
FUDJ: Flexible User-Defined Distributed Joins
Akil Sevim∗ Ahmed Eldawy∗ E. Preston Carman Jr.† Michael J. Carey§ Vassilis J. Tsotras∗

∗University of California, Riverside
†Walla Walla University, Washington

§University of California, Irvine
{asevi006, eldawy, vtsotras}@ucr.edu preston.carman@wallawalla.edu mjcarey@ics.uci.edu

Abstract—Join operations are crucial in data analysis, but
can suffer inefficiency with large datasets and complex non-
equality-based conditions. Optimized join algorithms have gained
traction in database research to address these challenges. One
popular choice for implementing join algorithms is distributed
data processing frameworks, e.g., Hadoop and Spark, but each
implementation is highly tailored for specific query types. As a
result, they do not address join queries that involve diverse and
complex conditions since they are not integrated into a holistic
query optimization engine like in DBMSs. On the other hand,
implementing new join algorithms on a DBMS from scratch
requires substantial effort and expertise. This paper introduces
FUDJ, Flexible User-defined Distributed Joins, a framework for
complex distributed join algorithms. The key idea of FUDJ is
to allow developers to realize new distributed join algorithms
into the database without delving into the database internals. As
shown, an algorithm implemented in FUDJ is up to an order
of magnitude faster than existing user-defined implementations
with an order of magnitude fewer lines of code.

Index Terms—distributed joins, database extensibility

I. INTRODUCTION

Joining datasets is a fundamental task that has been exten-
sively studied for decades. Historically, Database Management
Systems (DBMS) treated “join” as an operation for structured
data with simple conditions like equality. However, with the
growing volume and variety of data and the rise of data-
driven applications, various other types of join operations are
becoming increasingly popular. Today, data scientists must
combine large and diverse datasets from sources like social
networks and IoT devices using distributed systems. This calls
for optimized and complex join queries that operate on diverse
data types. As a result, there has been significant research in
the area. However, the availability of optimization techniques
for the new join types in DBMSs remains limited due to im-
plementation and integration complexities as explained below.

Currently, there are four methods for implementing new join
operators. First is the on-top approach that implements the join
predicate as a user-defined function (UDF) which the DBMS
uses with nested-loop join (NLJ). While easy to implement,
this approach has a limited performance due to the cost of
the nested loop. Second is the standalone approach [1]–[6],
where developers independently craft algorithms without any
platform integration. Third is the use of the programming

This research was supported in part by NSF award IIS-1838222, CNS-
1924694, IIS-1954962, IIS-1924694, IIS-1954644, IIS-2046236 and by the
Donald Bren Foundation (via a Bren Chair.)

paradigm of a distributed system, such as Spark [7], [8],
Hadoop [9]–[12], or Flink [13], [14]. The last two approaches
can be highly optimized but have limited application since they
cannot be integrated into a DBMS directly where users want to
perform all their analyses with the support of a comprehensive
query optimizer.

Besides these methods, a few studies have proposed a fourth
approach to implement a built-in optimized join within a full-
fledged DBMS, e.g., set similarity join on PostgreSQL [15]
and AsterixDB [16], interval join [17] on AsterixDB, and
spatial join on Paradise [18]. These approaches demonstrate
that incorporating new join algorithms in DBMSs has clear
benefits such as seamlessly integrating optimized joins with
other optimizations and enabling result pipelining for further
processing. However, they do not offer a universal implemen-
tation model for other join types. Consequently, each new join
method still requires implementation from scratch, and the
availability of DBMSs capable of accommodating an array
of optimization techniques is limited.

A. Motivation
To better clarify the importance of complex join query

optimization, consider a data science team that wants to
identify which parks were affected by wildfires in the last
year by using the “Wildfires” and “Parks” datasets with the
schemas shown below:

CREATE TYPE Parks Type {id: uuid, boundary: geometry, tags: string};
CREATE DATASET Parks(Park Type) PRIMARY KEY id;
CREATE TYPE Wildfire Type {id: uuid, lat: float , lon : float ,

fire start : datetime , fire end : datetime};
CREATE DATASET Wildfires(Wildfire Type) PRIMARY KEY id;

Type 1: Parks and Wildfires Type Definitions

To find recently damaged parks, the scientist wants to run
the spatial join query shown in Query 1 with the computa-
tionally expensive predicate ST Contains that detects whether
a wildfire location is contained by another park boundary poly-
gon. Note that Query 1 is not only a join query but involves
other operations like filtering, aggregation, and sorting.

SELECT p.id, p.tags , p.boundary, COUNT(w.id) AS num fires
FROM Parks p, Wildfires w
WHERE ST Contains(p.boundary, ST MakePoint(w.lat, w.lon))

AND w.fire start >= parse date(”01/01/2022” , ”M/D/Y”)
GROUP BY p.id, p.tags, p.boundary ORDER BY number of fires DESC;

Query 1: Spatial Join Query

Despite all existing works for spatial joins, finding a dis-
tributed big data processing system with an efficient execution
plan for Query 1 is rare. The Hash Join (HJ) algorithm is
unsuitable due to its equi-join requirement, limiting options
to the NLJ operator. An alternative is leveraging a spatial
index with the Indexed-Nested Loop Join (INLJ) operator.
However, INLJ works well only when the non-indexed set
is relatively small. So, challenges persist in scalability and
resource utilization for large datasets. After Query 1, a member
of the team may want to find alternative parks for the ones
that are damaged by the wildfires to recommend to potential
visitors. This might be done with Query 2 by listing parks
that have similar “tags” for each damaged park since tags are
used to describe the properties of the parks with words like
“River, Scenic Landscape, Camping, Backpacking”. Assume
that damaged parks were stored in ”Damaged Parks” dataset
after Query 1.

SELECT dp.park id, p.id, jaccard similarity (dp. tags , p. tags) as sim
FROM Damaged Parks dp, Parks p
WHERE dp.park id <> p.id

AND jaccard similarity (dp. tags , p. tags) >= 0.5
ORDER BY dp.park id, sim;

Query 2: Text-similarity Join

Next, the team may want to investigate the relationship
between the weather and wildfires by using the “Weather”
dataset with the schema shown in Type 2.

CREATE TYPE Weather Type {id: uuid, location: geometry,
reading interval : interval , temp: int };

CREATE DATASET Weather(Weather Type) PRIMARY KEY id;

Type 2: Weather Type Definition

To find the average temperature for each wildfire that
has happened in each park, they can use a combination of
spatial and interval joins: Query 3 finds the weather readings
close to the wildfires that happened in each park by using
predicates ST Distance and ST Contains. Then, by using over-
lapping intervals, it detects whether two intervals, weather
sensor reading intervals, and wildfires, are overlapping or not.

Both Query 2 and Query 3 would likely end up being
processed by NLJ operators due to the limited availability of
ready-to-use optimization tools for text-similarity and interval
joins in most systems, even if we assume the data science team
employed specialized tools for spatial join queries for Query 1.
Further, note that Query 3 is a combination of both spatial and
interval joins which makes it even harder to optimize. To the
best of our knowledge, there is no DBMS today that would
generate an optimized query plan for such queries.

SELECT f.id, f . fire start , AVG(w.temp)
FROM Wildfires f, Parks p, Weather w
WHERE ST Contains(p.boundary, ST Make Point(w.lat, w.lon))

AND interval overlapping(
interval (f . fire start , f . fire end) , w. reading interval)

AND ST Distance(f.location, w. location) < 1
GROUP BY f.id, f.start ;

Query 3: Interval and Spatial Join Query

As a Standalone Program

As a DBMS Operator

Using a Dist. Data Processing Framework

On-top Approach

FUDJ

Performance

Pr
od

uc
tiv
ity

Fig. 1: Productivity and Performance of Existing Optimized
Join Implementation Methods

B. A New Approach

We argue that if there were a straightforward way to imple-
ment and integrate optimized join algorithms into the query
optimization engines for DBMSs, those optimized algorithms
would efficiently process the queries above, enabling faster
data analysis. This work introduces the Flexible User-defined
Distributed Joins (FUDJ) framework, which enhances the
availability of optimized join algorithms within DBMSs. FUDJ
allows users to implement partition-based distributed join
algorithms without requiring in-depth knowledge of database
internals or distributed programming while still achieving
similar performance as if they were implemented as built-
in operators inside a DBMS. Figure 1 illustrates a high-level
summary of the performance and productivity evaluation of the
current implementation methods and NLJ (on-top approach)
for the optimized join algorithms. FUDJ’s position shows
it aims to provide high productivity and maintain on-par
performance compared to other options.

To achieve these goals, we propose a novel extensibility
architecture for implementing new join algorithms into a
distributed DBMS. Our approach involves identifying the
fundamental principles shared among various distributed join
techniques and integrating their touch points into the system’s
code base. The method is similar in spirit to User-Defined
Aggregates (UDAs) [19], where users provide a function that
aggregates a large set of values by computing partial aggre-
gates on partitions and then combining them to compute the
final result. FUDJ allows customization of the logic specific
to each join operation through a series of specialized UDFs.
In another sense, our approach is analogous to Generalized
Search Trees (GiST) [20]. In GiST, the common logic, such
as node merging and splitting, is implemented in the code base
of the DBMS while the developer defines index-specific logic,
such as comparison operations within tree nodes. In FUDJ, the
developer defines the logic specific to each join operation. This
specific logic is externalized through UDFs that encapsulate
the join-specific logic, such as determining how the data
will be partitioned and joined. This approach aims to strike
a balance between efficiency and productivity, enabling the
definition of new join operations with minimal lines of code
(LOC) while maintaining high execution efficiency.

Our contributions can be summarized below.
• FUDJ Programming Model: A new programming

model that allows developers to implement existing or
new partition-based distributed join algorithms without
having database internal and distributed programming
experience.

• FUDJ Infrastructure: Design of components to support
FUDJ that could be applied to any DBMS with the
following generic extensions:

– Install join libraries (e.g., with a “CREATE JOIN”
statement),

– Detect FUDJ queries and generate optimized query
plans,

– Offer a Serialization/Deserialization protocol that ef-
ficiently transfers tuples between the database engine
and functions in the FUDJ library.

• Realization of the concept on AsterixDB as proof of its
feasibility, and providing FUDJ implementations for Spa-
tial, Overlapping Interval, and Set-Similarity Distributed
Joins.

• Run extensive experiments showing that the FUDJ imple-
mentations require roughly 10x less work while providing
as much as two orders of magnitude speed-up against on-
top approaches, which is close to built-in approaches.

The rest of this paper is organized as follows. Section II
discusses related work. Section III addresses the commonal-
ities and challenges of distributed optimized join algorithms.
Section IV presents our programming model, and Section V
shares the details of the realization of the architecture on
AsterixDB and describes three example join algorithm imple-
mentations. Section VI provides details about our framework
and its application to query optimizers. Section VII-B explores
the current performance of FUDJ, and Section VIII concludes
our study and discusses possible future work.

II. RELATED WORK

Both academia and industry have extensively studied joins
in various domains. For instance, many studies propose meth-
ods for spatial joins [18], [21]–[24], while survey papers like
[25]–[28] offer comprehensive evaluations of existing spatial
join methods. Set-similarity joins have been considered in [9],
[11], [12], [16], [29]–[33]. Trajectory joins are explored in
[7], [8], [34]–[37]; and surveyed in [38]. JSON similarity
studies have been addressed in [5], [6]. Interval joins have
been examined in [1], [4], [17], [39], while kNN joins are
explored in [40], [41]. It is important to note that each study
introduces a method tailored for a specific join type. However,
despite this rich literature, there is a scarcity of DBMSs that
comprehensively support a diverse collection of join variations.

The typical join implementation methods can be classified
into three categories: distributed data processing framework-
based, as standalone programs, or as special DBMS oper-
ators. The implementations based on distributed data pro-
cessing frameworks follow programming paradigms such as
MapReduce [42], RDD [43], or PACT [44] depending on

the system. Standalone implementations [1]–[6] usually build
their systems from scratch. However, these approaches assume
that join is a standalone program and ignore the realistic
scenario where it is a part of a complex query plan. A select
few approaches [16]–[18], [33], [39] implement their methods
within DBMSs. While these approaches advocate for the
advantages of DBMS integration, their applicability to other
optimized joins and DBMSs is limited, thereby necessitating
a fresh implementation for each new join method.

Related to the concept of database extensibility [45] are
commonly adopted concepts such as User-Defined Functions
(UDFs) and User-Defined Aggregates (UDAs). The General-
ized Search Tree (GiST) [20] introduces an extensible frame-
work that allows developers to implement and integrate custom
indexing methods. While GiSTs can enhance join performance
in specific cases when used with Indexed Nested Loop joins,
they lack the capability to integrate new join algorithms into
a Database Management System (DBMS). As a result, the
concept of database extensibility has not yet encompassed a
method for accommodating User-Defined Joins.

In summary, despite the rich existing literature for optimized
joins, their availability in DBMSs and systems that can opti-
mize a good variety of join types is limited. Also, the current
preferred implementation methods for these optimized joins
result in specialized programs which are far from being a
universal model when it comes to the integration to DBMSs.
Additionally, while the concept of database extensibility has
seen advancements through mechanisms like UDFs, UDAs,
and GiST, a comprehensive framework for accommodating
User-Defined Joins is missing.

III. COMMON CHALLENGES IN DISTRIBUTED JOIN

The strategies employed in optimized distributed join meth-
ods are crucial for scalable data analysis. In this context,
three primary optimized join approach categories stand out:
nested-loop joins, partition-based joins, and sort-merge-based
joins [46]. Nested-loop joins follow a straightforward im-
plementation to distribute the data but they exhibit limited
optimization potential due to their brute-force nature.Sort-
merge joins are preferred when the data is already sorted and
are effective in parallelization for some cases. However, they
encounter challenges in shared-nothing environments due to
the need for data shuffling across nodes and sorting leading
to increased network overhead.

On the other hand, partition-based joins exhibit promising
potential by leveraging data partitioning and local processing,
reducing data movement and network costs. These concepts
lead to more parallelism and efficient utilization of resources,
making the partition-based methodology the most popular
choice for optimizing joins in distributed systems in numerous
studies for various domains.

Since we aim to increase the availability of optimized
joins in DBMSs, the FUDJ programming model that we
introduce here is designed to allow easy implementation of
partition-based join algorithms on DBMSs. The key idea is
identifying the common logic of partition-based distributed

COMBINEPARTITIONSUMMARIZE

R

Partitioner
Function

Match
Function

S

s1
s2

sm

...

⨝

⨝

⨝

...

SummaryR

SummaryS ...

r⨝s

r⨝s

r⨝sVerification

Filtering

Duplicate
Handling

r1
r2

rn

...

Fig. 2: Phases of Partition-based Distributed Joins

join techniques and injecting them into the code base of
DBMSs while externalizing the logic related to specific join
operations through user-defined joins that are implemented
using the FUDJ programming model.

In the rest of this section, we identify the common chal-
lenges and features in the two main phases of partition-based
joins, namely, partition and join, as shown in Figure 2.

A. Partitioning

The partitioning phase presents several challenges that re-
quire careful consideration [47]. One of the foremost chal-
lenges is achieving optimal data distribution across nodes.
Poor partitioning can result in data skew, where some nodes
are overloaded due to unevenly distributed data. Moreover,
identifying potentially matching keys is important to ensure
that related data ends up on the same node, reducing the cost of
inter-node communication during subsequent join phases. Bal-
ancing partition granularity and size is yet another challenge.
Overly fine-grained partitions might lead to excessive overhead
caused by duplication, while coarse-grained partitions could
affect parallel processing efficiency. Addressing these chal-
lenges in the partitioning phase is paramount for achieving a
well-balanced, efficient, and scalable partition-based approach
within distributed systems.

To ensure optimal performance and overcome these chal-
lenges, it is crucial to have a thorough comprehension of data
characteristics. As shown in Figure 2, an initial scan of the
input dataset to collect such information (Summary) to have a
better partitioning is one of the most common approaches. For
instance, the OIPJoin algorithm [1] requires minimum interval
start and maximum interval end times to divide the space
into equal-sized granules. PBSM [18] computes the Minimum
Bounding Rectangles (MBR) of the input and divides it into
tiles. Finally, text-similarity join [48] counts the words from
input datasets and sorts them by their occurrences to find the
least common words in each record. In all these scenarios, the
input space is then divided into buckets at the logical level,
and each record is assigned to a physical partition accordingly
by relying on buckets.

It is important to note that some partitioning approaches
result in data replication (multi-assign) across partitions while
others do not. Replication can help mitigate data skew and
reduce inter-node communication during joins, but it comes

R'

Single-assign
Partitioning

r'2

r'1

...

3 Value 3

1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

Data Source Partitioned Data

(a) Single-assign

R'

Multi-assign
Partitioning

r'2

r'1

...
3 Value 3
1 Value 1

2 Value 2

r3

r1

r2

R

1 Value 1

2 Value 2

3 Value 3

 ...

k Value k

Value kk

Summary

2 Value 2

3 Value 3

Data Source Partitioned Data

(b) Multi-assign

Fig. 3: Partitioning Methods

at the cost of increased storage overhead and deduplication.
For instance, PBSM [18] assigns each geometry to all of the
tiles that they are overlapping with. In text-similarity join
[48], tokens within each text are sorted by rank based on
their occurrence frequencies and then assigned to a specified
number of least common words, determined by a similarity
threshold. Non-replicative strategies (single-assign), on the
other hand, focus on maintaining unique sets of data on each
node, reducing storage overhead but requiring more careful
load balancing and efficient data movement during joins. For
instance, OIPJoin [1] assigns intervals to the smallest interval
bucket that it can fit. Figure 3a illustrates the single-assign
method since each record is assigned to only one partition
after partitioning. On the other hand in Figure 3b, Value 2
from partition r1 is duplicated and assigned to both partition
r′1 and r′2 which makes that partitioning method a multi-assign
one.

In the rest of this paper, we use the terms that are defined
below to refer to the partitioning phase elements.

Definition 1: Summarization: The phase where the join
algorithms collect information about the data.

Definition 2: Summary: The data structure is where the
information is aggregated during the Summarization phase.

Definition 3: Divide: The function that combines the Sum-
mary from both sides of the join and any other required
information needed to determine the partitioning.

Definition 4: Partitioning Plan (PPlan): The data structure
that holds the partitioning information returned by Divide.

Definition 5: Bucket: A group of records that are grouped
based on the Partitioning Plan in a way that when the buckets
are joined, the records in the buckets from both sides are
potentially in the join result.

Definition 6: Assign: A function that determines which
record should be in which Bucket based on the information
provided by thePartitioning Plan.

B. Joining

One of the primary challenges in the joining phase is the
task of joining the buckets. Eliminating irrelevant buckets from
consideration or moving the buckets to the same nodes before
the join operation can reduce unnecessary data movement
and processing. The matching method for the buckets plays
a crucial role in having an efficient strategy for efficient

r1
r2

rn

...

Single-join

s1
s2

sm

...

r1 s1

... ...

⨝

⨝

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(a) Single-join

r1 s1

... ...

⨝

⨝

r1 s2 ⨝

r1
r2

rn

...

Multi-join

s1
s2

sm

...

s2

sm

... ...

r2

rn

⨝

⨝

⨝

Partitioned
Data

Partition
Matching

(b) Multi-join

Fig. 4: Partition Matching Strategies

bucket joining. As shown in Figure 4, joining buckets can
be categorized as single-join or multi-join. In single-join,
each bucket on one side matches with a single bucket on the
other side resulting in a one-to-one correspondence between
buckets which can be efficiently done with hash-based join.
For instance, PBSM [18] only joins the records that overlap
with the same tiles, and in Set-similarity join [48], the records
that share the same tokens are matched. In multi-join, a bucket
can match with more than one bucket which makes it a theta-
join operation. As a result, buckets from one side are broadcast
in most of the cases. OIPJoin [1] is an example of that since
one interval bucket can match with multiple buckets.

Local optimization strategies are also applied during bucket
joins on each node. This includes implementing customized
join algorithms within individual nodes to minimize com-
putational and memory overhead. In cases of unbalanced
partitions, memory utilization can become problematic too.
Some partitions might not fit entirely in memory, requiring the
utilization of memory budget-aware operators that can spill to
the disk. Another optimization can be sorting of tuples within
partitions to apply merge join algorithms which can reduce
memory footprint.

In addition, partitioning strategies that involve duplicat-
ing tuples across multiple partitions (multi-assigning) can
introduce duplicate handling challenges. Duplicate elimination
becomes essential in subsequent stages, and it involves identi-
fying and eliminating duplicate tuples from the joined output
as illustrated in Figure 5a. Avoidance techniques, on the other
hand, aim to prevent duplicates during the join process itself by
cleverly designing matching and partitioning strategies. Hence
unlike duplicate elimination, it does not require an additional
step after joining as illustrated in Figure 5b. After the join
phase, the filtering and verification stages come into play.
Filtering involves eliminating tuples that do not satisfy the
join condition. Verification, on the other hand, ensures that all
tuples that should be in the join result are indeed present.

In the FUDJ programming model, we will refer to the
method that is used to match the buckets as match. The logic
of the match function defines whether the join is a single-
join or multi-join. For instance, if the match is a simple
equality, then the join becomes a single-join and the system

join

join

...

join

r⨝s

r⨝s

...

r⨝s

Op

Op

...

Op D
up

lic
at

e
El

im
in

at
io

n

(a) Duplicate Elimination

r⨝s

r⨝s

...

r⨝s

join

join

...

join D
up

lic
at

e
Av

oi
da

nc
e

(b) Duplicate Avoidance

Fig. 5: Partitioning Categories

can utilize its optimized hash join operator. Lastly, the function
that verifies the tuple pairs to finalize the join operation will
be called verify. The verify function can also use the PPlan
from the partitioning phase to determine whether the tuple pair
belongs to the final output or not.

Definition 7: Match: A boolean function that determines
whether two buckets should be joined or not.

Definition 8: Verify: A boolean function that determines
whether two records from matched buckets should be in the
final result or not.

IV. PROGRAMMING MODEL

To address the common challenges in partition-based dis-
tributed optimized join algorithms that we describe in Sec-
tion III, this section introduces the FUDJ programming model
that consists of three phases namely, SUMMARIZE, PAR-
TITION, and COMBINE. Figure 6 shows all the functions
within each phase. The rest of this section provides more
details about the phases and the functions.

A. SUMMARIZE

To successfully decide how to partition the datasets, many
join algorithms apply an initial step that analyzes and sum-
marizes the data to produce better partitioning in the second
phase. The summary can be the minimum bounding rectangle
for a spatial dataset [18], minimum starting and maximum
ending time for an interval dataset [1], or word frequencies for
text-similarity joins [9]. Since FUDJ is designed for distributed
systems, it follows a common two-step aggregation method
that first aggregates data locally within each node and then
combines the results to compute the final aggregate. We
provide two aggregate function interfaces as below.

local aggregate(T key, SUMMARY ⟨T ⟩S) :
SUMMARY ⟨T ⟩

global aggregate(SUMMARY ⟨T ⟩S1, SUMMARY ⟨T ⟩S2) :

SUMMARY ⟨T ⟩

The local aggregate function reads keys from the in-
put dataset and updates a SUMMARY object. Then all
SUMMARY objects are merged into global SUMMARY
objects by a global aggregate function. Note that the frame-
work allows to have two versions of local and global aggregate
functions one for each side of the join since key types can
be different. If both sides should be summarized in the same
way, the user provides one implementation only. In the case
of self-join, the framework will optimize the computation by

COMBINEPARTITIONSUMMARIZE

summarize1
S1

 s S summarize2

PPlan

PPlan
divide

assign1

assign2
S2

 r R
bucket_id1, r,

bucket_id2,s

match

bucket_id1, r

bucket_id2, s

 r, s verify R ⋈ S

Output

C

number of
buckets*

query
parameters*

(*optional)

dedup

Fig. 6: Flexible User-Defined Distributed Join Data Flow Diagram

summarizing the data only once. For simplicity, function name
SUMMARIZE will be used to refer to localaggregate and
globalaggregate functions combined in the rest of the paper.

Lastly, to divide the input domain space into meaningful
partitions, we provide the DIV IDE function that takes two
global SUMMARY objects, one from each side of the join,
and returns a PPlan object.

divide(SUMMARY ⟨T ⟩ S1, SUMMARY ⟨T ⟩S2) : PPlan

For instance, in spatial join, divide combines two MBRs from
both sides and returns the grid information for the join. For
interval join, it takes the minimum start time and maximum
end time for both datasets and finds the number of interval
partitions. For similarity join, it uses word counts from both
sides to create the ordered list of the least common words.

B. PARTITION

The goal of this phase is to assign the input datasets into
subgroups which we will call buckets, each identified with a
unique integer bucket id. The framework will then use the list
of bucket id’s and the logic of the join algorithm to decide
how to partition the input datasets. For example, in a spatial
join, a bucket is a tile and bucket id is the tile id, while for
text-similarity join, a bucket is a word from the word count
list and bucket id is the rank of that word.

assign(T key, PP lan) : int[]

The partitioning phase scans the input datasets and applies
the assign function on each key to return a list of bucket id
which is computed based on PPlan. A key can be assigned to
only one bucket (Single-Assign) or multiple buckets (Multi-
Assign). Similar to aggregate functions, a user can implement
a different assign function for each side of the join.

C. COMBINE

This final phase processes the data in all buckets to produce
the final answer, i.e., pairs of matching records. First, we
determine which bucket matches with another bucket by
using the match function. As mentioned before there are
two cases in this stage: single-join or multi-join. For single-
join algorithms, we provide a default match function which
checks whether both bucket id’s are the same or not. For this
type of algorithm, the developer should just use the default
implementation since further optimizations can be applied.

match(int bucket id1, int bucket id2) : boolean

After buckets are matched, the next step is verifying the record
pairs by using the verify function as below.

verify(T key1Tkey2) : boolean

As discussed in Section III, some algorithms yield duplica-
tion due to the assignment of records to multiple buckets. The
user should implement the dedup function as it handles the
duplicates. FUDJ’s default duplicate avoidance method relies
on the utilization of the assign functions with PPlan, and
producing the list of bucket ids for each record pair to find
if the matching buckets are the first matching pair or not. For
algorithms that do require a custom method for deduplication,
the user can easily override the dedup function provided by
the framework, or it can be disabled if there is no need for
the deduplication for more efficient query processing.

dedup(int bucket id1, T key1

int bucket id2, Tkey2, PP lanC) : boolean

V. EXAMPLE IMPLEMENTATIONS

This section provides the logic of three FUDJ example
implementations for spatial, text-similarity, and overlapping
interval joins. These examples represent the FUDJ versions of
the algorithms that we discussed earlier in Section III. In the
rest of the section SUMMARY will be denoted by S.

A. Spatial FUDJ

Our Spatial FUDJ implementation is based on the PBSM
algorithm described in [18]. We start by calculating the MBRs
of each dataset with the summarize function. Here, the
MBR() function returns the MBR of a given geometry and
the ∪ operator merges two MBRs and returns an MBR that
covers both MBRs.
1: function SUMMARIZE(geometry, S)
2: S ←MBR(geometry) ∪ S

After we compute MBRs from both sides of the join, we
then use the divide function to compute the final MBR and
create the grid that divides the space into n×n buckets. Next,
we store the final MBR and n into PPlan.

1: function DIVIDE(S1, S2, n)
2: MBR← (S1 ∩ S2)
3: PPlan← (MBR, n)
4: return PPlan

Now, our spatial join algorithm can assign the data’s ge-
ometries to relevant buckets. To simplify the algorithm here
the function getOverlappingT ileIds() represents a function
that logically divides the 2D space into n×n equal-sized tiles
and returns the ids (numbered from 1 to n2 − 1) of the tiles
that overlap with the given geometry’s MBR.

1: function ASSIGN(geometry, PP lan)
2: MBR←MBR(geometry)
3: return getOverlappingT ileIDs(MBR,PP lan)

When it comes to matching the data in buckets, since our
algorithm follows the single-joining strategy, it can simply
utilize the default equality-based match function. Finally, we
provide a simple verify function that checks if the actual
geometries are intersecting or not.

1: function VERIFY(tileId1, geometry1, tileId2, geometry2, PP lan)
2: return intersects(geometry1, geometry2)

B. Text Similarity FUDJ

Similar to [16], we first count the words of all the records
in the summary step by using a hash map that maps words to
counts. Here the tokenize(text) function is used to get the
list of the words of each text.

1: function SUMMARIZE(text, S)
2: tokens← tokenize(text)
3: for each token ∈ tokens do
4: S[token]+ = 1

5: return S

In divide, we first combine the two hash maps that consist of
the number of occurrences of each word from both sides of the
join to get the overall word counts. Next, the sortByCount()
function sorts the words by their counts in ascending order
and returns a new hash map that has the rank of each word
as a value. Finally, the word rank map is put into the PPlan
along with the similarity threshold.

1: function DIVIDE(S1, S2, SimThreshold)
2: for each token ∈ S2 do
3: S1.merge(token, S2.get(token))

4: TokenRanks← sortByCount(S1)
5: PPlan← (TokenRanks, SimThreshold)
6: return PPlan

In assign, we first create a sorted ranked list of words for
each text. Then, we calculate the prefix length p [48] for each
text using the similarity threshold. Finally, we assign the text
to the buckets that are defined by the first p ranks of each text.

This method aims to assign each text to the fewest possible
buckets and choose the rarest words of each text to increase
the pruning.

1: function ASSIGN(text, PP lan)
2: tokens← tokenize(text)
3: tokenRanks← ∅
4: for each token ∈ tokens do
5: tokenRanks.add(PPlan.TokenRanks.get(token))

6: l← len(tokens)
7: prefixLength← (l − ceil(C.SimThreshold ∗ l)) + 1
8: bucketIds← copyRange(sort(tokenRanks), prefixLength)
9: return bucketIds

Finally, in verify we calculate the Jaccard Similarity of
the two sides and return true if they are above the desired
similarity threshold.

1: function VERIFY(bId1, text1, bId2, text2, PP lan)

2: tokens1 ← tokenize(text1)
3: tokens2 ← tokenize(text2)
4: similarity ← (|tokens1 ∩ tokens2| ÷ |tokens1 ∪ tokens2|)
5: return similarity > PP lan.SimThreshold

C. Overlapping Intervals FUDJ

To partition the data, first, we need to divide the timeline
into granules. For that purpose, we start by finding the min-
imum start and maximum end times of each side of the join
with the summarize function.

1: function SUMMARIZE(interval, S)
2: S.minStart← min(S.minStart, interval.start)
3: S.maxEnd← max(S.maxEnd, interval.end)
4: return S

In the divide function, we first combine two sides’ summaries
and unify both timelines. Next, we divide the timeline into
NumberOfBuckets and calculate the length of each bucket.
Finally, we put all the information required to assign records
to the partitions together into PPlan.

1: function DIVIDE(S1, S2, NumberOfBuckets)
2: Range.minStart← min(S1.start, S2.start)
3: Range.maxEnd← max(S1.end, S2.end)
4: length← (Range.maxEnd−Range.minStart)
5: d← length/NumberOfBuckets
6: PPlan← (Range, d,NumberOfBuckets)
7: return PPlan

Each interval needs to be assigned to the smallest bucket that
it can fit in. By using the length of each granule and the
minimum start time of the space, we find the starting and
ending granule IDs for each interval. Then we can combine
these two IDs into one integer as bits.

1: function ASSIGN(interval, PP lan)
2: R← PPlan.Range
3: start← (interval.start−R.minStart)/PP lan.d
4: end← (ceil(interval.end−R.minStart)/PP lan.d)− 1
5: bucketId← (front≪ 16)|end
6: return bucketId

Bucket matching here is not simply equality. So, here we
implement a match function that first extracts the starting and
ending granule IDs of each bucket and returns true if the
buckets are overlapping.

1: function MATCH(bucketId1, bucketId2)
2: b1Start = bucketId1 ≫ 16
3: b1End = bucketId1&0xFFFF
4: b2Start = bucketId2 ≫ 16
5: b2End = bucketId2&0xFFFF
6: return (b1Start ≤ b2End) and (b1End ≥ b2Start)

Finally, we test two intervals i1 and i2 to see if they are
overlapping or not in the verification phase.

1: function VERIFY(i1, bucketId1, i2, bucketId2, PP lan)
2: return (i1.start < i2.end) and (i1.end > i2.start)

VI. FUDJ INFRASTRUCTURE

This section presents the components of the FUDJ Frame-
work which relies on the common concepts of built-in func-
tions, UDFs, and query optimization. Section VI-A explains
how new join algorithms can be registered through a novel
statement “CREATE JOIN”. Section VI-B describes how the
logic from external join libraries will be linked into the system
through proxy built-in functions. Section VI-C discusses how
the DBMSs can utilize FUDJs and generate optimized query

Proxy Built-in Function

DBMS Internal
Data Types

FUDJ Serializer /
Deserializer

DBMS Serializer /
Deserializer

FUDJ Library

External Function
Programming

Native Data Types

Fig. 7: A Proxy Built-in Function in FUDJ Framework

plans using rewrite rules. Finally, Section VI-D presents the
application of FUDJ on Apache AsterixDB.

A. Creating Joins

To facilitate a convenient installation of join libraries, FUDJ
introduces a new SQL statement called “CREATE JOIN.”
For the Apache AsterixDB example, a join library is a JAR
package that consists of the classes that implement the FUDJ
interfaces. Libraries are uploaded to the system through the
terminal. Query 4 is an example of creating a join with the
unique name “text similarity join” that takes two string keys,
and a double similarity threshold as inputs. The external logic
for this join is sourced from the “flexiblejoins” library, with the
full class name of “textsimilarity.TextSimilarityJoin.” Notably,
this join has three parameters. In this specific example, the join
is based on a similarity metric, and a predicate is considered
satisfied if the metric surpasses a specified threshold. Given
that the algorithm necessitates the threshold in all stages
(including prefix filtering), this information is embedded into
the caller function’s signature.

/* Creating a FUDJ*/
CREATE JOIN text similarity join(a: string , b: string , t :double)

RETURNS boolean
AS ” setsimilarity . SetSimilarityJoin ” AT flexiblejoins ;
/*Dropping a FUDJ*/
DROP JOIN text similarity join (a: string , b: string , t :double) ;

Query 4: Create Text-similarity Join

After executing Query 4, the DBMS creates all the corre-
sponding UDFs and registers the library information for them.
When it comes to removing a join, similar to other operations,
we only need to run “DROP JOIN text similarity join(a:
string, b: string, t: double),” and all UDFs will be removed.

B. Internal and External Actors

An efficient implementation of a join in DBMSs requires
access to the internal functionality of the DBMSs. Since this
is not a straightforward process for the users, FUDJ aims
to translate the external simple implementations into efficient
internal functions by extending the concept of UDFs. UDFs
are well-known components of modern DBMSs, allowing
users to implement custom functions and integrate them into
their system to process their data. With UDFs, complex join
predicates can be implemented, and various join operations can
be performed. However, since UDFs are primarily supported
as scalar functions, queries using UDFs may not achieve the
same level of performance as those employing optimized join
algorithms due to being processed by NLJ operators.

The FUDJ Framework revamps this principle to facilitate
user-defined joins. For each function within our programming
model, we provide a corresponding built-in function imple-
mented internally as internal actors. We also introduce a new
external function signature type associated with the FUDJ
framework. When a new join algorithm is created, the FUDJ
framework generates FUDJ-specific UDF signatures, which
include the join library information for all functions in the
programming model. These signatures are then registered with
the system as external actors. During runtime, whenever the
DBMS encounters an external actor call with the FUDJ’s
external function signature, it modifies the evaluator using
the information embedded in the signature. Subsequently, it
creates the internal actor evaluator and passes the external
FUDJ library information. Then in each internal actor, the
FUDJ library should be initiated as an object only once.

In each built-in function, DBMSs deserialize records before
processing. Most DBMSs internally implement data types for
various data types with specific serialization and deserializa-
tion methods. For example, Apache AsterixDB has specific
type handling internally for data types like “AInt” for integers.
However, in FUDJ, as the programming model is designed to
work with simple data types, an additional step is required to
convert DBMS-specific data into simple data types. Figure 7
shows how the data transfer works internally in a proxy built-
in function of FUDJ. It is worth noting that some types require
specific handling; for instance, intervals can be converted into
long arrays, where the first element represents the start time
and the second the end time. This aspect of the framework is
critical and requires careful implementation to avoid excessive
overhead during runtime. However, it is not a very expensive
step as the only requirement is retrieving the data from the
object that is already deserialized as we show with evaluations
in Section VII-B.

As discussed in Section IV, we have two states to con-
sider: SUMMARY and PPlan. Since DBMSs already have
solutions for built-in aggregate functions, we only need to
adhere to existing design principles and handle SUMMARY
as a regular state within a typical aggregate function. The
same principle applies to PPlan, which can be treated as
a single record with its type set as ”Object.” This approach
also simplifies state transfer, as both states appear as regular
records from the database perspective.

C. Query Optimizer Integration

The first task of the query optimizer is to determine whether
the join query includes a FUDJ predicate. This detection is
accomplished by examining the predicate function signature.
When a FUDJ predicate is detected, the query optimizer
retrieves the external library information from the metadata
and commences the generation of the join query plan. Based
on the commonalities of partition-based distributed joins that
are discussed in Section III, FUDJ modifies the query plan
and adds all required elements for each phase as depicted in
Figure 8. Please note that although Figure 8 shows the plan
starts with a data scan, the source of the data can be other

C
O

M
B

IN
E

PA
R

TI
TI

O
N

SU

M
M

A
R

IZ
E

R

DATA SCAN

local_aggregate(R.key) :
S1

AGGREGATE

R.key

PROJECT

global_aggregate(S1) :

S1

AGGREGATE

S

DATA SCAN

local_aggregate(S.key) :
S2

AGGREGATE

S.key

PROJECT

global_aggregate(S2) :

S2

AGGREGATE

CARTESIAN PRODUCT

divide(S1, S2) : C

ASSIGN

CARTESIAN PRODUCT CARTESIAN PRODUCT

R.key

PROJECT

S.key

PROJECT

assign(R.key, C) :
bucket_id1,R

UNNEST

assign(S.key, C) :
bucket_id2,S

UNNEST

match(bucket_id1,
bucket_id2)

JOIN

verify(R.key, bucket_id1,

S.key, bucket_id2, C)

JOIN

R ⋈ S

Fig. 8: Flexible User-Defined Distributed Join Logical Plan

operators too. The first group of elements added to the query
plan is about the SUMMARIZE phase and they locally and
globally aggregate the data and the summaries. The data is
first summarized through aggregate operators and The FUDJ
query plan starts with the scan of the data and continues
with aggregation For each stage in the FUDJ query plan, the
optimizer creates corresponding FUDJ external function calls.

During runtime, as mentioned in the preceding section,
each external FUDJ function undergoes modification to in-
corporate the related proxy built-in function, and external
library information is associated with it. The query optimizer
should also apply physical optimizations when applicable. In
this initial design, two further improvements are provided
in that context. The first one pertains to self-joins. To let
DBMSs optimize self-joins by replicating intermediate results
that are used multiple times during query processing, the
same proxy built-in functions can be used to handle both
sides of the join. For instance, in a Spatial self-join, the
resulting MBR (Minimum Bounding Rectangle) of one side
after the summarization stage can be replicated and fed into
the DIV IDE function since the MBR computation is the
same for both sides. Consequently, the only requirement for
the FUDJ framework is to detect whether FUDJ implements
separate SUMMARY and PARTITION stages or not.
This can be achieved by checking if FUDJ is overriding the
default summary and assign functions. If FUDJ uses the

default functions, the same function signature is used, enabling
the query optimizer to apply further optimizations.

The second optimization concerns selecting the appropriate
join operator for bucket matching. For single-join FUDJs
with a bucket matching condition as equality, the optimizer
can employ the Hash Join operator. This is advantageous, as
Hash Partitioning can also be applied. Similar to the previous
approach, the optimizer must check if the ’match’ function is
overridden or if it is using the default implementation to apply
further optimization by compelling the DBMS to utilize the
Hash Join operator and partitioning.

It is important to note that since the query optimizer
generates query plans for FUDJ join queries as part of its
overall optimization process, FUDJ query processing can take
advantage of all the optimizations applied by the optimization
engine. For example, if the join query involves filtering oper-
ations, the optimizer will prioritize executing them before the
join query plan. Similarly, if there is a group by operator in
the query, the optimizer can generate efficient query plans to
handle that part of the operation

D. FUDJ Prototype Implementation

To test the feasibility and scalability of FUDJ design,
we implemented two prototypes of FUDJ: a single-machine
standalone program, which we use for testing and debugging
new join implementations, and the other is built on Apache
AsterixDB, which tests the scalability on a distributed DBMS
engine. Notice that a user-provided implementation seamlessly
works on both due to our translation layer explained in
Section VI-B.

1) AsterixDB Implementation: Apache AsterixDB [49]
is an open-source, scalable Big Data Management System
(BDMS) that offers a flexible data model, distributed storage
and transactions, rapid data ingestion, and data-parallel query
execution runtime. This section briefly describes how we
implemented the FUDJ Framework on Apache AsterixDB by
adhering to the implementation guidelines.

Apache AsterixDB provides a variety of built-in functions
and supports UDFs for custom implementations. The FUDJ
framework enhances it by allowing developers to use Java
primitive types. While built-in aggregate functions exist, UDAs
are not currently supported. We modified the runtime mech-
anism to handle external aggregate functions by connecting
them through libraries.

Query optimization is done in Apache AsterixDB by
incorporating a set of predefined rules that dictate how queries
should be transformed and optimized. We implemented a
rewrite rule that checks the condition of the join query and
intervenes if the join condition involves a FUDJ function.
Then, the rule builds the query plan by following the steps
described in Section VI-C.

2) Standalone (Single-Machine) Version: One of the
biggest challenges for joining algorithm integration into
DBMSs is debugging and testing due to the complexity of
DBMSs. Having strict mechanisms for query processing and

data reading makes it hard to handle bugs or test new ideas eas-
ily without rebuilding or redeploying the system. Motivated by
these challenges, we also provide a single-machine standalone
version of the FUDJ Framework. The standalone version can
run any FUDJ algorithm for testing and debugging purposes.
Since it simply reads the data and feeds it to FUDJ, finding
the logical bugs or trying new ideas is straightforward. We
share Java implementation1 with this study, but it can also be
transformed into another programming language easily.

VII. EXPERIMENTS

This section evaluates the FUDJ framework applied to
Apache AsterixDB, and Spatial, Interval, and Text-similarity
FUDJ implementations. The evaluation begins with a produc-
tivity assessment of the implementation methods (using the
FUDJ framework and as built-in operators). Next, the section
demonstrates that FUDJ framework usage causes minimal
query processing overhead when compared to the built-in
approach. The section continues with the performance and
scalability evaluations of three example join implementations
and compares them to the on-top solution (NLJ operator with a
UDF). Finally, it studies alternative duplicate handling strate-
gies and outlines future directions for the FUDJ framework
and programming model by comparing them against advanced
optimized join implementations.

Hardware setup: The experiments run on a cluster with
one head node and 12 worker nodes. The head node has
Intel(R) Xeon(R) CPU E5 − 2609 v4 @ 1.70GHz processor,
128 of GB RAM, 2 TB of HDD, and 2×8-core processors
running CentOS and Java 17.0.1. The worker nodes have
Intel(R) Xeon(R) CPU E5-2603 v4 @1.70GHz processor, 64
GB of RAM, 10 TB of HDD, and 2×6-core processors running
CentOS and Java 17.0.1.

TABLE I: Datasets for FUDJ Experiments

Name Size #Records Key Type
Wildfires [50] 22.1 GB 18M Point

Parks [51] 7.7 GB 10M Polygon
NYCTaxi [52] 38.8 GB 173M Interval

AmazonReview [53] 58.3 GB 83M Text

Datasets: We use four real-world datasets. For spatial join
queries, Parks [51] and Wildfires [50] datasets are used, NYC-
Taxi [52] is used for interval join queries, and AmazonReview
[53] is used for text-similarity queries.

Implementations: FUDJ framework and all of the join
algorithms are implemented on Apache AsterixDB 0.9.8. The
three example join algorithms Spatial, Interval, and Text-
similarity that are based on studies [1], [18], [48] are im-
plemented from scratch, and we will refer to them as built-
in implementations. The FUDJ versions of the example join
algorithms in Java2 are shared with this work. Finally, we will
use the term on-top to refer to join query processing using the
NLJ operator. Lastly, the generated query plans for both the

1https://github.com/akilsevim/FUDJ-Single-Machine
2https://github.com/akilsevim/FUDJ

on-top and FUDJ versions are inspected. It is confirmed that
they benefit from Apache AsterixDB’s optimizations, such as
predicate pushdown.

/* Spatial Join */
SELECT p.id, count(1) c FROM Parks p, Wildfires w
WHERE ST Contains(p.boundary, w.location) GROUP BY p.id
/*Text− similarity Join */
SELECT COUNT(1) FROM AmazonReview r1, AmazonReview r2
WHERE r1.overall = 5 AND r2.overall = 4 AND

similarity jaccard(word tokens(r1.review) ,
word tokens(r2. review)) >= 0.9;

/* Interval Join */
SELECT COUNT(1) FROM NYCTaxi n1, NYCTaxi n2
WHERE n1.Vendor = 1 AND n2.Vendor = 2 AND

overlapping interval(n1.ride interval, n2. ride interval) ;

Query 5: Queries for the experiments

Workload(Queries): We evaluate join implementations by
using the queries from Query 5. The spatial join query counts
the number of wildfires that occurred in each park. Text-
similarity join query computes the Jaccard Similarity of each
review pair that has overall ratings 4 and 5 and counts the
similar ones. Overlapping interval join query finds overlapping
taxi rides belonging to different vendors. For each experiment,
we stop query processing after 4000 seconds and assume the
setup is not scalable for processing the query.

A. Productivity

Since both FUDJ and Built-in versions implement the same
algorithms, we use Lines of Code (LOC) as a metric for
productivity evaluations. For built-in versions, we implement
a rewrite rule for the optimizer, an aggregate function to
summarize, an unnesting function to assign records to buckets,
a built-in function for bucket matching, and a built-in verify
function to filter keys pairs and deduplication if necessary.
On the other hand, as we explained in Section IV, FUDJ
framework empowers the developer to define the logic for
each function, allowing for flexibility and customization while
significantly reducing the LOC required. Table II shows that

TABLE II: Written Lines-of-codes for Example Join Imple-
mentations Using FUDJ Framework and as Built-in Operators

Implementation Types
Join Types FUDJ Built-in

Spatial 141 loc 1936 loc
Interval 95 loc 1641 loc

Text-similarity 231 loc 1823 loc

FUDJ versions of the Spatial, Interval, and Text-similarity
joins demand significantly fewer LOC, highlighting the effi-
ciency and developer-centric design of the framework and the
programming model. Please note that with the LOC metric,
we are not comparing FUDJ against the use of programming
paradigms in distributed systems. This is because the result-
ing applications cannot be directly integrated into DBMSs.
Therefore, it is still necessary to implement the algorithms
from scratch.

Furthermore, reduced LOC in FUDJ versions boosts produc-
tivity and streamlines debugging, testing, and code reviewing.

https://github.com/akilsevim/FUDJ-Single-Machine
https://github.com/akilsevim/FUDJ-Single-Machine
https://github.com/akilsevim/FUDJ-Single-Machine
https://github.com/akilsevim/FUDJ-Single-Machine
https://github.com/akilsevim/FUDJ

28
K

28
0K

2.
8M 28
M

100

102

E
xe

cu
tio

n
Ti

m
e

(s
ec

.) (a) Spatial
n=1200

17
3K

34
6K

86
5K

101

102

Number of Records

(b) Interval
n=1000

FUDJ Built-in On-top

83
K

16
6K

33
2K

103

(c) Set-similartiy
t=0.9

Fig. 9: Join Performance of FUDJ, Built-in, and On-top

With fewer lines to manage, developers can pinpoint issues
more easily, expediting the debugging phase. Moreover, users’
control over FUDJ function logic allows fine-tuning for spe-
cific testing scenarios, enhancing application robustness and
reliability. These advantages underscore FUDJ’s efficacy in
distributed programming and database internals.

The integration of new join algorithms into traditional
DBMSs often incurs significant deployment costs. Typically,
after finalizing the implementation, DBMS software needs to
be rebuilt, a process taking approximately 5 minutes in our
experimental environment. However, in distributed systems,
deploying the rebuilt package to each node adds further com-
plexity and time. Additionally, DBMS often requires stopping
and rerunning, causing disruptions. In contrast, FUDJ offers
a distinct advantage. It eliminates the need for extensive de-
ployment procedures, allowing swift deployment of new FUDJ
packages within seconds without system disruption, making it
an efficient choice for introducing new join algorithms.

B. Performance

Figure 9 shows the evaluation of the three implementation
methods run on 12-core for a variety of data sizes. Here
we run queries using a subset of the datasets to control the
workload. For Spatial FUDJ, the number of buckets, which is
equivalent to the grid size that divides the space into tiles is
set to 1200 × 1200, and for the Interval FUDJ, the number
of buckets which is used to divide the time span into equal
segments is set to 1000. Finally, for Text-similarity FUDJ,
we use 0.9 as our similarity threshold since the algorithm is
an exact similarity algorithm and higher thresholds are useful
when it comes to the analysis of similar reviews that have
different overall ratings. In this experiment, the Spatial FUDJ
demonstrates a speedup of around 1200x, while the Text-
similarity FUDJ achieves a 6.5x improvement, and the Interval
FUDJ delivers approximately a 2.5x boost in performance.
Since the on-top approach cannot scale for Text-similarity
and Interval joins, these speed-ups had to be measured for
small datasets. Hence, the speed up compared to the Spatial
FUDJ seems smaller. In addition, we observe a high correla-
tion between the performance of Text-similarity join and the
dataset characteristics. We further discuss this in the following

48 96 144
0

100

200

300

E
xe

cu
tio

n
Ti

m
e

(s
ec

.) (a) Spatial
n=1200

48 96 144
0

100

200

300

Number of Cores

(b) Interval
n=1000

FUDJ Built-in

48 96 144
0

200

400

600

(c)Set-similarity
t=0.9

Fig. 10: FUDJ Query Execution Times vs Number of Cores

sections. Finally, we also observe that Interval join suffers
mostly from NLJ operator that handles the bucket matching.
While FUDJ framework can utilize HJ for Text-similarity and
Spatial joins, it has to use NLJ since its matching function is
a theta function.

Figure 9 also shows that the overhead caused by the FUDJ
extensible framework is minimal. The difference between
FUDJ and Built-in methods for Spatial and Interval joins is
approximately 0 per record, while it is 0.061 ms. for Text-
similarity. This cost can be explained by the cost of having
summaries and config objects as Hash Maps.

C. Scalability

To evaluate the scalability of our design, we present query
execution times of three versions of each algorithm by chang-
ing both the number of cores for joins and dataset sizes. Fig-
ure 10 shows that Spatial and Text-similarity FUDJ algorithms
scale well as compared to the on-top approach. Furthermore,
the difference between the built-in and FUDJ implementations
remains limited as we increase the number of cores and the
data size. As a result, FUDJ does not cause any issues from
the scalability perspective. On the other hand, as can be seen
from the charts for Interval FUDJ, we cannot say the scaling is
promising. This is due to the multi-join notion of the Interval
FUDJ that results in the NLJ operator used during the partition
matching phase. Since there is no partitioning mechanism
for Theta Join in Apache AsterixDB, this operation requires
one side to be randomly partitioned resulting in performance
degrading. We acknowledge this limitation and are developing
an efficient Theta Join operator for future enhancements.

D. Characteristics of the FUDJ Algorithms

In this section, we analyze the characteristics of the FUDJ
algorithms and the datasets. First, we study the effect of the
number of buckets for Spatial FUDJ, and Interval FUDJ.
Then, we show how the similarity threshold affects the Text-
similarity FUDJs performance.

1) Number of buckets: Deciding the number of buckets
is a crucial step for any distributed join algorithm. Before
starting to evaluate FUDJ framework, we first analyze the
logical characteristics of the FUDJ algorithms and dataset.
As we discussed in Section III, this step is crucial and a

5
00

1,
0
0
0

1,
5
0
0

2
,0
0
0

2,
5
00

0

500

1,000

1,500

Number of Buckets

E
xe

cu
tio

n
Ti

m
e

(s
ec

.) (a) Spatial
10M▷◁18M

20
0

40
0

60
0

8
00

1,
0
00

200

400

600

(b) Interval
173K▷◁173K

12-Core 48-Core 96-Core 144-Core

0.
86

0.
88 0.
9

0.
92

0.
94

100
500

2000

Sim. Threshold

(c) Text-similarity
415K▷◁415K

Fig. 11: Effect of Num. of Buckets and Similarity Threshold

big challenge in complex join query processing. For Spatial
FUDJ and Interval FUDJ, we test the performance of the
query processing by varying the number of buckets. The query
execution times are shown in Figure 12.

2) Similarity threshold: On the other hand, although Text
similarity FUDJ does not require that the number of buckets
is determined, the characteristics of the dataset and most
importantly the similarity threshold are the main factors for
the execution performance. Furthermore, due to the duplication
and prefix filtering method, it starts to lose its benefits for low
thresholds as can be seen from Figure 12. We used the best-
performing number of buckets for the rest of the Spatial and
Interval FUDJ experiments. For Text-similarity FUDJ, we pick
0.9 as the similarity threshold since the goal of the query is
to find how 5-star reviews are similar to the 4-star reviews.

E. Duplicate Handling Methods

Duplicate handling is an important aspect of multi-assign
optimized join algorithms as discussed in Section III. In FUDJ
framework, the default duplicate handling method is Duplicate
Avoidance since it is more promising by not requiring an
additional shuffling stage after bucket matching. As a result,
the Text-similarity FUDJ is using the Duplicate Avoidance
in contrast to the proposed method in its original study
[48]. In this section, we first test the performance of these
two methods on Text-similarity join. Figure 12 shows that
Duplicate Avoidance outperforms Duplicate Elimination in all
of the dataset sizes by providing 1.15x speedup on average.
The FUDJ programming model also allows the developers
to implement their own Duplicate Avoidance methods. For
instance, in Spatial FUDJ, we implement the Reference Point
method described in [18] and compare the query execution
performances of both methods for a various number of buck-
ets. Since the number of buckets is the biggest factor in
the duplication, we measure execution times for a variety
of numbers. Figure 12b shows that there is not any notable
difference between the Reference Point and FUDJ’s duplicate
avoidance methods. Consequently, we show that our default
method can compete with one of the most successful Duplicate
Avoidance methods without any tuning from the DBMS admin
or implementation from the developer.

83K 249K 415K

200
400
600
800

#RecordsE
xe

cu
tio

n
Ti

m
e

(s
ec

.)

(a) Set-similarity
t=0.9

1,0002,000

#Buckets

(b) Spatial
10M▷◁18M

Avoidance Reference Point
Elimination

28K 280K 2.8M

2

4

#Records

(c) Spatial
10M ▷◁ 18M, n=1200

Spatial FUDJ
Adv. Spatial J.

Fig. 12: Duplicate Handling Strategies, and FUDJ and Ad-
vanced Optimized Spatial Join Comparison

F. The Effect of Local Join Optimizations

Finally, we will discuss the performance improvement po-
tential of FUDJ by comparing it to existing work such as
[4], [18], which involve advanced optimization techniques
like plane-sweep. For this purpose, we implemented a highly
customized Spatial Join Operator on Apache AsterixDB. The
main advantage of this operator compared to the FUDJ version
is its ability to apply local optimizations while joining the
buckets. Specifically, it employs the plane-sweep method by
first sorting the geometries in each tile and then applying
spatial merging to efficiently join geometries within each
tile. Figure 12c illustrates that having local optimization for
spatial joins yields a 1.38x speedup on average. We will
further explore this area and propose new operators enabling
developers to implement custom local joining mechanisms for
additional optimizations.

VIII. CONCLUSIONS AND FUTURE WORK

By offering FUDJ, a system can greatly simplify the way
that distributed join algorithms are implemented in data anal-
ysis. Such a system would empower users with varying levels
of expertise to efficiently leverage efficient purpose-designed
join algorithms, significantly reducing the code and knowledge
required for their implementation. The utilization of native
data types, flexible query execution plans, integration with
the query optimization engine, easy installation of compact
join libraries, and comparable performance to built-in imple-
mentations would unlock new possibilities for efficient join
operations. Ultimately, the system would facilitate more com-
prehensive data analysis, help users uncover hidden insights,
and drive accurate decision-making in diverse applications.

In the future, we plan to further enhance our system by
adding support for sort-merge-based distributed joins and local
join optimizations, such as plane-sweep. Additionally, we
aim to automate the process of finding the optimum number
of buckets by gathering more dataset statistics during the
SUMMARIZE phase. Furthermore, we intend to introduce
a Ternary Join Operator to combine MATCH and VERIFY
operations, as well as a Theta Join Operator to enhance SAMJ
processing for non-equality-based bucket matching.

REFERENCES

[1] A. Dignös, M. H. Böhlen, and J. Gamper, “Overlap interval partition
join,” in International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, C. E. Dyreson, F. Li, and
M. T. Özsu, Eds. ACM, 2014, pp. 1459–1470. [Online]. Available:
https://doi.org/10.1145/2588555.2612175

[2] N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng, “Signature-
based trajectory similarity join,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 4, pp. 870–883, 2017. [Online]. Available: https:
//doi.org/10.1109/TKDE.2017.2651821

[3] L. Chen, S. Shang, C. S. Jensen, B. Yao, and P. Kalnis, “Parallel
semantic trajectory similarity join,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20-24, 2020. IEEE, 2020, pp. 997–1008. [Online]. Available:
https://doi.org/10.1109/ICDE48307.2020.00091

[4] P. Bouros and N. Mamoulis, “A forward scan based plane
sweep algorithm for parallel interval joins,” Proc. VLDB Endow.,
vol. 10, no. 11, pp. 1346–1357, 2017. [Online]. Available: http:
//www.vldb.org/pvldb/vol10/p1346-bouros.pdf

[5] T. Hütter, N. Augsten, C. M. Kirsch, M. J. Carey, and C. Li,
“JEDI: these aren’t the JSON documents you’re looking for?” in
SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, Z. Ives, A. Bonifati, and
A. E. Abbadi, Eds. ACM, 2022, pp. 1584–1597. [Online]. Available:
https://doi.org/10.1145/3514221.3517850

[6] N. Karpov and Q. Zhang, “Syncsignature: A simple, efficient,
parallelizable framework for tree similarity joins,” Proc. VLDB
Endow., vol. 16, no. 2, p. 330–342, oct 2022. [Online]. Available:
https://doi.org/10.14778/3565816.3565833

[7] H. Yuan and G. Li, “Distributed in-memory trajectory similarity
search and join on road network,” in 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April
8-11, 2019. IEEE, 2019, pp. 1262–1273. [Online]. Available:
https://doi.org/10.1109/ICDE.2019.00115

[8] Z. Shang, G. Li, and Z. Bao, “DITA: distributed in-memory trajectory
analytics,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, G. Das, C. M. Jermaine, and P. A.
Bernstein, Eds. ACM, 2018, pp. 725–740. [Online]. Available:
https://doi.org/10.1145/3183713.3183743

[9] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
495–506. [Online]. Available: https://doi.org/10.1145/1807167.1807222

[10] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran, and J. D.
Ullman, “Fuzzy joins using mapreduce,” in IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012, A. Kementsietsidis and M. A. V.
Salles, Eds. IEEE Computer Society, 2012, pp. 498–509. [Online].
Available: https://doi.org/10.1109/ICDE.2012.66

[11] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng, “Massjoin:
A mapreduce-based method for scalable string similarity joins,”
in IEEE 30th International Conference on Data Engineering,
Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, I. F.
Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, Eds.
IEEE Computer Society, 2014, pp. 340–351. [Online]. Available:
https://doi.org/10.1109/ICDE.2014.6816663

[12] D. Deng, G. Li, H. Wen, and J. Feng, “An efficient partition
based method for exact set similarity joins,” Proc. VLDB Endow.,
vol. 9, no. 4, pp. 360–371, 2015. [Online]. Available: http:
//www.vldb.org/pvldb/vol9/p360-deng.pdf

[13] J. Karimov, T. Rabl, and V. Markl, “Ajoin: Ad-hoc stream joins at
scale,” Proc. VLDB Endow., vol. 13, no. 4, p. 435–448, dec 2019.
[Online]. Available: https://doi.org/10.14778/3372716.3372718

[14] S. A. Shaikh, K. Mariam, H. Kitagawa, and K.-S. Kim, “Geoflink: A
distributed and scalable framework for the real-time processing of spatial
streams,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, ser. CIKM ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 3149–3156.
[Online]. Available: https://doi.org/10.1145/3340531.3412761

[15] Y. N. Silva, W. G. Aref, and M. H. Ali, “The similarity join database
operator,” in 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE 2010), 2010, pp. 892–903.

[16] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. Borkar, M. J. Carey,
and C. Li, “Similarity query support in big data management systems,”
Information Systems, vol. 88, p. 101455, 2020.

[17] J. Carman, Eldon P., “Interval joins for big data,” Ph.D.
dissertation, 2020. [Online]. Available: https://www.proquest.com/
dissertations-theses/interval-joins-big-data/docview/2458188626/se-2

[18] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,”
in Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996,
H. V. Jagadish and I. S. Mumick, Eds. ACM Press, 1996, pp.
259–270. [Online]. Available: https://doi.org/10.1145/233269.233338

[19] M. Stonebraker, J. Anton, and M. Hirohama, “Extendability in
POSTGRES,” IEEE Data Eng. Bull., vol. 10, no. 2, pp. 16–23, 1987.
[Online]. Available: http://sites.computer.org/debull/87JUN-CD.pdf

[20] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized
search trees for database systems,” in VLDB’95, Proceedings of 21th
International Conference on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland, U. Dayal, P. M. D. Gray, and S. Nishio,
Eds. Morgan Kaufmann, 1995, pp. 562–573. [Online]. Available:
http://www.vldb.org/conf/1995/P562.PDF

[21] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, “SJMR:
parallelizing spatial join with mapreduce on clusters,” in Proceedings
of the 2009 IEEE International Conference on Cluster Computing,
August 31 - September 4, 2009, New Orleans, Louisiana, USA.
IEEE Computer Society, 2009, pp. 1–8. [Online]. Available: https:
//doi.org/10.1109/CLUSTR.2009.5289178

[22] H. Gupta, B. Chawda, S. Negi, T. A. Faruquie, L. V. Subramaniam,
and M. K. Mohania, “Processing multi-way spatial joins on
map-reduce,” in Joint 2013 EDBT/ICDT Conferences, EDBT ’13
Proceedings, Genoa, Italy, March 18-22, 2013, G. Guerrini and
N. W. Paton, Eds. ACM, 2013, pp. 113–124. [Online]. Available:
https://doi.org/10.1145/2452376.2452390

[23] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in 2015 31st IEEE International Conference on
Data Engineering Workshops, 2015, pp. 34–41.

[24] E. H. Jacox and H. Samet, “Iterative spatial join,” ACM Trans.
Database Syst., vol. 28, no. 3, p. 230–256, sep 2003. [Online].
Available: https://doi.org/10.1145/937598.937600

[25] P. Bouros and N. Mamoulis, “Spatial joins: What’s next?” SIGSPATIAL
Special, vol. 11, no. 1, p. 13–21, aug 2019. [Online]. Available:
https://doi.org/10.1145/3355491.3355494

[26] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, p. 7–es, mar 2007. [Online]. Available:
https://doi.org/10.1145/1206049.1206056

[27] X. Zhou, D. J. Abel, and D. Truffet, “Data partitioning for parallel spatial
join processing,” Geoinformatica, vol. 2, pp. 175–204, 1998.

[28] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in 2015 31st IEEE International Conference on
Data Engineering Workshops, 2015, pp. 34–41.

[29] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proceedings of the 16th International Conference on World
Wide Web, ser. WWW ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 131–140. [Online]. Available:
https://doi.org/10.1145/1242572.1242591

[30] L. A. Ribeiro and T. Härder, “Generalizing prefix filtering to improve set
similarity joins,” Information Systems, vol. 36, no. 1, pp. 62–78, 2011,
selected Papers from the 13th East-European Conference on Advances in
Databases and Information Systems (ADBIS 2009). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437910000657

[31] W. Mann and N. Augsten, “PEL: position-enhanced length filter for set
similarity joins,” in Proceedings of the 26th GI-Workshop Grundlagen
von Datenbanken, Bozen-Bolzano, Italy, October 21st to 24th, 2014,
ser. CEUR Workshop Proceedings, F. Klan, G. Specht, and H. Gamper,
Eds., vol. 1313. CEUR-WS.org, 2014, pp. 89–94. [Online]. Available:
https://ceur-ws.org/Vol-1313/paper 16.pdf

[32] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in Proceedings
of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and

https://doi.org/10.1145/2588555.2612175
https://doi.org/10.1109/TKDE.2017.2651821
https://doi.org/10.1109/TKDE.2017.2651821
https://doi.org/10.1109/ICDE48307.2020.00091
http://www.vldb.org/pvldb/vol10/p1346-bouros.pdf
http://www.vldb.org/pvldb/vol10/p1346-bouros.pdf
https://doi.org/10.1145/3514221.3517850
https://doi.org/10.14778/3565816.3565833
https://doi.org/10.1109/ICDE.2019.00115
https://doi.org/10.1145/3183713.3183743
https://doi.org/10.1145/1807167.1807222
https://doi.org/10.1109/ICDE.2012.66
https://doi.org/10.1109/ICDE.2014.6816663
http://www.vldb.org/pvldb/vol9/p360-deng.pdf
http://www.vldb.org/pvldb/vol9/p360-deng.pdf
https://doi.org/10.14778/3372716.3372718
https://doi.org/10.1145/3340531.3412761
https://www.proquest.com/dissertations-theses/interval-joins-big-data/docview/2458188626/se-2
https://www.proquest.com/dissertations-theses/interval-joins-big-data/docview/2458188626/se-2
https://doi.org/10.1145/233269.233338
http://sites.computer.org/debull/87JUN-CD.pdf
http://www.vldb.org/conf/1995/P562.PDF
https://doi.org/10.1109/CLUSTR.2009.5289178
https://doi.org/10.1109/CLUSTR.2009.5289178
https://doi.org/10.1145/2452376.2452390
https://doi.org/10.1145/937598.937600
https://doi.org/10.1145/3355491.3355494
https://doi.org/10.1145/1206049.1206056
https://doi.org/10.1145/1242572.1242591
https://www.sciencedirect.com/science/article/pii/S0306437910000657
https://ceur-ws.org/Vol-1313/paper_16.pdf

A. Fuxman, Eds. ACM, 2012, pp. 85–96. [Online]. Available:
https://doi.org/10.1145/2213836.2213847

[33] Y. N. Silva, S. S. Pearson, J. Chon, and R. Roberts, “Similarity
joins: Their implementation and interactions with other database
operators,” Information Systems, vol. 52, pp. 149–162, 2015, special
Issue on Selected Papers from SISAP 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437915000186

[34] P. Bakalov, M. Hadjieleftheriou, E. Keogh, and V. J. Tsotras, “Efficient
trajectory joins using symbolic representations,” in Proceedings of the
6th International Conference on Mobile Data Management, 2005, pp.
86–93.

[35] P. Bakalov and V. J. Tsotras, “Continuous spatiotemporal trajectory
joins,” in GeoSensor Networks: Second International Conference, GSN
2006, Lecture Notes in Computer Science, vol 4540. Springer, 2008,
pp. 109–128.

[36] Y. Chen and J. M. Patel, “Design and evaluation of trajectory join
algorithms,” in Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2009, pp.
266–275.

[37] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis,
“Parallel trajectory similarity joins in spatial networks,” The VLDB
Journal, vol. 27, no. 3, pp. 395–420, 2018.

[38] S. Wang, Z. Bao, J. S. Culpepper, and G. Cong, “A survey on trajectory
data management, analytics, and learning,” ACM Comput. Surv., vol. 54,
no. 2, mar 2021. [Online]. Available: https://doi.org/10.1145/3440207

[39] A. Dignös, M. H. Böhlen, J. Gamper, C. S. Jensen, and P. Moser,
“Leveraging range joins for the computation of overlap joins,”
VLDB J., vol. 31, no. 1, pp. 75–99, 2022. [Online]. Available:
https://doi.org/10.1007/s00778-021-00692-3

[40] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing
of k nearest neighbor joins using mapreduce,” Proc. VLDB Endow.,
vol. 5, no. 10, p. 1016–1027, jun 2012. [Online]. Available:
https://doi.org/10.14778/2336664.2336674

[41] A. Shahvarani and H. Jacobsen, “Distributed stream KNN join,” in
SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, G. Li, Z. Li, S. Idreos, and
D. Srivastava, Eds. ACM, 2021, pp. 1597–1609. [Online]. Available:
https://doi.org/10.1145/3448016.3457269

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,”
in Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, S. D. Gribble and D. Katabi, Eds. USENIX
Association, 2012, pp. 15–28. [Online]. Available: https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/zaharia

[44] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: a programming model and execution framework for
web-scale analytical processing,” in Proceedings of the 1st ACM sym-
posium on Cloud computing, 2010, pp. 119–130.

[45] M. Carey and L. Haas, “Extensible database management systems,”
ACM SIGMOD Record, vol. 19, no. 4, pp. 54–60, 1990.

[46] M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems, 4th Edition. Springer, 2020. [Online]. Available: https:
//doi.org/10.1007/978-3-030-26253-2

[47] M. Bandle, J. Giceva, and T. Neumann, “To partition, or not to partition,
that is the join question in a real system,” in SIGMOD ’21: International
Conference on Management of Data, Virtual Event, China, June 20-25,
2021, G. Li, Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp.
168–180. [Online]. Available: https://doi.org/10.1145/3448016.3452831

[48] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. R. Borkar,
M. J. Carey, and C. Li, “Similarity query support in big data
management systems,” Inf. Syst., vol. 88, 2020. [Online]. Available:
https://doi.org/10.1016/j.is.2019.101455

[49] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok,
N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann, “Asterixdb: A scalable, open source BDMS,” Proc.
VLDB Endow., vol. 7, no. 14, pp. 1905–1916, 2014. [Online]. Available:
http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf

[50] S. Singla, T. Diao, A. Mukhopadhyay, A. Eldawy, R. Shachter, and
M. Kochenderfer, “Wildfiredb : an open-source dataset that links
wildfire occurrence with relevant features,” 2021, retrieved from UCR-
STAR https://star.cs.ucr.edu/?wildfiredb&d.

[51] A. Eldawy and M. F. Mokbel, “Boundaries of parks and green areas from
all over the world as extracted from openstreetmap.” 2019, retrieved from
UCR-STAR https://star.cs.ucr.edu/?OSM2015/parks&d.

[52] C. Wong, “Pickup and drop-off locations of taxi rides in new york city,”
2019, retrieved from UCR-STAR https://star.cs.ucr.edu/?NYCTaxi&d.

[53] R. He and J. J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in Proceedings
of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, April 11 - 15, 2016, J. Bourdeau, J. Hendler,
R. Nkambou, I. Horrocks, and B. Y. Zhao, Eds. ACM, 2016, pp.
507–517. [Online]. Available: https://doi.org/10.1145/2872427.2883037

https://doi.org/10.1145/2213836.2213847
https://www.sciencedirect.com/science/article/pii/S0306437915000186
https://doi.org/10.1145/3440207
https://doi.org/10.1007/s00778-021-00692-3
https://doi.org/10.14778/2336664.2336674
https://doi.org/10.1145/3448016.3457269
http://doi.acm.org/10.1145/1327452.1327492
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1016/j.is.2019.101455
http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf
https://star.cs.ucr.edu/?wildfiredb&d
https://star.cs.ucr.edu/?OSM2015/parks&d
https://star.cs.ucr.edu/?NYCTaxi&d
https://doi.org/10.1145/2872427.2883037

	Introduction
	Motivation
	A New Approach

	Related Work
	Common Challenges in Distributed Join
	Partitioning
	Joining

	Programming Model
	SUMMARIZE
	PARTITION
	COMBINE

	Example Implementations
	Spatial FUDJ
	Text Similarity FUDJ
	Overlapping Intervals FUDJ

	FUDJ Infrastructure
	Creating Joins
	Internal and External Actors
	Query Optimizer Integration
	FUDJ Prototype Implementation
	AsterixDB Implementation
	Standalone (Single-Machine) Version

	Experiments
	Productivity
	Performance
	Scalability
	Characteristics of the FUDJ Algorithms
	Number of buckets
	Similarity threshold

	Duplicate Handling Methods
	The Effect of Local Join Optimizations

	Conclusions and Future Work
	References

