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Learning Objectives 

§  The Wp method for test generation 

§  What are Finite State Models? 

§  The W method for test generation 
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Where are FSMs used? 
§  Conformance testing of communications protocols--this is where it all 

started. 

§  Testing of any system/subsystem modeled as a finite state machine, 
e.g. elevator designs, automobile components, nuclear plant protection 
systems, steam boiler control, etc. 

§  Finite state machines are widely used in modeling of all kinds of 
systems. Generation of tests from FSM specifications assists in testing 
the conformance of implementations to the corresponding FSM model. 
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What is a Finite State Machine? 
Quick review 

•   A finite state machine (FSM) is an abstract representation of 
behavior exhibited by some systems.  

•   An FSM is derived from application requirements, e.g.,   a 
network protocol could be modeled using an FSM. 

•    Not all aspects of an application’s requirements can be 
specified by an FSM: real time requirements, performance 
requirements, and computational requirements. 
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FSM (Mealy machine, 1955): Definition 
An FSM (Mealy) is a 6-tuple: (X, Y, Q, q0, δ, O), where:,  

X is a finite set of  input symbols also known as the input 
alphabet. 

Y is a finite set of output symbols also known as  the output 
alphabet, 

Q is a finite set of states, 

q0  in Q is the initial state,  

δ:  Q x X→ Q is a next-state or state transition function, and  

O:  Q x X→ Y is an output function 
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FSM (Moore machine, 1956): Definition 

An FSM (Moore) is a 7-tuple: (X, Y, Q, q0, δ, O, F), where:,  

X , Y, Q, q0,  and δ are the same as in FSM (Mealy) 

O:  Q → Y is an output function 

F∈Q is the set of final or accepting or terminating states. 

© Aditya P. Mathur 2007 
7 

State Diagram Representation of FSM 

(a) Notice ADD, INIT, ADD,OUT actions. 

(b) INIT: Initialize num. ADD: Add to num. OUT: Output num. 

Nodes: States; Labeled Edges: Transitions 
Example: Machine to convert a sequence of decimal digits to an integer 
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Tabular representation of FSM 

The table given below shows how to represent 
functions δ and O for the DIGDEC machine. 
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Properties of FSM 

Completely specified: An FSM M is said to be completely 
specified if from each state in M there exists a transition for 
each input symbol.  

Strongly connected: An FSM M is considered strongly 
connected if for each pair of states (qi qj) there exists an input 
sequence that takes M from state qi to qj. 
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Properties of FSM: Equivalence 
V-equivalence: Let  
M1=(X, Y, Q1, m1

0, T1, O1) and M2=(X, Y, Q2, m2
0, T2, O2) 

be two FSMs. Let V denote a set of non-empty strings over the 
input alphabet X i.e. V⊆ X+.  
Let qi and qj, be two states  of machines M1 and M2, 
respectively. qi and qi are considered V-equivalent if  
O1(qi, s)=O2(qj, s) for all s in V.  

© Aditya P. Mathur 2007 
11 

Properties of FSM: Distinguishability 
 
States qi and qj are said to be equivalent if  O1(qi, r)=O2(qj, r) 
for any set V.   
 
If qi and qj are not equivalent then they are said to be 
distinguishable.  
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Properties of FSM: k-equivalence 
k-equivalence: Let 
M1=(X, Y, Q1, m1

0, T1, O1) and M2=(X, Y, Q2, m2
0, T2, O2) 

be two FSMs.   
 
States qiε Q1 and qjε Q2 are considered k-equivalent if,  when 
excited by any input of length k, yield identical output 
sequences.   

States that are not k-equivalent are considered k-distinguishable.  
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Properties of FSM: Machine Equivalence 

Machine equivalence: Machines M1 and M2 are said to be 
equivalent if  (a) for each state σ in M1 there exists a state σ ' in 
M2 such that σ and σ ' are equivalent and (b) for each state σ in 
M2 there exists a state σ ' in M1 such that σ and σ ' are 
equivalent. 

Machines that are not equivalent are considered distinguishable.  

Minimal machine: An FSM M is considered minimal if the 
number of states in M is less than or equal to any other FSM 
equivalent to M. 
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Faults Targeted 
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Faults in implementation 
An FSM serves to specify the correct requirement or design of an 
application.  
 
The tests generated from an FSM target faults related to the FSM 
itself. 

What faults are targeted by the tests generated using an FSM? 
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Fault model 

q0 

q1 

a/1 

b/0 

b/1 
a/1 

Correct design 

q0 

q1 

a/0 

b/0 

b/1 
a/1 

Operation error Transfer error 

q0 

q1 

a/1 

b/0 

b/1 a/1 
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Fault model (contd.) 

q0 

a/0 
b/0 

Missing state error 

Extra state error 

q0 

q1 

a/1 

b/0 

b/1 

a/1 q2 

a/1 
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Test generation using W method 

© Aditya P. Mathur 2007 
19 

Assumptions for test generation 

 
1.  M is Completely specified, minimal, connected, and deterministic. 

2.  M starts in a fixed initial state. 
 
3.  M and IUT (Implementation Under Test) have the same input 

alphabet. 
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Characterization Set of M – W-set 

 
Characterization set for machine M, denoted as W, is a finite 
set of input sequences that distinguish the behavior of any 
pair of states in M. 
 
--- W is constructed from the k-equivalence partitions of M. 
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Transition Cover Set of M – P-set 
 
Transition cover set for machine M, denoted as P, is a finite 
set of input sequences such that exciting M with all 
elements of P ensures that all states are reached and all 
transitions are traversed at least once. 
 
--- P is constructed from the testing tree of M. 
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Error detection process 

•  Each test case t is of the form r.s where                          
r is in P and s in W.   

•  r moves the application from initial state q0 to state qj.  
     Then, s=as’ takes it from qi to state qj or qj’.  
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Overall algorithm used in W-method 

Step 1: Estimate m, the number of states in the correct 
implementation of the given FSM M. 

Step 2: Construct the characterization set W for M. 

Step 3: Construct the testing tree for M and generate the 
transition cover set P from the testing tree. 

Step 4: Construct set Z from W and m. 

Step 5: Desired test set=P.Z 
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Step 1: Estimation of m 

Initially we will assume that m = n, where 
    n is the number of states in FSM M 
    m is the number of states in correct implementation 
 
Later we discuss how to handle cases where m > n 
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Step 2: Construction of W 

Let M=(X, Y, Q, q1, δ, O) be a minimal  and complete FSM. 

Given states qi and qj in Q, W contains a string s such that: 
 
O(qi, s)≠O(qj, s) 

W is a finite set of input sequences that distinguish the behavior of 
any pair of states in M. Each input sequence in W is of finite length. 
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Example of W 

W={baaa,aa,aaa} 

O(baaa,q1)=1101 

O(baaa,q2)=1100 

Thus baaa distinguishes state q1 from q2 as O(baaa,q1) ≠ O(baaa,q2)  
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Steps in the construction of W 

Step 1: Construct a sequence of k-equivalence partitions of Q denoted 
  as P1, P2, …Pm, m>0. 

Step 2: Traverse the k-equivalence partitions in reverse order to obtain 
  distinguishing sequence for each pair of states. 
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What is a k-equivalence partition of Q? 

A k-equivalence partition of Q, denoted as Pk, is a collection of n finite 
sets Σk1, Σk2 … Σkn such that 

∪n
i=1 Σki =Q 

States in  Σki  are k-equivalent. 

If state u is in Σki  and v in Σkj for i≠j, then u and v are k-distinguishable.  
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How to construct  a k-equivalence partition? 
Given an FSM M, construct a 1-equivalence partition, start with a 
tabular representation of M. 

Current  
state 

Output Next state 

a b a b 
q1 0 1 q1 q4 

q2 0 1 q1 q5 

q3 0 1 q5 q1 

q4 1 1 q3 q4 

q5 1 1 q2 q5 
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Construct 1-equivalence partition 
Group states identical in their Output entries. This gives us 1-partition 
P1 consisting of Σ1={q1, q2, q3} and Σ2 ={q4, q5}. 

Σ Current  
state 

Output Next state 

a b a b 
1 q1 0 1 q1 q4 

q2 0 1 q1 q5 

q3 0 1 q5 q1 

2 q4 1 1 q3 q4 

q5 1 1 q2 q5 
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Construct 2-equivalence partition: Rewrite P1 table 
Rewrite P1 table. Remove the output columns. Replace a state entry qi 
by qij where j is the group number in which state qi lies. 

Σ Current  
state 

Next state 

a b 
1 q1 q11 q42 

q2 q11 q52 

q3 q52 q11 

2 q4 q31 q42 

q5 q21 q52 

Group number 

P1 Table 

© Aditya P. Mathur 2007 
32 

Construct 2-equivalence partition: Construct P2 table 
Group all entries with identical second subscripts under the next state 
column. This gives us the P2 table. Note the change in second 
subscripts. 

Σ Current  
state 

Next state 

a b 
1 q1 q11 q43 

q2 q11 q53 

2 q3 q53 q11 

3 q4 q32 q43 

q5 q21 q53 

P2 Table 
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Construct 3-equivalence partition: Construct P3 table 
Group all entries with identical second subscripts under the next state 
column. This gives us the P3 table. Note the change in second 
subscripts. 

Σ Current  
state 

Next state 

a b 
1 q1 q11 q43 

q2 q11 q54 

2 q3 q54 q11 

3 q4 q32 q43 

4 q5 q21 q54 

P3 Table 
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Construct 4-equivalence partition: Construct P4 table 
Continuing with regrouping and relabeling, we finally arrive at P4 
table. 

Σ Current  
state 

Next state 

a b 
1 q1 q11 q44 

2 q2 q11 q55 

3 q3 q55 q11 

4 q4 q33 q44 

5 q5 q22 q55 

P4 Table 
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k-equivalence partition: Convergence 

The process is guaranteed to converge.  

When the process converges, and the machine is minimal, each state 
will be in a separate group. 

The next step is to obtain the distinguishing strings for each state. 
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Finding the distinguishing sequences: Example 

Let us find a distinguishing sequence for states q1 and q2. 

Find tables Pi and Pi+1 such that (q1, q2) are in the same group in Pi 
and different groups in Pi+1. We get P3 and P4. 

Initialize z=ε. Find the input symbol that distinguishes q1 and q2 in 
table P3. This symbol is b. We update z to z.b. Hence z now becomes 
b. 
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Finding the distinguishing sequences: Example (contd.) 

The next states for q1 and q2 on b are, respectively, q4 and q5. 

We move to the P2 table and find the input symbol that distinguishes 
q4 and q5. Let us select a as the distinguishing symbol. Update z 
which now becomes ba. 

The next states  for states q4 and q5 on symbol a are, respectively,  
q3 and q2.  These two states are distinguished in P1 by a and b. Let 
us select a. We update z to baa. 
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Finding the distinguishing sequences: Example (contd.) 

The next states for q3 and q2 on a are, respectively, q1 and q5. 

Moving to the original state transition table we obtain a as the 
distinguishing symbol for q1 and q5 

We update z to baaa. This is the farthest we can go backwards 
through the various tables. baaa is the desired distinguishing 
sequence for states q1 and q2. Check that o(q1,baaa)≠o(q2,baaa). 
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Finding the distinguishing sequences: Example (contd.) 

Using the same procedure used for q1 and q2, we can find the 
distinguishing sequence for each pair of states. This leads us to the 
following characterization set for our FSM. 

W={a, aa, aaa, baaa} 
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W-method: where are we? 

Step 4: Construct set Z from W and m. 

Step 5: Desired test set=P.Z 

Step 1: Estimate the maximum number of states (m) in the correct 
implementation of the given FSM M. 

Step 2: Construct the characterization set W for M. 

Step 3: Construct the testing tree for M and generate the transition 
cover set P from the testing tree. 
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Step 3: Construct the testing tree for M 

A testing tree of an FSM is a tree rooted at the initial state. It contains at least  
one path from the initial state to the remaining states in the FSM. 

Construction: 
State q0,  the initial state, is the root of the testing tree. Assuming that the testing 
tree has been constructed until level k, the (k+1)th level is built as follows.  

Select a node n at level k.  
•  If n appears at any level from 1 through   k-1, then n is a leaf node and is not 

expanded any further.  
•  If  n  is not a leaf node then we expand it by adding a branch from node  n to  

a new node m if   δ(n, x)=m   for each x in X . This branch is labeled as  x. 
This step is repeated for all nodes at level  k.   
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Example:  Construct the testing tree for M 

Start here, initial 
state is the root. 

q1 becomes leaf, 
q4 can be 
expanded. 

No further 
expansion 
possible 

. 
 
. 
 
. 

M 
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W-method: where are we? 

Step 4: Construct set Z from W and m. 

Step 5: Desired test set=P.Z 

Step 1: Estimate the maximum number of states (m) in the correct 
implementation of the given FSM M. 

Step 2: Construct the characterization set W for M. 

Step 3: (a) Construct the testing tree for M and (b) generate the 
transition cover set P from the testing tree. 
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Step 3: (b) Find the transition cover set from the testing tree 

A transition cover set  P is a set of all strings representing subpaths, starting at 
the root, in the testing tree. Concatenation of the labels along the edges of a 
subpath is a string that belongs to P. The empty string (ε) also belongs to P. 

P = {ε, a, b, bb, ba, bab, baa, baab,  

                                          baaa, baaab, baaaa} 
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W-method: where are we? 

Step 5: Desired test set=P.Z 

Step 1: Estimate the maximum number of states (m) in the correct 
implementation of the given FSM M. 

Step 2: Construct the characterization set W for M. 

Step 3: Construct the testing tree for M and generate the transition 
cover set P from the testing tree. 

Step 4: Construct set Z from W and m. 
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Step 4: Construct set Z from W and m 

For m=n=5, we get 
 

Z = X0.W=W 

Given that X is the input alphabet and W the characterization set, we 
have: 

Z = X0.W ∪ X1.W ∪ ….. Xm-1-n.W ∪ Xm-n.W 

For X={a, b},  W={a, aa, aaa, baaa}, m=6, n=5 
 
Z = W ∪ X1.W = {a, aa, aaa, baaa} ∪ {a, b}.{a, aa, aaa, baaa} 
   = {a, aa, aaa, baaa, aa, aaa, aaaa, abaaa, ba, baa, baaa, bbaaa} 
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W-method: where are we? 

Step 1: Estimate the maximum number of states (m) in the correct 
implementation of the given FSM M. 

Step 2: Construct the characterization set W for M. 

Step 3: (a) Construct the testing tree for M and (b) generate the 
transition cover set P from the testing tree. 

Step 4: Construct set Z from W and m. 

Step 5: Desired test set=P.Z Next 
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Step 5: Desired test set=P.Z 

The test inputs based on the given FSM M can now be derived as: 
 T=P.Z 

Do the following to test the implementation: 

1.  Find the expected response to each element of T. 

2.  Generate test cases for the application. Note that even though 
the application is modeled by M, there might be variables to be 
set before it can be exercised with elements of T. 

3.  Execute the application and check if the response matches. 
Reset the application to the initial state after each test. 
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Example 1: Testing an erroneous application 

Correct design 

M1 
M2 

M 

t1=baaaaaa 

M1(t1)=1101001 

M(t1)=1101000 

t2=baaba 

M2(t2)=11001 

M(t2)=11011 Error-revealing  
test cases 
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Example 2: Extra state. n=5, m=6. 

M1 M2 

t1=baaba  M(t1)=11011  M1(t1)=11001 

t2=baaa  M(t2)=1101  M2(t2)=1100 
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The Partial W (Wp) method 
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The partial W (Wp) method 

Tests are generated from minimal, complete, and connected FSM. 

Size of tests generated is generally smaller than that generated using 
the W-method. 
Test generation process is divided into two phases: 
Phase 1: Generate a test set using the state cover set (S) and the 
characterization set (W). 
Phase 2: Generate additional tests using a subset of the transition 
cover set and state identification sets. 

What is a state cover set? A state identification set? 
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State cover set 

Given FSM M with input alphabet X, a state cover set S is a finite 
non-empty set of strings over X* such that, for each state qi in Q, 
there is a string in S that takes M from its initial state to qi. 

S={ε, b, ba, baa, baaa} 

S is always a subset of the 
transition cover set P. 
 
S is not necessarily unique. 
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State identification set 

Given an FSM M with Q as the set of states, an identification set 
Wi for state qi∈Q  has  the following properties: 

(a)  Wi⊆ W ,   1≤ i≤n     [Identification set is a subset of W.] 

(b) O(qi, s)≠ O(qj, s) , for  1≤j≤ n ,  j≠ i ,   s∈ Wi  
      [For each state other than qi, there is a string in Wi that 

distinguishes qi from qj.] 

(c)  No subset of Wi satisfies property (b).    [Wi is minimal.]  
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State identification set: Example 

Si Sj x O(Si,x) O(Sj,x) 
1 2 baaa 1 0 

3 aa 0 1 
4 a 0 1 
5 a 0 1 

2 3 aa 0 1 
4 a 0 1 
5 a 0 1 

3 4 a 0 1 
5 a 0 1 

4 5 aaa 1 0 

Last element of the output string 

W1=W2={baaa, aa, a} 

W3={a, aa}    W4=W5={a, aaa} 
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Wp method: Example: 
Step 1: Compute S, P, W, Wi,W 

W1=W2={baaa, aa, a} 

W3={a, aa}    W4=W5={a, aaa} 

S={ε, b, ba, baa, baaa} 

P={ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa} 

W={a, aa, aaa, baaa} 

W={W1, W2, W3, W4, W5} 
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Wp method: Example: 
Step 2: Compute T1 [m=n] 

T1 = S.W = {ε, b, ba, baa, baaa}.{a, aa, aaa, baaa} 

Elements of T1 ensure that the  
-   each state of the FSM is covered and  
-   distinguished from the remaining states. 
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Wp method: Example: 
Step 3: Compute R and δ       (we assume m=n) 

R = P - S = {ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa} 
                  - {ε, b, ba, baa, baaa} 

    = {a, bb, bab, baab, baaab, baaaa} 

Let each element of R be denoted as ri1, ri2,…,rik 

 

And let  δ(q0 , rij)=qij 
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Wp method: Example: 
Step 4: Compute T2 [m=n] 

T2=R⊗W=∪k
j=1 ({rij}.Wij ), 

where Wij  is the identification set for state qij. 

δ(q1, a)=q1   δ(q1, bb)=q4    δ(q1, bab)=q1 
 
δ(q1, baab)=q5  δ(q1, baaab)=q5   δ(q1, baaaa)=q1 

T2 = ({a}.W1 ) ∪ ({bb}.W4 ) ∪ ({bab}.W1 ) ∪ ({baab}.W5 ) ∪  
 ({baaab}.W5 ) ∪ ({baaaa}.W1 ) 

     = {abaaa, aaa, aa} ∪ {bba, bbaaa} ∪ {babbaaa, babaa, baba} ∪  
 {baaba, baabaaa} ∪ {baaaba, baaabaaa} ∪ 

           {baaaabaaa, baaaaaa, baaaaa} 
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Wp method: Example: Savings 

Test set size using the W method = 44 

Test set size using the Wp method = 34    (20 from T1 + 14 from T2) 
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Testing using the Wp method 

Testing proceeds in two phases. 

While tests from phase 1 ensure state coverage, they do not 
ensure all transition coverage.  

Tests from T1 are applied in phase 1.  
Tests from T2 are applied in phase 2. 
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Wp method when  m > n 

T1 = S.X[m-n].W, where X[m-n] is the set union of Xi , 1 ≤ i ≤ (m-n) 

T2 = R.X[m-n] ⊗W 

Sets T1 and T2 are computed a bit differently, as follows: 
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Summary 

Behavior of a  large variety of applications can be modeled using 
finite state machines (FSM), e.g. GUIs. 

The W and the Wp methods are automata theoretic methods to 
generate tests from a given FSM model.  

Tests so generated are guaranteed to detect all operation errors, 
transfer errors, and missing/extra state errors in the implementation 
given that the FSM representing the implementation is complete, 
connected, and minimal. 

The size of tests sets generated by the W method is larger than that 
generated by the Wp method. However, their fault detection 
effectiveness are the same. 


