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Learning Objectives 

n  Errors, Testing, debugging, test process, CFG, correctness, 
reliability, oracles. 

n  Finite state machines 

n  Testing techniques 
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Errors, faults, failures 
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Errors 

Errors are a part of our daily life.  
 
Humans make errors in their thoughts, actions, and in 
the products that might result from their 
actions.  
 
Errors occur wherever humans are involved in taking 
actions and making decisions. 

These fundamental facts of human 
existence make testing an essential 
activity.  
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Errors: Examples 
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Error, faults, failures 

Tester may make a mistake 
In observing the behavior 
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Software Quality 
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Software quality 

Static quality attributes:  structured, maintainable, 
testable code as well as the availability of correct and 
complete documentation. 

Dynamic quality attributes:  software reliability, 
correctness, completeness, consistency, usability, and 
performance 
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Software quality (contd.) 

Completeness refers to the availability of all features listed 
in the requirements, or in the user manual. An incomplete 
software is one that does not fully implement all features 
required. 

Consistency refers to adherence to a common set of 
conventions and assumptions. For example, all buttons in the 
user interface might follow a common color coding 
convention. An example of inconsistency would be when a 
database application displays the date of birth of a person in 
the database in different formats ignoring user preference. 
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Software quality (contd.) 

Usability refers to the ease with which an application can be 
used. This is an area in itself and there exist techniques for 
usability testing. Psychology plays an important role in the 
design of  techniques for usability testing.  

Performance refers to the time the application takes to 
perform a requested task. It is considered as a non-functional 
requirement. It is specified in terms such as ``This task must 
be performed at the rate of X units of activity in one second 
on a machine running at speed Y, having Z gigabytes of 
memory."  
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Requirements, input domain, behavior, 
correctness, reliability 
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Requirements, behavior, correctness 

Requirement 1: It is required to write a  
program that inputs two integers and outputs the 
maximum of these. 

Requirement 2: It is required to write a  
program that inputs a sequence of integers and outputs the 
sorted version of this sequence. 

Requirements leading to two different programs:  
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Requirements: Incompleteness 
Suppose that program max is developed to satisfy Requirement 1. 
The expected output of max when the input integers are 13 and 19 
can be easily determined to be 19.  

Suppose now that the tester wants to know if the two integers are to 
be input to the program on one line followed by a carriage return, or 
on two separate lines with a carriage return typed in after each 
number. The requirement as stated above fails to provide an answer 
to this question.  
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Requirements: Ambiguity 

Requirement 2   is ambiguous.  It is not clear whether the input 
sequence  is to sorted in  ascending or in descending order. The 
behavior of sort program, written to satisfy this requirement, will 
depend on the decision taken by the programmer while writing 
sort. 
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Input domain (Input space) 

The set of all possible inputs to a program P  is known as the input 
domain or input space,  of P. 

Using Requirement 1 above we find the input domain of max 
to be the set of all pairs of integers where each element in the pair 
integers is in the range -32,768 till 32,767. 
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Input domain (Continued) 

Modified Requirement 2:  
It is required to write a program that inputs a 
sequence of integers and outputs the integers in this sequence 
sorted in either ascending or descending order. The order of 
the output sequence is determined by an input request 
character which should be ``A'' when an ascending sequence 
is desired, and ``D'' otherwise.  
 
While providing input to the program, the request character is 
input first followed by the sequence of integers to be sorted; 
the sequence is terminated with a period. 
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Input domain (Continued) 

Based on the above modified requirement, the input domain 
for sort is a set of pairs. The first element of the pair is a 
character. The second element of the pair is a sequence of 
zero or more integers ending with a period. 
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Valid/Invalid Inputs 

The modified requirement for sort  mentions that the 
request characters can be ``A'' and ``D'', but fails to answer 
the question ``What if the user types a different character ?’’ 
 
When using sort it is certainly possible for the user to type a 
character other than ``A'' and ``D''. Any character other than 
``A'’ and ``D'' is considered as invalid input to sort. The 
requirement for sort does not specify what action it should 
take when an invalid input is encountered. 
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Correctness vs. Reliability 

Though correctness of a program is  desirable, it is almost 
never the objective of testing.  
 
To establish correctness via testing would imply testing a 
program on all elements in the input domain. In most cases 
that are encountered in practice, this is impossible to 
accomplish.  
 
 Thus correctness is established via 

mathematical proofs of programs.  
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Correctness and Testing 

While correctness attempts to establish that the program is 
error free, testing attempts to find if there are any errors in it.  
Thus testing does not demonstrate that a program is error free. 

Testing, debugging, and the error removal processes 
together increase our confidence in the correct functioning 
of the program under test. 
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Software reliability: two definitions 

Software reliability [ANSI/IEEE Std 729-1983]: is the 
probability of failure free operation of software over a 
given time interval and under given conditions. 

Software reliability is the probability of failure free 
operation  of software in its intended environment. 
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Operational profile 

An operational profile is a  numerical description of how a 
program is used. 

Consider a sort program which, on any given execution, 
allows any one of two types of input sequences. Sample 
operational profiles for sort follow. 
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Operational profile 
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Operational profile 
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Testing, debugging, Verification 
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Testing and debugging 

Testing is the process of determining if a program has any 
errors.  
 
When testing reveals an error, the process used to determine 
the cause of this error and to remove it, is known as debugging.  
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A test/debug cycle 

No Yes 
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Test plan 

A test cycle is often guided by a test plan. 

Example: The sort program is to be tested to meet the 
requirements given earlier. Specifically, the following needs to 
be done. 

•  Execute sort on at least two input sequences, one 
with ``A'' and the other with ``D'' as request 
characters. 
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Test plan (contd.) 

•  Execute the program on an empty input 
sequence. 

•  Test the program for robustness against  
 erroneous inputs such as ``R'' typed in as the request 
character. 

•  All failures of the test program should be recorded in a 
suitable file using the Company Failure Report Form. 
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Test case/data 

A test case is a pair consisting of test data to  be input to 
the program and the expected output. The test data is a 
set of values, one for each input variable.   

A test set is a collection of zero or more test cases.  

Sample test case for sort:  
 
Test data: <''A'’ 12 -29 32 > 
Expected output: -29 12 32 
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Program behavior 

Can be specified in several ways: plain natural language, a 
state diagram,   formal mathematical specification, etc.  

 
A state diagram specifies program states and how the 

program changes its state on an input sequence. 
inputs. 

© Aditya P. Mathur 2005 
32 

Program behavior: Example 

Consider a menu 
driven application. 
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Program behavior: Example (contd.) 

State 
Diagram 
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Behavior: observation and analysis 

The entity that performs the task of checking the 
correctness of the observed behavior is known as an 
oracle.  

In the first step one observes the behavior. 
 
In the second step one analyzes the observed behavior to 
check if it is correct or not. Both these steps could be quite 
complex for large commercial programs. 
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Oracle: Example 
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Oracle: Programs 

Oracles can also be programs designed to check the behavior 
of other programs.  

For example, one might use a matrix multiplication program 
to check if a matrix inversion program has produced the correct 
output. In this case, the matrix inversion program inverts a given 
matrix A and generates B as the output matrix. 
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Oracle: Construction 

Construction of automated oracles, such as the one to check 
a matrix multiplication program or a sort program, requires 
the determination of input-output relationship.  

In general, the construction of automated oracles is a 
complex undertaking. 
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Testing and verification 

Program verification aims at proving the correctness of 
programs by showing that it contains no errors. This is very 
different from testing that aims at uncovering errors in a 
program.  

Program verification and testing are best considered as 
complementary techniques. In practice, one can shed program 
verification, but not testing.  
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Testing and verification (contd.) 

Testing is not a perfect technique in that a program might 
contain errors despite the success of a set of tests. 

Verification might appear to be perfect technique as it promises 
to verify that a program is free from errors. However, the person 
who verified a program might have made mistake in the 
verification process; there might be an incorrect assumption on 
the input conditions; incorrect assumptions might be made 
regarding the components that interface with the program, and 
so on.   

Verified and published programs have been shown 
to be incorrect. 40 

Program representation: Control flow 
graphs 
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Program representation: Basic blocks 

A basic block in  program P is a sequence of consecutive 
statements with a single entry and a single exit point.  Thus 
a  block has  unique entry and  exit points.  

Control always enters a basic block at its entry point and exits 
from its exit point. There is no possibility of exit or a halt at any 
point inside the basic block except at its exit point. The entry 
and exit points of a basic block coincide when the block 
contains only one statement. 
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Basic blocks: Example 
Example: Computing x raised to y 
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Basic blocks: Example (contd.) 
Basic blocks 
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Control Flow Graph (CFG) 

A control flow graph  (or flow graph) G is defined as a finite set N of 
nodes and a finite set E of edges.   An edge (i, j)  in E connects two 
nodes ni and nj in N.  We often write G= (N, E) to denote a  flow 
graph G with nodes given by  N  and edges by  E. 
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Control Flow Graph (CFG) 

In  a flow graph of a program, each basic block  becomes a node 
and edges are used to indicate  the  flow of control between  
blocks.  

Blocks and nodes are labeled such that block bi corresponds to 
node ni. An edge (i, j) connecting basic blocks bi and bj implies 
that control can  go from block bi to block bj.   

We also assume that there is a node labeled Start in N that has no 
incoming edge, and another node labeled End, also in N,  that has 
no outgoing edge. 
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CFG Example 

N={Start, 1, 2, 3, 4, 5, 6, 7,  
 8, 9, End} 

E={(Start,1), (1, 2), (1, 3), (2,4),  
 (3, 4), (4, 5),  (5, 6), (6, 5), 
  (5, 7), (7, 8), (7, 9),  (9, 

End)} 
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CFG Example 

N={Start, 1, 2, 3, 4, 5, 6, 7,  
 8, 9, End} 

E={(Start,1), (1, 2), (1, 3), (2,4),  
 (3, 4), (4, 5),  (5, 6), (6, 5), 
  (5, 7), (7, 8), (7, 9),  (9, 

End)} 

Same CFG with statements 
removed. 
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Paths 

Consider a flow graph G= (N, E). A sequence of k edges, k>0,  
(e_1, e_2, … e_k) , denotes a path  of length k through the flow 
graph if the following  sequence condition holds. 

Given that np, nq, nr, and ns are nodes belonging to N, 
and 0< i<k, if  ei = (np, nq) and ei+1 = (nr, ns) then nq = 
nr. } 
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Paths: sample paths through the 
exponentiation flow graph 

p1= ( Start, 1, 2, 4, 5,  6, 5, 7, 9, End) 
p2= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End) 

Two feasible and complete paths: 

Bold edges: complete path. 

Dashed edges: subpath. 

p1= ( (Start, 1), (1, 2), (2, 4), (4, 5),  (5, 
6), (6, 5),  (5, 7), (7, 9), (9, End)) 

Specified unambiguously using edges: 
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Paths: feasible paths 

p1= ( Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End) 
p2= (Start, 1, 1, 2, 4,  5, 7,  9, , End) 

A path  p  through  a flow graph for 
program P is considered feasible if 
there exists at least one test case which 
when input to P causes p to be 
traversed. 
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Number of paths 

There can be many distinct paths through a program. A 
program with no condition contains exactly one path that 
begins at node  Start and terminates at node End.  

Each additional condition in the program can increases the 
number of distinct paths by at least one.  

Depending on  their location,  conditions can have a 
multiplicative effect on the number of paths.  

52 

Test generation 
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Test generation 

Any form of test generation uses a source document. In the 
most informal of test methods, the source document resides 
in the mind of the tester who generates tests based on a 
knowledge of the requirements.  

In most commercial environments, the process is a bit more 
formal. The tests are generated using a mix of formal and 
informal methods directly from the requirements document 
serving as the source. In more advanced test processes, 
requirements serve as a source for the development of formal 
models. 
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Test generation strategies 

Model based: require that a subset of the requirements be 
modeled using a formal notation (usually graphical). Models: 
Finite State Machines, Timed automata, Petri nets, etc.   

Specification based: require that a subset of the requirements 
be modeled using a formal mathematical notation. Examples: 
B, Z, and Larch.  

Code based: generate tests directly from the code. 
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Test generation strategies (Summary) 

56 

Strings and languages 
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Strings 
Strings play an important role in testing. A string serves as 
a test input.  Examples: 1011; AaBc; “Hello world”. 

A collection of strings also forms a language. For example, a set 
of all strings consisting of zeros and ones is the language of 
binary numbers. In this section we provide a brief introduction to 
strings and languages. 
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Alphabet 

A collection of symbols is known as an alphabet. We use  
an upper case letter such as X and Y to denote alphabets.  

Though alphabets can be infinite,  we are concerned only with 
finite alphabets. For example, X={0, 1} is an alphabet consisting 
of two symbols 0 and 1. Another alphabet is Y={dog, cat, horse, 
lion}that consists of four symbols ``dog", ``cat", ``horse", and 
``lion".  
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Strings over an Alphabet 
A string   over an alphabet X is any sequence of zero or 
more symbols that belong to X. For example, 0110 is a 
string over the alphabet {0, 1}.  Also, dog cat dog dog lion 
is a string over the alphabet {dog, cat, horse, lion}.  

We will use lower case letters such as p, q, r to denote strings.  The 
length of a string is the number of symbols in that string. Given a string 
s, we denote its length by |s|. Thus |1011|=4 and |dog cat dog|=3. A 
string of length 0, also known as an empty string, is denoted by ε.  

Note that ε denotes an empty string.  
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String concatenation 

Let s1 and s2 be two strings over alphabet X. We write s1.s2 to 
denote the concatenation of strings s1 and s2. 

For example, given the alphabet X={0, 1}, and two strings 011 
and 101 over X, we obtain 011.101=011101. It is easy to see that |
s1.s2|=|s1|+|s2|. Also, for any string s, we have s. ε =s and ε.s=s. 
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Languages 

A set L of strings over an alphabet X is known as a language. A 
language can be finite or infinite. 

The following sets are finite  languages over the binary alphabet 
{0, 1}: 
 
∅: The empty set 
{ε}: A language consisting only of one string of length zero 
{00, 11, 0101}: A language containing three strings 
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Regular expressions 

Given a finite alphabet X, the following are regular expressions 
over X: 

If  a belongs to X, then a  is a regular expression that denotes the set 
{a}. 
 
Let  r1 and r2 be two  regular expressions over the alphabet X that  
denote, respectively, sets L1 and L2.  Then r1.r2 is a regular 
expression that denotes the  set L1.L2. 
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Regular expressions (contd.) 

If r is a regular expression that denotes the set L then r+  is a  
regular expression that denotes  the set obtained by concatenating 
L with itself one or more times also written as L+ Also, r* known 
as the Kleene closure  of r, is a regular expression. If r denotes the 
set L then r* denotes the set {ε}∪ L+.  

If r1 and r2 are regular expressions that denote, respectively, sets L1 
and L2, then r1 | r2 is also a regular expression that denotes the set 
L1 ∪ L2. 

64 

Embedded systems and Finite State 
Machines (FSMs) 
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Embedded systems 
Many real-life devices  have computers embedded in them. 
For example, an automobile has several embedded 
computers to perform various tasks, engine control being 
one example. Another example is a computer inside a toy 
for processing inputs and generating audible and visual 
responses.  
Such devices are also known as embedded systems. An 
embedded system can be as simple as a child's musical keyboard 
or as complex as the flight controller in an aircraft. In any case, 
an embedded system contains one or more computers for 
processing inputs. 
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Specifying embedded systems 
An embedded computer often receives inputs from its 
environment and responds with appropriate actions. While 
doing so, it moves from one state to another.  

The response of an embedded system to its inputs depends on its 
current state.  It is this behavior of an embedded system in 
response to inputs   that is often modeled by a finite state 
machine (FSM). 
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FSM: Actions with state transitions 

(a) Notice ADD, INIT, ADD,OUT actions. 

(b) INIT: Initialize num. ADD: Add to num. OUT: Output num. 

Machine to convert a sequence of decimal digits to an integer: 
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FSM: Formal definition 

An FSM is a quintuple: (X, Y, Q, q0, δ, O), where:,  

X is a finite set of  input symbols also known as the input 
alphabet. 

Y is a finite set of output symbols also known as  the output 
alphabet, 

Q is a finite set states, 
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FSM: Formal definition (contd.) 

q0  in Q is the initial state,  

δ:  Q x X→ Q is a next-state or state transition function, and  

O:  Q x X→ Y is an output function. 

In some variants of FSM more than one state could be 
specified as an initial state. Also, sometimes it is 
convenient to add F⊆ Q  as  a set of final  or  accepting 
states while specifying an FSM.  
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State diagram representation of FSM 

A state diagram is a directed graph that contains nodes 
representing states and edges representing state 
transitions and output functions.  

Each node is labeled with the state it represents. Each directed 
edge in a state diagram connects two states. Each edge  is labeled  
i/o where i denotes an input symbol that belongs to the input 
alphabet X and o denotes an output symbol that belongs to the 
output alphabet O.  i is also known as the input portion of the 
edge and o its output portion. 
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Properties of FSM 

Completely specified: An FSM M is said to be completely 
specified if from each state in M there exists a transition for 
each input symbol.  

Strongly connected: An FSM M is considered strongly 
connected if for each pair of states (qi qj) there exists an input 
sequence that takes M from state qi to qj. 

© Aditya P. Mathur 2005 
72 

Properties of FSM: Equivalence 

V-equivalence: Let M1=(X, Y, Q1, m1
0, T1, O1) and M2=(X, Y, 

Q2, m2
0, T2, O2) be two FSMs. Let V denote a set of non-

empty strings over the input alphabet X i.e. V⊆ X+.  

Let qi and qj, i≠ j, be the states  of machines M1 and M2, 
respectively. qi and qj are considered V-equivalent if  O1(qi, 
s)=O2(qj, s) for all s in V.  
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Properties of FSM: Distinguishable 

Stated differently, states qi and qj are considered  V-equivalent 
if M1 and M2 , when excited  in states qi and qj, respectively,  
yield identical output sequences.  

States qi and qj are said to be  equivalent if  O1(qi, r)=O2(qj, r) 
for any set V. If qi and qj are not equivalent then they are said to 
be distinguishable. Thus machines M1 and M2 could be the 
same machine. 
* This definition of  equivalence also applies to states within a 
machine. 
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Properties of FSM: Machine Equivalence 

Machine equivalence: Machines M1 and M2 are said to be 
equivalent if  (a) for each state σ in M1 there exists a state σ ' in 
M2 such that σ and σ ' are equivalent and (b) for each state σ in 
M2 there exists a state σ ' in M1 such that σ and σ ' are 
equivalent.  

Machines that are not equivalent are considered distinguishable.  

Minimal machine: An FSM M is considered minimal if the 
number of states in M is less than or equal to any other FSM 
equivalent to M. 
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Properties of FSM: k-equivalence 

k-equivalence: Let M1=(X, Y, Q1, m1
0, T1, O1) and M2=(X, Y, 

Q2, m2
0, T2, O2) be two FSMs.   

 
States qiε Q1 and qjε Q2 are considered k-equivalent if,  when 
excited by any input of length k, yield identical output 
sequences.   
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Properties of FSM: k-equivalence 
(contd.) 

States that are not k-equivalent are considered k-distinguishable.  

It is also easy to see that if two states are k-distinguishable 
for any k>0 then they are also distinguishable for any n≥ k. 
If M1 and M2 are not k-distinguishable then they are said to 
be k-equivalent. 
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Example: Completely specified machine 

78 

Types of software testing 
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Types of testing 

C1: Source of test generation.   
 
C2: Lifecycle phase in which testing takes place 
 
C3:  Goal of a specific testing activity 
 
C4: Characteristics of the artifact under test 

One possible classification  is based on the following four 
classifiers: 
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C1: Source of test generation 
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C2: Lifecycle phase in which testing 
takes place 
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C3: Goal of specific testing activity 
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C4: Artifact under test 


