-DCPO7BkV-11
https://en.wikipedia.org/wiki/Shodan_(website)
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Schwartz-2017-01-30-12
https://en.wikipedia.org/wiki/Heartbleed#cite_note-MacVittie-2017-02-02-13
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Carey-2017-07-10-14
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Shodan-report-2019-15

HeartBleed
Background

* Transportation Layer Security (TLS) protocol (RFEC 8446)
* A cryptographic protocol for secure communication
 [wo sub-protocols

 Handshake Protocol: for authentication
* Record Protocol: for confidentiality and integrity

* The underlying protocol of @ https://

https://datatracker.ietf.org/doc/html/rfc8446

HeartBleed
The TLS Handshake Protocol

Client Server

Client Hello

Supported cipher suites
Key share

Server Hello * \Verify the identify of the
server [and the client]

Chosen cipher suite
Key share

 Exchange a secret to
Certificate & signature derive the session key

sndshed Finished for the Record Protocol
HTTP GET

o e

& CLOUDFLARE 7

HeartBleed

L, elearn.ucr.edu

How authentication is done

GCortithoerte
(’”//'/””/’ Issued by: R3
" . | Expires: Saturday, April 23, 2022 at 5:53:51 PM Pacific
T . .
Daylight Time

& This certificate is valid

Trust

Details

 Based on public key e
cryptographic

Issuer Name
Country or Region US
Organization Let's Encrypt
Common Name R3

Serial Number 03 F4 9D F2 43 89 3B 56 F6 CA 1E 0B 75 67 87
36 00 69

Version 3

Signature Algorithm SHA-256 with RSA Encryption
(1.2.840.113549.1.1.11)

Parameters None

Not Valid Before Sunday, January 23, 2022 at 4:53:52 PM Pacific
Standard Time

Not Valid After Saturday, April 23, 2022 at 5:53:51 PM Pacific
Daylight Time

Public Key Info
Algorithm RSA Encryption (1.2.840.113549.1.1.1)
Parameters None
Public Key 256 bytes: B9 EBC7 B9 F370 AA14 ...
I Exponent 65537
Key Size 2,048 bits
Key Usage Encrypt, Verify, Wrap, Derive

Signature 256 bytes: 97 E4 B0 38 OD FE 37 13 ...

HeartBleed
The TLS Record Protocol

Offset
Byte

Bytes
1..4

Bytes
5..(m-1)
Bytes
m..(p-1)
Bytes
p--(g-1)

TLS record format, general
Byte +0 Byte +1 Byte +2

Content type N/A

Legacy version

(Major) (Minor) (bits 15..8)

Protocol message(s)

MAC (optional)

Padding (block ciphers only)

Length

Byte +3

(bits 7..0)

HeartBleed

The HeartBeat Extension

 Motivation: how to know if the peer is still alive
* Renegotiation (handshake) is expensive
* Solution: a heartbeat message

* The Heartbeat protocol messages consist of their type and an arbitrary
payload and random padding of at least 16 bytes

 When a HeartbeatRequest message is received and sending a
HeartbeatResponse is not prohibited as described elsewhere in this document,
the receiver MUST send a corresponding HeartbeatResponse message
carrying an exact copy of the payload of the received HeartbeatRequest

struct {
ea rt ee HeartbeatMessageType type;

uintl6é payload length;
The VUInerablllty opaque paylc?ad[HeaereatMessage.payload_length];
opaque padding[padding length];
} HeartbeatMessage;

* Could you image what

C [N T T T T ~TTTTTTT,TTTToTToTTTmT T \
IS the bug/ Type spoofed |
iy 0 ayload payload BUFFER OVER READ :
Vulnerablllty . HB — ength string (private keys etc...) .
REQUEST J ;
T P T bl : bl + T
| spoofed
copy (5) memcpy (6) payload
| length
\J \J
g)
Type
ayload echoed payload string
HB — ength
RESPONSE J

T buffer T bp

Spatial Memory Errors

Definition

o Spatial Memory Errors occur when the access is out-of-bound

e How to define the bound?

* A1l: pointer as a capability —> SoftBound

* A2: undefined memory —> AddressSanitizer

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports)
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

Pointer as a Capability

Creation of pointers

 What are legitimate ways to create pointers?
* Allocation
o Stack and global: declaration means allocation
 Heap: explicit (e.g., malloc)
* Address taken
e of code: fp = &func

e of data: p = &d

Pointer as a Capability

Creation of pointers

* Propagation

e p1 =p2
* Pointer arithmetic

* p = &array[index]

e p = &struct->field
e [ype casting

 p1 =type_cast(p?2)

Pointer as a Capability

How to track capabilities

e Fat pointer: p := {bounds, address}

» Fastest bounds lookup, but breaks binary compatibility

e | otfat pointer: p := {meta_addr, address}

* Faster bounds lookup, but requires special memory layout

* Decoupled metadata: meta(p) = lookup(p)

* Slow bounds lookup, but has good binary compatibility

https://dl.acm.org/doi/pdf/10.1145/503272.503286
https://dl.acm.org/doi/pdf/10.1145/3192366.3192388
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports

Pointer as a Capability

Capability reduction

 What is the expected capability of a pointer?
 Based on allocation size?
 Based on type?

e A combination of both: whichever is smaller

Pointer as a Capability
Challenges

* Type casting: how to recover (allocation) capabilities

* Track the allocation type (e.qg., EffectiveSan)

» Different capabilities for different operations
e char *p = “abc”; *p; p++;
o Atomicity

 How to make sure (decoupled) capabilities are always sync with the pointer

https://www.comp.nus.edu.sg/~gregory/papers/pldi18types.pdf
https://intel-mpx.github.io/

Pointer as a Capability
Capability forgery

* Recall our stack buffer overflow case, what did we forge”?

bottom of top of

memory memory
buffer sfp ret *str

<=----- [AAAAAAAAAAAAAAAAT] [AAAA][AAAA][AAAA]

top of bottom of

stack stack

Pointer as a Capability

How to prevent forgery?

* Encryption: PointerGuard, Pointer Authentication Code (PAC)
* Usually not strong enough

 Tagged memory: the CHERI architecture

 Requires hardware changes

 Decoupled and protected metadata: SoftBound, Intel Memory Protection
Extension (MPX)

https://www.usenix.org/event/sec03/tech/full_papers/cowan/cowan_html/
https://www.usenix.org/system/files/sec19fall_liljestrand_prepub.pdf
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163016.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports

Pointer as a Capability

Capability Revocation

 When a memory object is freed, all pointers point to the region should
become invalid

 Dangling pointers: pointers point to freed memory objects (the whole region)
 UAF: deference a dangling pointer
 Dangling pointers are common, but UAF is much rare

 How to exploit a UAF vulnerability?

Pointer as a Capability

Capability revocation

* Nullification: p = NULL

e Automated pointer nullification

» Key/version invalidation: key(p) != key(m)

 Each pointer and memory has a key/version (e.g., using memory tags)

* Delayed free

» Conservative garbage collection

https://lifeasageek.github.io/papers/lee-dangnull.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1744&context=cis_papers
https://www.eecis.udel.edu/~hnw/paper/ccs18.pdf

Accessing Undefined Memory

Address Sanitizer

* Undefined memory (redzones) is not allowed to access
* What regions are undefined?

o Spatial: out-of-bound regions —> insert redzones between allocated
memory objects

 Temporal: freed regions mark freed objects as redzones

Accessing Undefined Memory

Address Sanitizer: shadow memory

Memory \ Memory
Shadow Shadow
“Bad & Bad
Shadow / Shadow
Memory Memory

Figure 1: AddressSanitizer memory mapping.

Accessing Undefined Memory

Address Sanitizer

 Advantages
 Compatibility: user-mode programs, kernel, even binaries
 Bypassable
o Spatial safety demands infinite "gap" (redzone) between memory objects

 [emporal safety demands freed regions should never be reused

Use-Before-Initialization

* Uninitialized pointer
* Simple: no associated capability, dereference is invalid
* Uninitialized data
* Hard: similar to dangling pointers
 How to exploit UBI vulnerabilities?
 How to mitigate UBI vulnerabilities?

e Forced initialization

https://dl.acm.org/doi/pdf/10.1145/2976749.2978366

Make a pointer go
out of bounds

Make a pointer
become dangling

Use pointer Use pointer
to write (or free) to read o
L s Memory Safety)
AN
f \l/ \ N 1
| N7 \)
Modify a Modify a Modify a data Output data
data pointer code pointer ... variable ... variable
VIILA. VILA

Code Integrity Code Pointer Integrity BT ty/

c) \I:)
... to the attacker ... to the address of VA ... to the attacker Interpret the
specified code . shellcode / gadget o specified value output data V.B.
Instruction Set Address Space
. . Data Space
Randomization Randomization .
Randomlzatlon/
N\
s |)
4 2 A N
Use pointer by Use pointer by Use corrupted
indirect call/jump return instruction data variable
VIII.B.
VII.B.
Control-flow Integri ;
N - ‘%, “f grity) Data-flow Integnty/

Figure 1.

N

Code corruption
attack

Execute available

gadgets / functions

Execute injected
shellcode

Non-executable Data /

Instruction Set Randomizatioq}

1

Control-flow
hijack attack

¢
Data-only
attack

/2
Information
leak

Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

Why NOT Memory Safety?

 Compatibility: C/C++ Is too flexible so retrofitting memory safety into legacy
code is likely to create compatibility problem

o SoftBound can only compile a small subset of SPEC CPU benchmarks
* Intel MPX is being abandoned by GCC and Linux
 Performance overhead
 Metadata lookup
o Capability checks

Best Option so far

 Use a memory safe program language
* Rust
« Go

e Java

