
1

Foundations of Software Testing

 Chapter 3: Test Generation: Finite State Models

Last update: September 3, 2007

These slides are copyrighted. They are for use
with the Foundations of Software Testing
book by Aditya Mathur. Please use the slides
but do not remove the copyright notice.

Aditya P. Mathur
Purdue University

© Aditya P. Mathur 2007
2

Learning Objectives

§  The Wp method for test generation

§  What are Finite State Models?

§  The W method for test generation

© Aditya P. Mathur 2007
3

Where are FSMs used?
§  Conformance testing of communications protocols--this is where it all

started.

§  Testing of any system/subsystem modeled as a finite state machine,
e.g. elevator designs, automobile components, nuclear plant protection
systems, steam boiler control, etc.

§  Finite state machines are widely used in modeling of all kinds of
systems. Generation of tests from FSM specifications assists in testing
the conformance of implementations to the corresponding FSM model.

© Aditya P. Mathur 2007
4

What is a Finite State Machine?
Quick review

•  A finite state machine (FSM) is an abstract representation of
behavior exhibited by some systems.

•  An FSM is derived from application requirements, e.g., a
network protocol could be modeled using an FSM.

•  Not all aspects of an application’s requirements can be
specified by an FSM: real time requirements, performance
requirements, and computational requirements.

2

© Aditya P. Mathur 2007
5

FSM (Mealy machine, 1955): Definition
An FSM (Mealy) is a 6-tuple: (X, Y, Q, q0, δ, O), where:,

X is a finite set of input symbols also known as the input
alphabet.

Y is a finite set of output symbols also known as the output
alphabet,

Q is a finite set of states,

q0 in Q is the initial state,

δ: Q x X→ Q is a next-state or state transition function, and

O: Q x X→ Y is an output function
© Aditya P. Mathur 2007

6

FSM (Moore machine, 1956): Definition

An FSM (Moore) is a 7-tuple: (X, Y, Q, q0, δ, O, F), where:,

X , Y, Q, q0, and δ are the same as in FSM (Mealy)

O: Q → Y is an output function

F∈Q is the set of final or accepting or terminating states.

© Aditya P. Mathur 2007
7

State Diagram Representation of FSM

(a) Notice ADD, INIT, ADD,OUT actions.

(b) INIT: Initialize num. ADD: Add to num. OUT: Output num.

Nodes: States; Labeled Edges: Transitions
Example: Machine to convert a sequence of decimal digits to an integer

© Aditya P. Mathur 2007
8

Tabular representation of FSM

The table given below shows how to represent
functions δ and O for the DIGDEC machine.

3

© Aditya P. Mathur 2007
9

Properties of FSM

Completely specified: An FSM M is said to be completely
specified if from each state in M there exists a transition for
each input symbol.

Strongly connected: An FSM M is considered strongly
connected if for each pair of states (qi qj) there exists an input
sequence that takes M from state qi to qj.

© Aditya P. Mathur 2007
10

Properties of FSM: Equivalence
V-equivalence: Let
M1=(X, Y, Q1, m1

0, T1, O1) and M2=(X, Y, Q2, m2
0, T2, O2)

be two FSMs. Let V denote a set of non-empty strings over the
input alphabet X i.e. V⊆ X+.
Let qi and qj, be two states of machines M1 and M2,
respectively. qi and qi are considered V-equivalent if
O1(qi, s)=O2(qj, s) for all s in V.

© Aditya P. Mathur 2007
11

Properties of FSM: Distinguishability

States qi and qj are said to be equivalent if O1(qi, r)=O2(qj, r)
for any set V.

If qi and qj are not equivalent then they are said to be
distinguishable.

© Aditya P. Mathur 2007
12

Properties of FSM: k-equivalence
k-equivalence: Let
M1=(X, Y, Q1, m1

0, T1, O1) and M2=(X, Y, Q2, m2
0, T2, O2)

be two FSMs.

States qiε Q1 and qjε Q2 are considered k-equivalent if, when
excited by any input of length k, yield identical output
sequences.

States that are not k-equivalent are considered k-distinguishable.

4

© Aditya P. Mathur 2007
13

Properties of FSM: Machine Equivalence

Machine equivalence: Machines M1 and M2 are said to be
equivalent if (a) for each state σ in M1 there exists a state σ ' in
M2 such that σ and σ ' are equivalent and (b) for each state σ in
M2 there exists a state σ ' in M1 such that σ and σ ' are
equivalent.

Machines that are not equivalent are considered distinguishable.

Minimal machine: An FSM M is considered minimal if the
number of states in M is less than or equal to any other FSM
equivalent to M.

© Aditya P. Mathur 2007 14

Faults Targeted

© Aditya P. Mathur 2007
15

Faults in implementation
An FSM serves to specify the correct requirement or design of an
application.

The tests generated from an FSM target faults related to the FSM
itself.

What faults are targeted by the tests generated using an FSM?

© Aditya P. Mathur 2007
16

Fault model

q0

q1

a/1

b/0

b/1
a/1

Correct design

q0

q1

a/0

b/0

b/1
a/1

Operation error Transfer error

q0

q1

a/1

b/0

b/1 a/1

5

© Aditya P. Mathur 2007
17

Fault model (contd.)

q0

a/0
b/0

Missing state error

Extra state error

q0

q1

a/1

b/0

b/1

a/1 q2

a/1

© Aditya P. Mathur 2007 18

Test generation using W method

© Aditya P. Mathur 2007
19

Assumptions for test generation

1.  M is Completely specified, minimal, connected, and deterministic.

2.  M starts in a fixed initial state.

3.  M and IUT (Implementation Under Test) have the same input

alphabet.

© Aditya P. Mathur 2007
20

Characterization Set of M – W-set

Characterization set for machine M, denoted as W, is a finite
set of input sequences that distinguish the behavior of any
pair of states in M.

--- W is constructed from the k-equivalence partitions of M.

6

© Aditya P. Mathur 2007
21

Transition Cover Set of M – P-set

Transition cover set for machine M, denoted as P, is a finite
set of input sequences such that exciting M with all
elements of P ensures that all states are reached and all
transitions are traversed at least once.

--- P is constructed from the testing tree of M.

© Aditya P. Mathur 2007
22

Error detection process

•  Each test case t is of the form r.s where
r is in P and s in W.

•  r moves the application from initial state q0 to state qj.
 Then, s=as’ takes it from qi to state qj or qj’.

© Aditya P. Mathur 2007
23

Overall algorithm used in W-method

Step 1: Estimate m, the number of states in the correct
implementation of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: Construct the testing tree for M and generate the
transition cover set P from the testing tree.

Step 4: Construct set Z from W and m.

Step 5: Desired test set=P.Z

© Aditya P. Mathur 2007
24

Step 1: Estimation of m

Initially we will assume that m = n, where
 n is the number of states in FSM M
 m is the number of states in correct implementation

Later we discuss how to handle cases where m > n

7

© Aditya P. Mathur 2007
25

Step 2: Construction of W

Let M=(X, Y, Q, q1, δ, O) be a minimal and complete FSM.

Given states qi and qj in Q, W contains a string s such that:

O(qi, s)≠O(qj, s)

W is a finite set of input sequences that distinguish the behavior of
any pair of states in M. Each input sequence in W is of finite length.

© Aditya P. Mathur 2007
26

Example of W

W={baaa,aa,aaa}

O(baaa,q1)=1101

O(baaa,q2)=1100

Thus baaa distinguishes state q1 from q2 as O(baaa,q1) ≠ O(baaa,q2)

© Aditya P. Mathur 2007
27

Steps in the construction of W

Step 1: Construct a sequence of k-equivalence partitions of Q denoted
 as P1, P2, …Pm, m>0.

Step 2: Traverse the k-equivalence partitions in reverse order to obtain
 distinguishing sequence for each pair of states.

© Aditya P. Mathur 2007
28

What is a k-equivalence partition of Q?

A k-equivalence partition of Q, denoted as Pk, is a collection of n finite
sets Σk1, Σk2 … Σkn such that

∪n
i=1 Σki =Q

States in Σki are k-equivalent.

If state u is in Σki and v in Σkj for i≠j, then u and v are k-distinguishable.

8

© Aditya P. Mathur 2007
29

How to construct a k-equivalence partition?
Given an FSM M, construct a 1-equivalence partition, start with a
tabular representation of M.

Current
state

Output Next state

a b a b
q1 0 1 q1 q4

q2 0 1 q1 q5

q3 0 1 q5 q1

q4 1 1 q3 q4

q5 1 1 q2 q5

© Aditya P. Mathur 2007
30

Construct 1-equivalence partition
Group states identical in their Output entries. This gives us 1-partition
P1 consisting of Σ1={q1, q2, q3} and Σ2 ={q4, q5}.

Σ Current
state

Output Next state

a b a b
1 q1 0 1 q1 q4

q2 0 1 q1 q5

q3 0 1 q5 q1

2 q4 1 1 q3 q4

q5 1 1 q2 q5

© Aditya P. Mathur 2007
31

Construct 2-equivalence partition: Rewrite P1 table
Rewrite P1 table. Remove the output columns. Replace a state entry qi
by qij where j is the group number in which state qi lies.

Σ Current
state

Next state

a b
1 q1 q11 q42

q2 q11 q52

q3 q52 q11

2 q4 q31 q42

q5 q21 q52

Group number

P1 Table

© Aditya P. Mathur 2007
32

Construct 2-equivalence partition: Construct P2 table
Group all entries with identical second subscripts under the next state
column. This gives us the P2 table. Note the change in second
subscripts.

Σ Current
state

Next state

a b
1 q1 q11 q43

q2 q11 q53

2 q3 q53 q11

3 q4 q32 q43

q5 q21 q53

P2 Table

9

© Aditya P. Mathur 2007
33

Construct 3-equivalence partition: Construct P3 table
Group all entries with identical second subscripts under the next state
column. This gives us the P3 table. Note the change in second
subscripts.

Σ Current
state

Next state

a b
1 q1 q11 q43

q2 q11 q54

2 q3 q54 q11

3 q4 q32 q43

4 q5 q21 q54

P3 Table

© Aditya P. Mathur 2007
34

Construct 4-equivalence partition: Construct P4 table
Continuing with regrouping and relabeling, we finally arrive at P4
table.

Σ Current
state

Next state

a b
1 q1 q11 q44

2 q2 q11 q55

3 q3 q55 q11

4 q4 q33 q44

5 q5 q22 q55

P4 Table

© Aditya P. Mathur 2007
35

k-equivalence partition: Convergence

The process is guaranteed to converge.

When the process converges, and the machine is minimal, each state
will be in a separate group.

The next step is to obtain the distinguishing strings for each state.

© Aditya P. Mathur 2007
36

Finding the distinguishing sequences: Example

Let us find a distinguishing sequence for states q1 and q2.

Find tables Pi and Pi+1 such that (q1, q2) are in the same group in Pi
and different groups in Pi+1. We get P3 and P4.

Initialize z=ε. Find the input symbol that distinguishes q1 and q2 in
table P3. This symbol is b. We update z to z.b. Hence z now becomes
b.

10

© Aditya P. Mathur 2007
37

Finding the distinguishing sequences: Example (contd.)

The next states for q1 and q2 on b are, respectively, q4 and q5.

We move to the P2 table and find the input symbol that distinguishes
q4 and q5. Let us select a as the distinguishing symbol. Update z
which now becomes ba.

The next states for states q4 and q5 on symbol a are, respectively,
q3 and q2. These two states are distinguished in P1 by a and b. Let
us select a. We update z to baa.

© Aditya P. Mathur 2007
38

Finding the distinguishing sequences: Example (contd.)

The next states for q3 and q2 on a are, respectively, q1 and q5.

Moving to the original state transition table we obtain a as the
distinguishing symbol for q1 and q5

We update z to baaa. This is the farthest we can go backwards
through the various tables. baaa is the desired distinguishing
sequence for states q1 and q2. Check that o(q1,baaa)≠o(q2,baaa).

© Aditya P. Mathur 2007
39

Finding the distinguishing sequences: Example (contd.)

Using the same procedure used for q1 and q2, we can find the
distinguishing sequence for each pair of states. This leads us to the
following characterization set for our FSM.

W={a, aa, aaa, baaa}

© Aditya P. Mathur 2007
40

W-method: where are we?

Step 4: Construct set Z from W and m.

Step 5: Desired test set=P.Z

Step 1: Estimate the maximum number of states (m) in the correct
implementation of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: Construct the testing tree for M and generate the transition
cover set P from the testing tree.

11

© Aditya P. Mathur 2007
41

Step 3: Construct the testing tree for M

A testing tree of an FSM is a tree rooted at the initial state. It contains at least
one path from the initial state to the remaining states in the FSM.

Construction:
State q0, the initial state, is the root of the testing tree. Assuming that the testing
tree has been constructed until level k, the (k+1)th level is built as follows.

Select a node n at level k.
•  If n appears at any level from 1 through k-1, then n is a leaf node and is not

expanded any further.
•  If n is not a leaf node then we expand it by adding a branch from node n to

a new node m if δ(n, x)=m for each x in X . This branch is labeled as x.
This step is repeated for all nodes at level k.

© Aditya P. Mathur 2007
42

Example: Construct the testing tree for M

Start here, initial
state is the root.

q1 becomes leaf,
q4 can be
expanded.

No further
expansion
possible

.

.

.

M

© Aditya P. Mathur 2007
43

W-method: where are we?

Step 4: Construct set Z from W and m.

Step 5: Desired test set=P.Z

Step 1: Estimate the maximum number of states (m) in the correct
implementation of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the
transition cover set P from the testing tree.

© Aditya P. Mathur 2007
44

Step 3: (b) Find the transition cover set from the testing tree

A transition cover set P is a set of all strings representing subpaths, starting at
the root, in the testing tree. Concatenation of the labels along the edges of a
subpath is a string that belongs to P. The empty string (ε) also belongs to P.

P = {ε, a, b, bb, ba, bab, baa, baab,

 baaa, baaab, baaaa}

12

© Aditya P. Mathur 2007
45

W-method: where are we?

Step 5: Desired test set=P.Z

Step 1: Estimate the maximum number of states (m) in the correct
implementation of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: Construct the testing tree for M and generate the transition
cover set P from the testing tree.

Step 4: Construct set Z from W and m.

© Aditya P. Mathur 2007
46

Step 4: Construct set Z from W and m

For m=n=5, we get

Z = X0.W=W

Given that X is the input alphabet and W the characterization set, we
have:

Z = X0.W ∪ X1.W ∪ ….. Xm-1-n.W ∪ Xm-n.W

For X={a, b}, W={a, aa, aaa, baaa}, m=6, n=5

Z = W ∪ X1.W = {a, aa, aaa, baaa} ∪ {a, b}.{a, aa, aaa, baaa}
 = {a, aa, aaa, baaa, aa, aaa, aaaa, abaaa, ba, baa, baaa, bbaaa}

© Aditya P. Mathur 2007
47

W-method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct
implementation of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the
transition cover set P from the testing tree.

Step 4: Construct set Z from W and m.

Step 5: Desired test set=P.Z Next

© Aditya P. Mathur 2007
48

Step 5: Desired test set=P.Z

The test inputs based on the given FSM M can now be derived as:
 T=P.Z

Do the following to test the implementation:

1.  Find the expected response to each element of T.

2.  Generate test cases for the application. Note that even though
the application is modeled by M, there might be variables to be
set before it can be exercised with elements of T.

3.  Execute the application and check if the response matches.
Reset the application to the initial state after each test.

13

© Aditya P. Mathur 2007
49

Example 1: Testing an erroneous application

Correct design

M1
M2

M

t1=baaaaaa

M1(t1)=1101001

M(t1)=1101000

t2=baaba

M2(t2)=11001

M(t2)=11011 Error-revealing
test cases

© Aditya P. Mathur 2007
50

Example 2: Extra state. n=5, m=6.

M1 M2

t1=baaba M(t1)=11011 M1(t1)=11001

t2=baaa M(t2)=1101 M2(t2)=1100

© Aditya P. Mathur 2007 51

The Partial W (Wp) method

© Aditya P. Mathur 2007
52

The partial W (Wp) method

Tests are generated from minimal, complete, and connected FSM.

Size of tests generated is generally smaller than that generated using
the W-method.
Test generation process is divided into two phases:
Phase 1: Generate a test set using the state cover set (S) and the
characterization set (W).
Phase 2: Generate additional tests using a subset of the transition
cover set and state identification sets.

What is a state cover set? A state identification set?

14

© Aditya P. Mathur 2007
53

State cover set

Given FSM M with input alphabet X, a state cover set S is a finite
non-empty set of strings over X* such that, for each state qi in Q,
there is a string in S that takes M from its initial state to qi.

S={ε, b, ba, baa, baaa}

S is always a subset of the
transition cover set P.

S is not necessarily unique.

© Aditya P. Mathur 2007
54

State identification set

Given an FSM M with Q as the set of states, an identification set
Wi for state qi∈Q has the following properties:

(a) Wi⊆ W , 1≤ i≤n [Identification set is a subset of W.]

(b) O(qi, s)≠ O(qj, s) , for 1≤j≤ n , j≠ i , s∈ Wi
 [For each state other than qi, there is a string in Wi that

distinguishes qi from qj.]

(c) No subset of Wi satisfies property (b). [Wi is minimal.]

© Aditya P. Mathur 2007
55

State identification set: Example

Si Sj x O(Si,x) O(Sj,x)
1 2 baaa 1 0

3 aa 0 1
4 a 0 1
5 a 0 1

2 3 aa 0 1
4 a 0 1
5 a 0 1

3 4 a 0 1
5 a 0 1

4 5 aaa 1 0

Last element of the output string

W1=W2={baaa, aa, a}

W3={a, aa} W4=W5={a, aaa}

© Aditya P. Mathur 2007
56

Wp method: Example:
Step 1: Compute S, P, W, Wi,W

W1=W2={baaa, aa, a}

W3={a, aa} W4=W5={a, aaa}

S={ε, b, ba, baa, baaa}

P={ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}

W={a, aa, aaa, baaa}

W={W1, W2, W3, W4, W5}

15

© Aditya P. Mathur 2007
57

Wp method: Example:
Step 2: Compute T1 [m=n]

T1 = S.W = {ε, b, ba, baa, baaa}.{a, aa, aaa, baaa}

Elements of T1 ensure that the
- each state of the FSM is covered and
- distinguished from the remaining states.

© Aditya P. Mathur 2007
58

Wp method: Example:
Step 3: Compute R and δ (we assume m=n)

R = P - S = {ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}
 - {ε, b, ba, baa, baaa}

 = {a, bb, bab, baab, baaab, baaaa}

Let each element of R be denoted as ri1, ri2,…,rik

And let δ(q0 , rij)=qij

© Aditya P. Mathur 2007
59

Wp method: Example:
Step 4: Compute T2 [m=n]

T2=R⊗W=∪k
j=1 ({rij}.Wij),

where Wij is the identification set for state qij.

δ(q1, a)=q1 δ(q1, bb)=q4 δ(q1, bab)=q1

δ(q1, baab)=q5 δ(q1, baaab)=q5 δ(q1, baaaa)=q1

T2 = ({a}.W1) ∪ ({bb}.W4) ∪ ({bab}.W1) ∪ ({baab}.W5) ∪
 ({baaab}.W5) ∪ ({baaaa}.W1)

 = {abaaa, aaa, aa} ∪ {bba, bbaaa} ∪ {babbaaa, babaa, baba} ∪
 {baaba, baabaaa} ∪ {baaaba, baaabaaa} ∪

 {baaaabaaa, baaaaaa, baaaaa}

© Aditya P. Mathur 2007
60

Wp method: Example: Savings

Test set size using the W method = 44

Test set size using the Wp method = 34 (20 from T1 + 14 from T2)

16

© Aditya P. Mathur 2007
61

Testing using the Wp method

Testing proceeds in two phases.

While tests from phase 1 ensure state coverage, they do not
ensure all transition coverage.

Tests from T1 are applied in phase 1.
Tests from T2 are applied in phase 2.

© Aditya P. Mathur 2007
62

Wp method when m > n

T1 = S.X[m-n].W, where X[m-n] is the set union of Xi , 1 ≤ i ≤ (m-n)

T2 = R.X[m-n] ⊗W

Sets T1 and T2 are computed a bit differently, as follows:

© Aditya P. Mathur 2007
63

Summary

Behavior of a large variety of applications can be modeled using
finite state machines (FSM), e.g. GUIs.

The W and the Wp methods are automata theoretic methods to
generate tests from a given FSM model.

Tests so generated are guaranteed to detect all operation errors,
transfer errors, and missing/extra state errors in the implementation
given that the FSM representing the implementation is complete,
connected, and minimal.

The size of tests sets generated by the W method is larger than that
generated by the Wp method. However, their fault detection
effectiveness are the same.

