

Tabular representation of FSM

The table given below shows how to represent functions δ and O for the DIGDEC machine.

Current	Action			Next	
state				state	
	d	*	d	*	
q_0	INIT (num, d)		q_1		
q_1	ADD (num, d)	OUT (num)	q_1	q_2	
q_2					

© Aditya P. Mathur 2007

8

Properties of FSM

Completely specified: An FSM M is said to be completely specified if from each state in M there exists a transition for each input symbol.

Strongly connected: An FSM M is considered strongly connected if for each pair of states $(q_i q_j)$ there exists an input sequence that takes M from state q_i to q_i .

© Aditya P. Mathur 2007

Properties of FSM: Equivalence

V-equivalence: Let

 $M_1=(X, Y, Q_1, m^1_0, T_1, O_1)$ and $M_2=(X, Y, Q_2, m^2_0, T_2, O_2)$ be two FSMs. Let V denote a set of non-empty strings over the input alphabet X i.e. V $\subseteq X^+$.

Let q_i and q_j , be two states of machines M_1 and M_2 , respectively. q_i and q_i are considered V-equivalent if $O_1(q_i, s)=O_2(q_i, s)$ for all s in V.

© Aditya P. Mathur 2007

9

10

12

States that are not k-equivalent are considered k-distinguishable.

Minimal machine: An FSM M is considered minimal if the number of states in M is less than or equal to any other FSM equivalent to M.

13

How to	o constru	ct a k-eq	uivalence	partitio
an ESM I	M. construct	a 1-equivaler	nce partition.	start with
ar represe	entation of M			
Current	O	utput	Next	state
state	а	b	а	b
q1	0	1	q1	q4
q2	0	1	q1	q5
q3	0	1	q5	q1
q4	1	1	q3	q4
a5	1	1	q2	q5

Construct 1-equivalence partition

Group states identical in their Output entries. This gives us 1-partition P_1 consisting of Σ_1 ={q1, q2, q3} and Σ_2 ={q4, q5}.

Σ	Current	O	utput	Next state		
	state	а	b	а	b	
1	q1	0	1	q1	q4	
	q2	0	1	q1	q5	
	q3	0	1	q5	q1	
2	q4	1	1	q3	q4	
	q5	1	1	q2	q5	

Construct 2-equivalence partition: Construct P₂ table Group all entries with identical second subscripts under the next state column. This gives us the P_2 table. Note the change in second subscripts. Σ Current Next state P₂ Table state а b 1 q11 q43 q1 q2 q11 q53 2 q3 q53 q11

q32

q21

q43

q53

32

3

© Aditya P. Mathur 2007

q4

q5

8

Constru	ıct 4-equ	uivalence p	artition: C	onstruct	P ₄ table
Continuing with table.	n regroupi	ing and relab	eling, we fir	ally arrive	at P ₄
	Σ	Current	Next state		P ₄ Table
		state	а	b	
	1	q1	q11	q44	
	2	q2	q11	q55	
	3	q3	q55	q11	
	4	q4	q33	q44	
	5	a5	a22	a55	1

Finding the distinguishing sequences: Example (contd.) Using the same procedure used for q1 and q2, we can find the distinguishing sequence for each pair of states. This leads us to the following characterization set for our FSM. W={a, aa, aaa, baaa}

39

A testing tree of an FSM is a tree rooted at the initial state. It contains at least one path from the initial state to the remaining states in the FSM.

Construction:

State q0, the initial state, is the root of the testing tree. Assuming that the testing tree has been constructed until level k, the (k+1)th level is built as follows.

Select a node n at level k.

- If n appears at any level from 1 through k-1, then *n* is a leaf node and is not expanded any further.
- If n is not a leaf node then we expand it by adding a branch from node n to a new node m if δ(n, x)=m for each x in X. This branch is labeled as x. This step is repeated for all nodes at level k.

41

State identification set:	Exa	mple			
Last element of the output string	Si	Sj	x	O(Si,x)	O(Sj,x)
a/0	1	2	baaa	1	0
		3	аа	0	1
b/1		4	а	0	1
b/1 b/1 a/1		5	а	0	1
	2	3	aa	0	1
		4	а	0	1
(q4) (q5)		5	а	0	1
b/1 b/1	3	4	а	0	1
$v_1 = v_2 = \{ \text{Jada}, \text{dd}, \text{d} \}$		5	а	0	1
$vv_3 = \{a, aa\}$ $vv_4 = w_5 = \{a, aaa\}$	4	5	aaa	1	0
© Aditya P. Mathur 2007					55

Wp method: Step 4: Com	Example: pute T2 [m=n]					
$T2 = R \otimes W = \bigcup_{k \to 0}^{k} \{r_k\}$	\$ W.,)					
where W_{ij} is the identification set for state q_{ij} .						
δ(q1, a)=q1	δ(q1, bb)=q4	$\delta(q1, bab)=q1$				
δ(q1, baab)=q5	δ(q1, baaab)=q5	$\delta(q1, baaaa)=q1$				
$\begin{array}{l} T2 = (\{a\}.W_1) \cup (\{bb\}.W_4) \cup (\{bab\}.W_1) \cup (\{baab\}.W_5) \cup (\{baaaa\}.W_1) \\ = \{abaaa, aaa, aa \cup \{bba, bbaaa\} \cup \{babbaaa, babaa, babaa\} \cup \\ \{baaba, baabaaaa\} \cup \{baaabaaa\} \cup \\ \{baaaabaaa, baaaaaaa, baaaaaaa\} \end{array}$						
© Aditya P. Mathur 2007		59				

