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Fig. 1. (a) A challenging crowd simulation scenario with multiple flows interacting simultaneously. By reformulating implicit integration to allow velocity-based
energy functions, we can enable numerically stable crowd simulations even in these dense multi-directional interactions. Our method leads to smooth,
collision-free motion for a wide range of time steps sizes. (b-c) We perform implicit integration by minimizing a global energy function, which is visualized
here by taking slices with respect to the velocities of the two highlighted agents. White crosses indicate optimal new velocities for the highlighted agents.

Large multi-agent systems such as crowds involve inter-agent interactions
that are typically anticipatory in nature, depending strongly on both the
positions and the velocities of agents. We show how the nonlinear, anticipa-
tory forces seen in multi-agent systems can be made compatible with recent
work on energy-based formulations in physics-based animation, and propose
a simple and e�ective optimization-based integration scheme for implicit
integration of such systems. We apply this approach to crowd simulation by
using a state-of-the-art model derived from a recent analysis of human crowd
data, and adapting it to our framework. Our approach provides, for the �rst
time, guaranteed collision-free motion while simultaneously maintaining
high-quality collective behavior in a way that is insensitive to simulation
parameters such as time step size and crowd density. �ese bene�ts are
demonstrated through simulation results on various challenging scenarios
and validation against real-world crowd data.
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1 INTRODUCTION
Simulating the motion of multiple intelligent agents interacting with
each other, such as in crowds, �ocks, or tra�c, is an important task
in computer animation. In many di�erent �elds which study hu-
man motion, early methods for simulation used force-based models
[Helbing and Molnár 1995; Reynolds 1987] inspired by physics, and
could take advantage of improvements in physics-based animation.
Over the past years, both multi-agent modeling and physics-based
animation have seen many powerful advances, leading to highly
sophisticated techniques in both �elds. However, as the two �elds
have largely developed independently, they have diverged enough
that recent numerical techniques from physics-based animation
cannot directly be applied to modern multi-agent models. In this
work, we seek to remove this barrier by building a new connection
between the two �elds, enabling robust and e�cient simulation of
intelligent, anticipatory agent behavior.

A key advancement in physics-based animation has been the de-
velopment of numerically robust simulation techniques, which give
consistent and stable results across a variety of scenarios, simulation
conditions, and even time step sizes. In particular, implicit integra-
tion schemes such as backward Euler are exceptionally stable even
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for numerically challenging problems, while variational integrators
o�er impressive long-term conservation of energy and momenta.
Recent advances in physics-based animation have made these time
integration schemes faster and more robust by formulating them in
terms of optimization, leading to performance speedups for implicit
variational integrators [Kharevych et al. 2006] and highly robust
and parallelizable solvers for backward Euler integration [Bouaziz
et al. 2014; Gast et al. 2015]. �ese practical bene�ts are made possi-
ble by working directly with the underlying energy function that
determines the dynamics of the system.

In a similar fashion, many modern techniques for procedural
animation of intelligent systems model agents as individual entities
each trying to minimize an energy or cost function, such as the
distance to the goal or a cost based on proximity to other agents.
However, in practice these techniques tend to use simple time inte-
gration schemes such as forward Euler, which require small time
steps to maintain stability [Karamouzas et al. 2014; Pelechano et al.
2007; Reynolds 1999]. �e necessity of small time steps brings with
it several issues that widely a�ect �elds such as crowd simulation.
For example, it is o�en necessary to carefully tune simulation pa-
rameters such as the size of the time step for each new scenario. If
the time step is too small, the simulation becomes computationally
expensive; if it is too large, collisions, ji�ering, and discontinuous
motion can be observed. �e magnitude of inter-agent interaction
forces can be adjusted to smooth out motion to an extent, but dense
scenarios o�en still require impractically small time steps to be
able to produce smooth motion. Even when these simulations are
computationally feasible, very small time steps directly give rise to
frequent changes in velocity, which can make it di�cult to apply
character animations to simulated trajectories. Consequently, many
existing crowd simulations are fragile and require deep familiarity
with the underlying methods to adapt to new scenarios.

In this paper, our goal is to allow the application of optimization-
based integration schemes to enable robust simulation of large sys-
tems of intelligent agents, such as crowd simulation. A key chal-
lenge in applying these physics-based animation techniques to the
simulation of intelligent systems is the non-physical nature of the
dynamics. �e entities in these systems do not follow force laws
based on conservative position-dependent forces, but rather they
represent agents that are trying to anticipate and react to the future
trajectories of their neighbors. Such behavior cannot be modeled
using traditional position-based potential energies, as it depends
strongly (and nonlinearly) on the relative velocities of the agents.
In this work, we show that it can instead be described in terms
of an anticipatory potential, analogous to the Rayleigh dissipation
function in classical mechanics. We present an approach to apply
optimization-based time integration schemes to systems described
by a general dissipation function, including those with highly non-
linear anticipatory forces that are characteristic of intelligent agents.

Given the above goals, our work makes two main contributions:

(1) We explicitly connect the damping formulations of
Kharevych et al. [2006] and Gast et al. [2015] to Rayleigh
dissipation functions, and provide a simple derivation of a
method for incorporating general dissipation functions in
optimization-based backward Euler.

(2) We combine this new integration approach with a potential
function derived from a recent analysis of anticipation in
human crowds, which we treat in the same way as a dissi-
pation function. �e resulting implicit crowd simulation
technique allows robust simulation of anticipatory crowd
dynamics.

Our implicit method yields crowd simulations with several valu-
able properties: stability across a very large range of time steps,
scenarios, and densities; guaranteed collision-free motion; smooth,
e�cient trajectories for all agents; and anticipatory behavior be-
tween agents leading to the emergence of collective phenomena.

2 RELATED WORK

2.1 Crowd Simulation
Many approaches exist to simulate crowds, including techniques
based on continuum dynamics [Hughes 2002; Treuille et al. 2006],
data-driven approaches [Charalambous and Chrysanthou 2014; Ju
et al. 2010; Lerner et al. 2007], as well as methods for interactive
crowd authoring [Kim et al. 2014; Normoyle et al. 2014]. Below,
we highlight some prior work on local navigation that is highly
relevant to our paper. We also refer the reader to Sections 6 and 7 for
comparisons of our approach with existing local collision avoidance
schemes.

In general, local navigation methods can be classi�ed into force-
based approaches and velocity-based models. Force-based methods
represent humans as particles and model their interactions using
physical forces. Two of the most popular force-based methods are
Reynolds’s boids model [1987], which captures �ocking behavior
using separation, alignment, and cohesion forces, and the social
force model of Helbing et al. [2000] which uses a mixture of soci-
ological and physical forces to model pedestrian interactions. In
both approaches, the forces depend only on the separation of the
agents and, hence, can lead to simulation artifacts such as oscil-
lations and backward movement. Since these two seminal works,
many approaches have been proposed to address such issues, in-
cluding techniques to control individual agents in dense crowds
[Pelechano et al. 2007], and more recently anticipatory models that
use the notion of time to collision to predict and resolve collisions
[Karamouzas et al. 2009, 2014; Reynolds 1999; Singh et al. 2011a].

�e main advantage of all the aforementioned force-based ap-
proaches is the simplicity in their formulation. However, they o�en
require careful parameter tuning to generate desired simulation
results. In addition, they su�er from numerical stability issues,
since forces can assume large values and vary quickly. As such,
velocity-based models have gained popularity over the past few
years. �ese models plan directly in the velocity space by selecting
at each simulation step a new velocity for each agent according to a
given cost function. Numerous velocity-based formulations have
been proposed in the past decade, including time-to-collision ap-
proaches [van den Berg et al. 2008], techniques based on the notion
of minimal predicted distance [Moussaı̈d et al. 2011; Pe�ré et al.
2009], as well as geometrical methods based on linear programming
[van den Berg et al. 2011]. Recently, vision-based approaches have
also been introduced that can more closely match human behavior
[Dutra et al. 2017; Hughes et al. 2015; Kapadia et al. 2012; Ondřej
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et al. 2010], as well as approaches that account for the holonomic
nature of the human motion [Hughes et al. 2014; Singh et al. 2011b;
Stuvel et al. 2016], non-linear motions [Wolinski et al. 2016], and
behavioral realism [Kapadia et al. 2015].

2.2 Optimization-Based Integration
In physics-based animation, implicit time integration techniques
such as the backward Euler method have long been popular due
to their robustness and unconditional stability. �ese techniques
lead to a nonlinear system of equations, whose solution is typically
approximated by linearizing the problem about the current state
[Bara� and Witkin 1998; Terzopoulos et al. 1987]. However, lin-
earization works poorly in the presence of strong nonlinearities, for
example as observed by Kaufman et al. [2014] in the case of hair
contact simulation. Recent work has taken advantage of an alterna-
tive formulation of backward Euler for conservative systems, where
the system of equations is replaced with an associated optimization
problem [Gast et al. 2015; Martin et al. 2011]. �is approach yields
e�cient and robust algorithms that can cope with strong nonlin-
earities, and has been applied successfully to simulation of elastic
bodies [Bouaziz et al. 2014; Fratarcangeli et al. 2016; Liu et al. 2013,
2016; Martin et al. 2011; Narain et al. 2016; Wang and Yang 2016],
snow [Gast et al. 2015], and �uids [Weiler et al. 2016]. However, as
the interaction forces that arise when simulating multi-agent sys-
tems are both nonconservative and strongly nonlinear, none of the
existing approaches for backward Euler can be applied e�ectively.

Another line of work has sought to formulate optimization solvers
for symplectic time integration schemes, which tend to preserve
physical invariants like energy and momenta. Most relevant to
our work are Kane et al. [2000] and Kharevych et al. [2006], who
also incorporate nonconservative forces such as dissipation into the
optimization scheme. Kane et al. [2000] expressed the Newmark time
integration scheme in an optimization form in a way that can also
handle nonconservative forces arising from a Rayleigh dissipation
function in an implicit manner. Kharevych et al. [2006] do not work
explicitly with a dissipation function, but handle nonconservative
forces by integrating them over velocities; the resulting integral
can therefore be interpreted as a dissipation function. We discuss
dissipation functions further in Section 3.2.

3 ENERGY-BASED FORMULATION FOR ANTICIPATORY
SYSTEMS

In this section, we introduce our integration scheme for anticipatory
systems, that is, systems in which interactions depend not only on
the current state but also on the expected future state. We formulate
these interactions in terms of a function we call the anticipatory
potential, and derive an optimization-based implicit integration
scheme that supports such forces. We defer the application of this
scheme to crowd simulations to Section 4.

3.1 Background: Optimization-Based Integration
For background, we brie�y describe some relevant techniques in
physics-based animation.

For a physical system with d degrees of freedom, its state may be
characterized by its generalized position and velocity x, v ∈ Rd . If

the system has a constant inertia matrix M, its equations of motion
can be expressed as

d
dt

[
x
v

]
=

[
v

M−1f(x, v)

]
(1)

where f is the total generalized force acting on the system. A time-
stepping scheme approximates the solution of equation (1) over
a time interval [tn , tn+1], computing (xn+1, vn+1) given (xn , vn ).
Several common time-stepping schemes are of the form

xn+1 = xn + ∆t
(
(1 − α)vn + αvn+1), (2)

Mvn+1 = Mvn + ∆t
(
(1 − α)fn + αfn+1), (3)

where α ∈ [0, 1] is a parameter, and we denote ∆t = tn+1 − tn ,
fn = f(xn , vn ), and fn+1 = f(xn+1, vn+1) for brevity. For example,
α = 0 and α = 1 give forward and backward Euler respectively.
�e choice α = 1

2 gives the trapezoid rule, which is second-order
accurate, and coincides with the Newmark method with β = 1

4 .
When α = 0, the scheme is explicit, but its stability depends on

the size of the time step ∆t . If f varies rapidly with x or v, the maxi-
mum stable time step can become extremely small, necessitating an
onerously large number of time steps. For general α , we can plug
equation (2) into equation (3) to reduce the problem to a system of
equations in vn+1 alone. For simplicity, from here on we will only
consider the α = 1 case (backward Euler), although the technique
can be readily extended to other values of α . We obtain that vn+1

satis�es the equation

1
∆t

M(vn+1 − vn ) = f(xn + vn+1∆t , vn+1). (4)

While the backward Euler method has much be�er stability proper-
ties than forward Euler, it requires solving the above d-dimensional
nonlinear system, which can be numerically challenging for large
problems.

Recent work in physics-based animation [Gast et al. 2015; Martin
et al. 2011] has promoted an alternative approach when the forces
in the system are conservative, that is, they are proportional to the
gradient of a potential energy U independent of v,

f(x, v) = −∇U (x). (5)

In this case, the time-stepping scheme can be expressed as the
minimization of a single scalar-valued function,

vn+1 = arg min
v

(
1
2 ‖v − v

n ‖2M +U (x
n + v∆t)

)
, (6)

where ‖v‖M = (vTMv)1/2 denotes the kinetic metric. (In existing
work, this is usually expressed in an equivalent form with xn+1

as the optimization variable.) �is works because the �rst-order
optimality condition of equation (6) is precisely the time-stepping
rule for vn+1. �e objective itself can be interpreted as the sum of
a “momentum potential” 1

2 ‖vn+1 − vn ‖2M and the potential energy
U (xn+1). �is formulation enables strongly nonlinear forces to be
handled without linearization, and permits the use of powerful nu-
merical optimization techniques that are robust to nonsmoothness
[Gast et al. 2015] and highly parallelizable [Bouaziz et al. 2014].
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3.2 Velocity-Dependent Interactions and the Rayleigh
Dissipation Function

Our goal in this work is to bring the advantages of optimization-
based time integration to bear on the problem of multi-agent simu-
lation. �e essential challenge is that the approach of equation (6)
is formulated for conservative forces that depend only on position,
whereas we wish to model agents that are anticipatory and react
to each other’s current velocities as well. �ese are comparable to
velocity-dependent dissipative forces in classical mechanics, and the
integration method we use is closely related to existing techniques
for handling such forces in symplectic integrators [Kane et al. 2000;
Kharevych et al. 2006]. In this section, we provide a simpler, elemen-
tary derivation of an analogous technique for the backwards Euler
method, which is a�ractive in graphics due to its excellent stability
properties. We hope that our presentation will spur interest in this
area in the computer animation community.

Many nonconservative forces in mechanics can be expressed as

f(x, v) = −∇2R(x, v), (7)

where R is known as the Rayleigh dissipation function [Goldstein
1980], and ∇2 denotes the gradient with respect to the second ar-
gument. �e dissipation function is usually assumed to be of the
form R(x, v) = 1

2v
TC(x)v for some matrix C(x); this models lin-

ear dissipation forces, including generalized Rayleigh damping and
Newtonian viscosity. However, a general nonlinear dissipation func-
tion can also be considered [Marsden and Ratiu 1999], allowing
forces that depend nonlinearly on velocity.

In the context of multi-agent systems, many inter-agent interac-
tion models can also be expressed as −∇2R(x, v) for a nonlinear R,
as we discuss in Section 4. Here R is thought of as the cost for agents
to take velocities v given one another’s positions and velocities, and
the associated force drives them away from high-cost velocities. As
the term “dissipation function” is not well suited to the role of R in
multi-agent systems, we will refer to it as the anticipatory potential
giving rise to anticipatory forces between agents, analogous to the
conservative potential U which gives rise to conservative forces.

�e force f(x, v) = −∇2R(x, v) can be used in optimization-based
backward Euler with only a small modi�cation of the objective:

vn+1 = arg min
v

(
1
2 ‖v − v

n ‖2M + R(x
n + v∆t , v)∆t

)
. (8)

�is minimization solves the condition
1
∆t

M(vn+1 − vn ) = f(xn+1, vn+1) + ∇1R(xn+1, vn+1)∆t , (9)

where the extraneous term is proportional to ∇1R∆t and vanishes
as ∆t → 0. �us, the minimization problem (8) still provides a �rst-
order accurate discretization of the equations of motion (although
we would not retain the second-order accuracy of the trapezoid
method if applied to α = 1

2 ). Gast et al. [2015]’s Rayleigh damping
model is equivalent to using R(xn , v) instead; this avoids the extra
term but is not fully implicit in positions, and would not su�ce for
the collision avoidance guarantees we show in Section 5.1.

For completeness, we state the full time-stepping scheme for
a system with both conservative and anticipatory forces, that is,

f(x, v) = −∇U (x) − ∇2R(x, v). �e objective function is

f (v) = 1
2 ‖v − v

n ‖2M +U (x
n + v∆t) + R(xn + v∆t , v)∆t , (10)

and time stepping is performed via

vn+1 = arg min
v

f (v), (11)

xn+1 = xn + vn+1∆t . (12)

�e minimization of f can be performed using standard optimiza-
tion algorithms, as described in Section 5. We note that the terms
U (xn + v∆t) + R(xn + v∆t , v)∆t in equation (10) correspond to the
“e�ective incremental potential” of Kane et al. [2000].

In the next section, we show how this optimization-based in-
tegration approach can be applied to inter-agent interactions in
pedestrian crowds, which is the focus of our current work.

4 IMPLICIT CROWDS
Perhaps the most commonly encountered anticipatory system in
real life is a crowd of pedestrians. Unlike simple physical systems,
pedestrians interact with each other well before the moment of ac-
tual collision. As such, the interactions between a pair of pedestrians
is strongly nonlinear in both their relative positions and velocities,
and the implicit integration approach introduced in the previous
section is well suited for simulating them. In this section, we de�ne
a generic crowd dynamics model using an energy-based formu-
lation. We then describe a recently proposed interaction energy
function derived from human motion data, which poses numerical
di�culties for standard methods but �ts well into our proposed
method. Finally, we introduce two modi�cations to the system’s en-
ergy to improve the behavior of numerical solvers. �is leads to an
optimization-based implicit integration formulation for simulating
human crowds.

4.1 An Energy-Based Crowd Model
In our problem se�ing, we are givenm agents that must navigate
through a scene without colliding with each other and the environ-
ment. We assume that the agents move on a plane, and are modeled
as discs with radii r1, . . . , rm ∈ Rm . �e entire state of the sys-
tem can be characterized by stacking the positions x1, . . . , xm and
velocities v1, . . . , vm of the agents into the 2m-dimensional vectors

x =


x1
...

xm

 , v =


v1
...

vm

 . (13)

All agents are assumed to have unit mass; therefore, the inertia
matrix M is the identity, and ‖ · ‖M = ‖ · ‖.

We assume that a procedure external to our algorithm, such as a
global planning routine, provides each agent with a goal velocity
vg
i at every time step. In its simplest form, the goal velocity of each

agent is the vector pointing from the agent’s current position to
a user-speci�ed goal position, with a magnitude equal to a user-
speci�ed preferred speed. Each agent’s velocity is driven towards its
goal velocity via a force fG = ξ (v

g
i − vi ), similar to that in the social

force model [Helbing et al. 2000]. Here ξ is a tunable parameter
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Fig. 2. (a) For two agents at positions xi = (0, 0) and xj = (0, 3), we define vp and vt as the components of their relative velocity vi j parallel to and
perpendicular to the line joining them. (b) For a time step of ∆t = 0.5, we visualize the time-to-collision potential term RTTC(xi j + vi j∆t, vi j ) that appears in
the objective function, equation (10), as a function of vp and vt . Brighter colors indicate higher energy. (c) Taking a slice at vp = 2, the variation of Ri j with
vt shows discontinuities at the boundary of the VO cone. (d) Taking a slice along vt = 0, the potential reaches infinity at vp = ( ‖xi j ‖ − r )/∆t , that is, when
the agents would collide in a single time step.

controlling the strength of the goal force. �is force corresponds to
a potential

RG(vi ) =
1
2 ξ ‖vi − v

g
i ‖

2. (14)

Furthermore, agents react to other agents’ positions and veloc-
ities in order to avoid collisions. �is behavior can be modeled
by introducing a pairwise interaction potential R(xi − xj , vi − vj )
between all pairs of agents i, j. Di�erent choices for this potential
lead to di�erent crowd dynamics models. Nevertheless, if the en-
ergy tends to in�nity as the agents approach a collision, the model
is guaranteed to prevent collisions, as we show in Section 5. We
discuss two examples from prior work below, and turn to a recent
energy-based interaction model in the next subsection.

• In Reynolds’ boids model [Reynolds 1987], separation and
cohesion are purely position-dependent. �e alignment
behavior can be modeled via an anticipatory interaction
potential R(xi −xj , vi −vj ) = w(‖xi −xj ‖)‖vi −vj ‖2, where
w is a weighting function that decreases with distance.
• In the velocity obstacle approach [Fiorini and Shiller 1998],

velocities are disallowed if their extrapolated trajectories
lead to a collision in the future. �is model can be inter-
preted as an interaction potential that assigns in�nite en-
ergy to colliding velocities, and zero energy to all others (see
also Section 4.3). �e time stepping problem (10)–(12) then
is best understood as constrained optimization: minimize
all the other terms in the objective, subject to the constraint
that the interaction energy is �nite, i.e. the velocities do
not lead to a collision.

4.2 Time-To-Collision Potential
Karamouzas et al. [2014] have recently analyzed a wide range of
publicly available crowd data [Lerner et al. 2007; Pellegrini et al. 2009;
Seyfried et al. 2009], showing that the interaction energy between
any given pair of pedestrians follows a power law as a function
of their projected time to collision (TTC), denoted τ . Formally, the
interaction potential between two pedestrians or agents, i and j, is

given by:

RTTC(xi j , vi j ) = kτ−pe−τ /τ0 , (15)

where k is a scaling constant, andp is the exponent of the power law;
the truncation time τ0 models the fact that people tend to ignore
collisions that take place in the far future [Olivier et al. 2012].

Here, the time to collision τ is understood to be a function of the
relative displacement between the two agents, xi j = xi − xj , their
relative velocity, vi j = vi −vj , and their combined radius r = ri +r j ,
and denotes the �rst time in the future at which the corresponding
discs of the agents intersect. Assuming linear motion, the discs will
intersect if at some time t ≥ 0 it holds ‖xi j + vi j t ‖ ≤ r . �is leads
to a quadratic equation in t , and τ is given by its smallest positive
root (see supplementary material for more details):

τ =
−xi j · vi j −

√
(xi j · vi j )2 − ‖vi j ‖2(‖xi j ‖2 − r2)

‖vi j ‖2
(16)

If no such root exists, we take τ = ∞, which subsequently leads to
a zero interaction energy.

�e TTC potential RTTC has two features that make it unsuitable
to be used directly in numerical optimization: a jump discontinuity
along the boundary between colliding and non-colliding velocities,
and arbitrarily steep behavior for agents on grazing trajectories.
�erefore, we de�ne a modi�ed potential RTTC′ by smoothing over
the discontinuity, and add a position-dependent repulsion energyUR
to prevent agents from ge�ing arbitrarily close. �ese modi�cations
are described in the following subsections.

Our energy formulation thus consists of terms for repulsion (UR),
goal direction (RG), and time to collision (RTTC′ ). �e total potential
functions for the crowd are

U (x, v) =
∑
i,j

UR(xi j ), (17)

R(x, v) =
∑
i
RG(vi ) +

∑
i,j

RTTC’(xi j , vi j ), (18)
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vt
* vt

max vt

σ

(a) (b)

Fig. 3. (a) We smooth over the discontinuity in the inverse time to collision
σ (red) by linear extrapolation from vt = ±v∗t . The resulting function σ̄
(orange) is continuous everywhere. (b) A visualization of the smoothed
potential term RTTC′ (xi j + vi j∆t, vi j ); compare with Figure 2b.

and the total force is given by f(x, v) = −∇U (x) − ∇2R(x, v) as
usual. As described in Section 3.2, backward Euler integration for
the system can now performed via equations (10)–(12).

Agents also experience interaction potentials arising from static
polygonal obstacles in the environment. �ese agent-obstacle in-
teractions are incorporated using the same time-to-collision and
repulsion energies used in agent-agent interactions. However, these
energies are evaluated between each agent and the union of all
obstacles. As a result, only the energy contributed by the most
threatening obstacle contributes to R (rather than, for example,
adding the energy from every obstacle).

4.3 A Continuous Time-To-Collision Potential
Consider two agents as shown in Figure 2a. �eir TTC potential, as
de�ned in equation (15), depends on the time τ that it takes for the
two agents to collide. Given the discs of the two agents located at
xi and xj , respectively, there is a range of relative velocities vi j =
vi −vj that will result in a collision. In robotics, this set is commonly
referred to as a velocity obstacle (VO), and can geometrically be
interpreted as a cone in vi j space with its apex at the origin and its
legs tangent to the disc of radius r = ri +r j centered at −xi j [Fiorini
and Shiller 1998].

Figure 2b depicts the TTC potential of our current example for
di�erent relative velocity values. Even in this simple 2-agent sce-
nario, the interaction energy is discontinuous on the boundary of
the VO cone, which leads to numerical di�culties in optimization.
�is discontinuity arises because τ is in�nite outside the cone but
has a �nite limit approaching the boundary from the inside, and so
RTTC jumps from zero to a �nite nonzero value.

To analyze the situation more closely, we consider a local coordi-
nate system in velocity space, centered at the origin and oriented
along −xi j . We can then decompose the relative velocity into two
components: its projection, vp , along the direction of −xi j , and its
tangential counterpart, vt , (see Figure 2a). For convenience, we will
work with the reciprocal of the time to collision, σ = τ−1, which is
zero when the agents are not on a colliding trajectory, and becomes
larger for more imminent collisions. Figure 3a plots σ for di�erent
vt values (solid red plot). We will de�ne a continuous approxima-
tion to this function, σ̄ , by smoothing over the transitions between
zero and positive values.

Assuming that vp ≥ 0, that is, the agents are approaching each
other (otherwise τ = ∞ and σ = 0), σ is given by the reciprocal of
equation (16). As can be seen from Figure 3(a), σ is symmetric in vt ,
and decreases from its maximum at vt = 0 to a �nite nonzero value
at vmax

t = (r vp )/(‖xi j ‖2 − r2) before dropping discontinuously
to zero (see supplementary material for details). We de�ne σ̄ by
selecting an intermediate velocity between 0 and vmax

t , namely
v∗t =

√
1 − ϵ2vmax

t for a parameter ϵ ∈ (0, 1). For any |vt | ≤ v∗t ,
we keep the unchanged value σ̄ = σ , while the smoothed σ̄ for
|vt | > v∗t is computed by linearly extrapolating from ±v∗t and then
clamping to nonnegative values.

�is results in a reciprocal time-to-collision function that is con-
tinuous everywhere and di�erentiable away from 0, as shown in
Figure 3a (dashed orange plot). �erefore, the corresponding inter-
action potential

RTTC′ = kσ̄
pe−1/(σ̄ τ0) (19)

visualized in Figure 3(b) is di�erentiable everywhere for p > 1. For
a detailed explanation of the smoothing process see the supplemen-
tary material.

4.4 Maintaining inter-agent separation
�e TTC potential RTTC′ depends on the projected time to collision,
so two agents moving very narrowly past each other but not actually
colliding will experience negligible force. As a result, agents tend
to take grazing trajectories, passing at a separation of nearly zero
in their closest approach. Since RTTC′ rises from zero to in�nity
over the interval vp ∈

[
0, (‖xi j ‖ − r )/∆t

]
, the objective becomes

“L-shaped” with an in�nite slope on one side as the distance between
agents, ‖xi j ‖, approaches r (Figure 2d). �is leads to di�culties
for numerical optimization: while the use of a standard line search
procedure permits the use of objectives that rise smoothly to in�nity,
progress can still stall in regions where the objective’s gradient
changes sharply in a small neighborhood.

To avoid this issue, we add a distance-based repulsion energy UR,
de�ned as

UR(xi j ) =


η

‖xi j ‖ − r
if ‖xi j ‖ > r ,

∞ otherwise,
(20)

where η is a scaling constant. �is energy acts as a barrier function
that rises smoothly to in�nity as the agents approach each other.
�us, the separation between agents remains bounded away from 0,
and the numerical issues due to unbounded steepness in RTTC′ do
not arise.
Continuous collision detection. �e backward Euler integration
scheme only considers the interaction energies at the end of the
time step. �erefore, it is possible in principle that agents can
“tunnel” through each other and appear on the other side, even
though the trajectory between the initial and �nal state would have
led to interpenetration at an intermediate time. �is is essentially
the well-known limitation of discrete collision detection.

A simple extension of the repulsion potential can eliminate tun-
neling as well. Instead of computing the repulsion based on the
current distance ‖xi j ‖, we use the minimum distance over the cur-
rent time step. For linear trajectories, this has the simple closed
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(a) PowerLaw (b) Implicit

Fig. 4. Comparison between (a) a standard PowerLaw simulation and (b) a simulation computed using our Implicit approach. Here, 8 agents must walk to
antipodal points in a circle. The PowerLaw model leads to collisions and other discontinuities in motion with time steps much larger than 10ms. Our approach
is smooth and collision free for time steps of any size.

form

dmin = min
α ∈[0,1]

‖(1 − α)xni j + αxi j ‖ (21)

= ‖(1 − α∗)xni j + α
∗xi j ‖ (22)

where α∗ is where the minimum is a�ained,

α∗ = clamp
(
xni j · (x

n
i j − xi j )

‖xi j − xni j ‖2
, [0, 1]

)
. (23)

Using dmin instead of ‖xi j ‖ in (20) e�ectively performs continu-
ous collision detection, sending the repulsion energy to in�nity
whenever the trajectories would intersect at some point within the
time step. In our implementation, we added a small ϵ term to the
denominator of α∗ to avoid nondi�erentiability when xi j = xni j .

5 ANALYSIS AND IMPLEMENTATION

5.1 Theoretical Properties
Our technique has the a�ractive theoretical properties of guaranteed
collision-freeness and C2-continuity, as we explain in this section.

First, through the use of implicit integration and smoothed TTC
potentials, we can guarantee absence of collisions even for arbi-
trarily large time steps. Observe that if any two agents i and j are
interpenetrating, their time to collision, τ , is zero and so their TTC
potential as de�ned by equation (19) is in�nite. �erefore, for any
candidate velocity vn+1 that leads to an interpenetration at the next
con�guration xn+1 = xn + vn+1∆t , the potential at the next time
step R(xn+1, vn+1) would be in�nite, and consequently so would
our objective function f (vn+1) de�ned in equation (10). Such a
velocity cannot be a minimum unless f (vn+1) = ∞ for all possible
vn+1, that is, all possible velocities lead to interpenetrations. �is is
impossible in the absence of moving obstacles: in particular, when
vn+1 = 0, the TTC potential is 0 for all pairs of agents, so f (0) is
�nite. �us, the algorithm will never take a step which leads to
collisions.

Furthermore, our formulation is smooth in the sense that the
agent trajectories are provably C2-continuous in the limit ∆t → 0.
Our approach converges to the solution of a system of ordinary
di�erential equations,

Ûx(t) = v(t), (24)
Ûv(t) = −∇U (x(t)) − ∇2R(x(t), v(t)). (25)

With the smoothed TTC potential, both U and R are di�erentiable,
so the right-hand side of equation (25) is a continuous function
of time. Integrating twice, we �nd that the trajectories x(t) are
C2-smooth with respect to time. In practice, with our implicit inte-
gration scheme the trajectories are also visually smooth for �nite
time steps, even moderately large ones (Fig. 4).

5.2 Implementation Details
We implemented in C++ the optimization-based model described in
Section 4. �e simulator advances through each time step from tn

to tn+1 by numerically solving the minimization problem de�ned
in equations (10) and (11) and returning the new velocities vn+1

for the agents. �en, the positions of the agents are updated via
equation (12).

�e numerical minimization itself is carried out using our imple-
mentation of the L-BFGS method [Nocedal and Wright 2006], along
with an inexact line search using the Armijo condition. L-BFGS is a
quasi-Newton approach that maintains a compact approximation
of the objective’s Hessian to compute the descent direction. At
each iteration, the solver requires the value of the objective f (v)
and its gradient ∇f (v) at the current iterate, updates its Hessian
estimate accordingly, and takes a quasi-Newton step. �e iterations
are terminated when a �xed number of optimization iterations has
been met, or the L∞-norm of the di�erence between consecutive
iterates is below a small user-de�ned threshold.

In our implementation, we compute the objective and its gradient
analytically. To improve performance, when evaluating the interac-
tion terms RTTC′ and UR, we only consider pairs of agents whose
distance is within an interaction radius at the start of the time step.
As we use L-BFGS rather than a direct Newton solver, we do not
require an analytical Hessian, which could be onerous to calculate
especially for the smoothed time-to-collision term. Furthermore, the
full Hessian can become quite dense in a crowded scenario, when
tens or hundreds of agents are within each agent’s distance thresh-
old. We did test Newton’s method using automatic di�erentiation to
compute the Hessian, but found that the memory-e�cient L-BFGS
to lead to be�er performance for our problem se�ing.

Another issue is the choice of initial guess for vn+1. Using the
previous velocity vn may not be advisable, because if xn + vn∆t is
a colliding state, the initial value of the objective will be in�nite and
the numerical method will fail. On the other hand, as long as the
agents are not already colliding at the start of the step, choosing
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vn+1 = 0 is guaranteed to be a feasible state, so we use it as the
initial guess. As our solver uses a line search that never accepts an
in�nite-energy iterate, the simulation is guaranteed to always be in
a collision-free state, even if the solver is not run to convergence.

6 RESULTS
In this section, we detail quantitative results based on several simu-
lations obtained with our Implicit method. We encourage readers
to view the corresponding animations in the accompanying video.
In all of our simulations, unless otherwise speci�ed, we used k = 2,
ϵ = 0.2, τ0 = 3s, and p = 2 for the parameters of the TTC potential
in equation (19), η = 0.01 for the repulsion energy de�ned in equa-
tion (20), and ξ = 2 for the scaling constant of the goal potential
given in equation (14). Furthermore, we considered pairwise interac-
tions only between agents that are less than 10 m away. Regarding
the parameters of our L-BFGS solver, we used 100 optimization
iterations, set the size of the L-BFGS memory window to 5, and
employed early stopping whenever the di�erence between the new
and previous solution was below 10−5.

In analyzing our results, we considered the following scenarios:
Crossing: 400 agents are split into four groups and cross paths
perpendicularly (Figure 1a).
Hallway: Two groups, each having 150 members, cross paths while
coming from opposite directions of an open hallway.
Blocks: 2000 agents walk around a virtual city block set-up following
a roadmap for global navigation (Figure 5b).
Evacuation: 1200 agents evacuate an o�ce building following a
visibility roadmap for global navigation and periodically replanning
their global routes (Figure 5a).
Random: Agents are given multiple random goals on an empty plane.
�e number of agents is varied to test performance.

Below we show simulation results using our method, which we
refer to as Implicit, and compare them to simulations obtained using
the ORCA framework of van den Berg et al. [2011] and the time-to-
collision force model (PowerLaw) of Karamouzas et al. [2014]. We
chose ORCA as it is one of the few existing methods that provides
some formal guarantees about collision-free motion, and the Pow-
erLaw model as a state-of-the-art anticipatory force-based model
that has been well validated against human behavior.

6.1 Time Step Stability
We start by comparing the robustness of PowerLaw, ORCA, and
Implicit to di�erent time step sizes ∆t . Table 1 shows the range
of collision-free time steps for each simulation method on each of
the above scenarios. In ORCA and PowerLaw, we consider two
agents as colliding only if their disks overlap by more than 5%. �is
allows agents to have small overlaps (as happens with PowerLaw) or
glancing collisions (as happens with ORCA) without any penalties.

Because the PowerLaw approach relies on explicit integration,
like other existing force-based models used in crowd simulation, it
needs very small time steps to provide collision-free motion. For
very complex dense scenarios, such as Evacuation, the method
produces collisions even at very small time steps (∆t < 5 ms). As a
result, obtaining collision-free simulations for arbitrary scenarios
would require impractically small time steps or careful parameter
tuning.

(a) Evacuation

(b) Blocks

Fig. 5. Our Implicit approach can be integrated with roadmaps to allow the
simulation of complex scenarios. (a) 1200 agents evacuate a complex o�ice
se�ing. (b) 2000 agents walk through a virtual city block.

In contrast to the PowerLaw method, where the agents follow a
statistically-derived energy function, the ORCA framework plans
motions directly in velocity space. ORCA uses a constrained opti-
mization approach, solving a linear program for each agent to bring
it towards its goal while avoiding collisions. �is approach leads
to a substantially larger region of collision-free time steps than the
PowerLaw approach. However, the limitation of the per-agent ap-
proach is that for some conditions there may be no feasible velocity
which is provably collision-free. In such cases, ORCA relaxes the
constraints, allowing for the possibility of collisions. As can be
seen in Table 1 such conditions are more likely to occur in dense
scenarios such as Crossing and Evacuation, leading to a substantial
reduction in the allowable time step.

Unlike either ORCA or the PowerLaw, our proposed Implicit
approach is unconditionally collision-free at all time steps in all
scenarios tested. Here, we did not relax the collision criterion: two
agents are considered as colliding whenever there is any amount
of overlap between their disks. �is empirical result matches the
theoretical analysis provided in the previous section. Crucially, this
means that simulations using our method may choose a time step
appropriate given other considerations (e.g., available computation
time, or desired animation update frequency), and be con�dent of
simulation stability regardless of how the simulation evolves. �is
is in contrast to previous approaches, where careful per-scenario
tuning was needed simply to avoid collisions.

6.2 Simulation Accuracy
It is, of course, not su�cient for a simulation to be smooth and
collision-free; we must also capture the dynamics of the system
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Maximum collision-free ∆t [ms]
# Agents # Obstacles Roadmap Density PowerLaw ORCA Implicit

Hallway 300 2 no medium 40 100 > 1000
Crossing 400 0 no high 20 35 > 1000
Random 500 0 no low 30 140 > 1000
Evacuation 1200 178 yes very high < 5 25 > 1000
Blocks 2000 112 yes low 30 90 > 1000

Table 1. The largest time step that leads to collision-free motion, evaluated by sampling ∆t over the range of 5 ms to 1000 ms for each scenario and simulation
method. For both PowerLaw and ORCA the range of collision-free time steps strongly depends on the given scenario, with dense scenarios necessitating very
small time steps. For Implicit, all simulation time steps lead to collision-free motion.
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Fig. 6. Distance to nearest neighbor outliers for di�erent time step sizes and
simulation methods. The results were obtained by comparing a bo�leneck
simulation to real world data obtained by [Seyfried et al. 2009]. Error bars
show standard deviation across simulation frames.

accurately. Here we investigate two forms of simulation accuracy.
First, we compare simulated trajectories directly to observed human
trajectories in similar scenarios. Second, we compare the statistical
pa�erns in our agents’ motion to those seen in real crowds.
Trajectory Comparison. Several researchers have detailed methods
for evaluating the accuracy of crowd simulations based on either
behavioral metrics [Kapadia et al. 2009] or reference human tra-
jectories [Lerner et al. 2010]. Here, we follow the recent analysis
approach outlined by Charalambous et al. [2014] which derives
behavioral metrics from reference trajectories automatically using
outlier detection.

For ground truth human motion, we use the experiments from
Seyfried et al. [2009] which recorded human subjects walking out
from a waiting room through a bo�leneck created by a narrow cor-
ridor. We then create a custom simulation whose initial conditions
closely match real-world evacuation experiments (50 agents placed
in a 10 m x 5 m waiting area are directed to walk through a 2.5 m
wide constriction). Localized p-value estimation (k-LPE) [Zhao and
Saligrama 2009] is then used to �nd outliers in the simulation as
compared to the ground truth data; the more outliers, the worse the
simulation captures actual human behavior.

Figure 6 details the number of outliers found (as measured by
local neighborhood distances) for di�erent simulation methods over
varying time steps. For small time steps, Implicit and PowerLaw

both have almost no outliers, whereas ORCA is somewhat less
accurate. As the time step grows, ORCA maintains the same level of
accuracy, but the PowerLaw method gets signi�cantly worse. At a
fairly moderate time step of 0.1s both methods have nearly a quarter
of agents producing incorrect behavior each time step. Our Implicit
method produces no outliers in this scenario for a very large range
of time steps (up to 400ms). We do note that for very small time
steps, Implicit is slightly less accurate. �is is due to the fact that
the distance-based repulsion term, equation (20), is more likely to
act with smaller time steps.
Statistical Anticipation Analysis. Karamouzas et al [2014] have
shown that in many real-world se�ings, the interaction energy
between humans is anticipatory in nature, following a power-law
relationship with respect to time to collision. In much of the crowd
data that they analyzed, this power law has an exponent of 2, that
is, p = 2 in equation (15). Our simulations can reproduce the same
anticipatory law. To account for the discrepancy between our force
f = −∇2RTTC′ and the force −∇1RTTC used by Karamouzas et al.,
we use a larger exponent in the TTC potential of equation (19) as
described in the supplementary material. We experimentally found
an exponent of 3.25 to give a good match with the expected behavior
a�er analyzing the pairwise interaction energies of our simulations.

Figure 7 shows the corresponding interaction energy graph in the
Hallway scenario. As can be seen, the energy falls o� quadratically
with the time to collision even with very large time steps. We note
that the PowerLaw model can of course reproduce the same power-
law behavior, but only for su�ciently small time steps. As shown in
[Karamouzas et al. 2014], ORCA can exhibit roughly similar behavior
in some scenarios, but it does not match the empirically observed
power law as closely as PowerLaw (and Implicit).

6.3 Performance
We evaluate the runtime performance of our approach using a
3.5GHz Intel Xeon E5-1650 with 6 cores and hyperthreading. Even
for large scenarios with hundreds or even thousands of agents, our
method runs at interactive rates (> 10 Hz) on all time steps tested.
Our approach also maintains realtime performance (computation
time < simulation time step) for all scenarios with time steps of
100ms or greater, running between 2.7x faster than realtime (on the
Evacuation scenario) and 27x faster (on Hallway).

To isolate the e�ect of problem size and time step length on
convergence, we varied these parameters while removing the 100
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Fig. 7. The pairwise interaction energy U as a function of time-to-collision
(τ ) for Hallway simulations obtained using di�erent time steps. Blue and red
lines indicate the mean energy every 0.05 s and shaded regions denote the
95% confidence interval. In both simulations, the energy exhibits an inverse
quadratic relationship with the time-to-collision, matching the behavior of
real pedestrians as shown in [Karamouzas et al. 2014].

iteration cap in the solver. Figure 8 shows the corresponding results
on the Random scenario. As can be seen in the �gure, the runtime
increases quite slowly as the time step increases. Varying the num-
ber of agents while keeping the time step �xed to ∆t = 0.25 s results
in a near-linear increase in runtime with the number of agents.

While our overall system is fast enough for many applications,
our performance is signi�cantly slower than either ORCA or the
PowerLaw method, both of which can run 2-10 times faster than
our method on similarly sized scenarios. We note though, that for
many complex scenarios, such as Blocks and Evacuation, computing
inter-agent interactions is not the computational bo�leneck for the
simulation; for example, global path planning may be signi�cantly
more expensive. In these scenarios, ORCA, PowerLaw, and Implicit
all have somewhat similar e�ective runtimes.

7 DISCUSSION
Here, we supplement the above quantitative comparisons with a
more qualitative analysis of the resulting behavior of our simula-
tions, as well as a comparative analysis to other approaches.

7.1 Behavioral Analysis
An important aspect of crowd simulation is capturing the emergent
phenomena in �ow pa�erns seen in real human crowds. Our Implicit
method succeeds in reproducing many of these important phenom-
ena. For example, humans in crowds are known to emergently form
lanes of travel when in bi-directional �ows, swirl to avoid collisions
in multi-directional encounters, and form diagonal clusters during
perpendicular crossings (see, e.g., [Helbing et al. 2001] for a longer
discussion of these phenomena). Our Implicit method reproduces
all of these phenomena for both large and small time steps. For
example, the vortex-based collision resolution can be seen in the
antipodal circle scenario (Figure 4). Lane formation can be clearly
seen in the Hallway scenario (see supplemental video), and diago-
nal clustering occurs in the crossing scenario (Figure 1). Likewise,
Implicit agents clog in congestion and form “zipper” pa�erns when
navigating through narrow bo�lenecks.
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Fig. 8. Runtime performance of the Implicit method as a function of the
number of agents. The experiment was run in the Random scenario with
∆t = 0.25 . The reported numbers are the averages over 5 runs, where each
run computes 50 s of simulation time. The inset shows the performance for
the same scenario with 500 agents while varying the size of the simulation
time step.

Fig. 9. The number of stalled agents (speed < 0.2m/s) over the course of a
simulation for the Evacuation scenario. PowerLaw and Implicit have similar,
though not identical, behavior. ORCA agents get stuck in the congestion
and fail to evacuate in a smooth, timely manner.

Overall, the qualitative behaviors produced by the PowerLaw
method and Implicit are very similar, with PowerLaw simulations
resulting in many of the same emergent crowd phenomena, though
only at small time steps. Both methods also produce fairly similar
overall �ow predictions. For example, Figure 9 shows a graph of
how many agents are stopped in congestion over the course of the
Evacuation scenario. Both methods predict two peaks of congestion
(one a few seconds in, the other at 100 s), though the PowerLaw
agents complete the evacuation slightly faster.

Compared to PowerLaw and Implicit, ORCA produces very dif-
ferent behaviors regardless of simulation time step. Some of the
behavioral di�erences are clearly visible in small-scale interactions.
Consider, for example, the scenario in Figure 10, where three agents
a�empt to walk past each other. Using ORCA, the unpaired agent
stops suddenly and does not move again until the other two agents
have completely passed it. While this behavior is collision-free, the
resulting motion is very unnatural. In contrast, using our Implicit
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Fig. 10. In this three-agent scenario, ORCA is overly conservative and does
not allow the rightmost agent to move forward until the two approaching
agents have moved past. Implicit gives more realistic behavior, with all
agents adapting plausibly to each other.

approach, the unpaired agent is willing to “take a step” towards
a collision based on the assumption that more drastic avoidance
maneuvers can be taken in future time steps if needed.

7.2 Relation to Existing Simulation Methods
Velocity-based approaches. Our Implicit crowd simulation approach
shares many important aspects with ORCA. Both can be viewed as
a�empts to solve a constrained optimization problem over the space
of agent velocities, and both provide some formal guarantees about
robustness and collision-free behavior under certain conditions.
However, there are some subtle, but important di�erences in the two
approaches which lead to signi�cant di�erences in visual behaviors.
Consider a pair of agents interacting as shown in Figure 2a. Figure 11
shows the accelerations an agent will undergo for di�erent goal
velocities for both methods. For ORCA, any velocity inside the
velocity obstacle (VO) is immediately moved outside it in a single
time step; velocities outside the VO are una�ected. Due to our
smoothing procedure, Implicit has a wider range of velocities which
are a�ected, but the resulting acceleration is much less dramatic.
�is leads to smoother behaviors which allow collision resolution
to happen over several time steps (Figure 10).

Many recent methods for crowd simulation can be considered
velocity-based in their approach. Examples include anticipatory so-
cial forces [Karamouzas et al. 2009], synthetic vision approaches [Du-
tra et al. 2017; Hughes et al. 2015; Ondřej et al. 2010], and the re-
cently proposed WarpDriver [Wolinski et al. 2016] which all have
agents whose behavior depends primarily on the relative veloci-
ties of nearby agents. Unlike ORCA, but similar to PowerLaw, all
these methods trade-o� collision avoidance guarantees in favor for
improved behaviors in situations like 3-agent and Crossing where
ORCA does poorly. However, none of these methods provide any
guarantees of robustness and collision-free motion, and are there-
fore liable to su�er from the same time step limitations in dense
scenarios as seen with ORCA in Table 1. We conjecture that, subject
to the limitations discussed below in Section 7.3, it may be possible
to reformulate many of these techniques in terms of interaction
energies. �is would allow our implicit integration scheme outlined
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Fig. 11. Comparisons between Implicit and ORCA acceleration responses
for the two agents shown in Figure 2a. (Le�) The gradient of our proposed
interaction potential, equation (19). (Right) The change in velocity induced
by ORCA’s VO. ORCA instantaneously avoids the collision, whereas our
method smoothly avoids collisions over several time steps.

in Section 4.1 to be applied, automatically imparting robustness
guarantees to these methods. We believe this is an exciting avenue
for future work.

Continuum Formulations. Continuum-based approaches to crowd
simulation [Narain et al. 2009; Treuille et al. 2006] are similar to
our work in several ways. �ey, too, seek to leverage the extensive
literature of modern, robust physical simulation techniques to im-
prove crowd simulation. In particular, they also rely on a global
solve across the entire crowd to obtain collective behavior and avoid
congestion. However, these methods cannot guarantee collision-
free motion, as the agents do not interact directly with each other
but rather are guided by a continuum approximation of the crowd
�ow that carries no information about speci�c nearby agents. Our
approach works directly with individual agents and their pairwise
interactions, yielding high-quality behavior along with theoretical
guarantees.

7.3 Limitations
Backward Euler is a �rst-order integration scheme and e�ectively
assumes that the agent trajectories are linear over a time step. �is is
particularly true for the continuous collision detection approach in
our repulsion energy. We have seen that our method performs well
for moderate time steps of up to 0.4 s, because the true solution does
not deviate signi�cantly from linearity over such time intervals. For
much larger time steps, the simulation quality will eventually start
to degrade as the linear-trajectory assumption becomes increasingly
invalid. In the supplementary video we show such a result for the
Hallway scenario; when a time step of 4 s is used, the �ow of the
crowd becomes slower as agents can no longer weave around each
other easily.

Unlike many popular techniques for crowd simulation which
use only per-agent computations, our method requires a global
solve involving all the agents in the crowd. �is has a signi�cant
computational cost, and limits our performance compared to other
non-centralized methods such as ORCA and PowerLaw. Other limi-
tations also arise from the use of a global approach: All agents must
be updated simultaneously in our current formulation, so it is not
easy to use techniques like adaptive time stepping, variable update
rates, or even agents that are updated out of sync.
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(a) Interaction radius = 2.5m (b) Interaction radius = 10m

Fig. 12. Varying solver parameters such as the maximum interaction radius
allowed between agents can change the global behavior of agents. (a) Using
a small radius produces less organized behavior, while (b) a larger radius
results in more organization.

Despite the robustness of the overall simulation approach, per-
scenario tuning may still be required to adjust the behavior of the
overall simulation. In addition to the behavioral parameters which
already existed in the original PowerLaw model, our model also has
tunable parameters associated with the implicit solver that a�ect
the agent behavior. Tuning, these parameters can expose a trade-o�
between simulation quality and runtime performance. For example,
using too few L-BFGS steps per frame will not result in collisions
between agents, but can result in velocities too close to their initial
value of 0, unnaturally damping crowd �ows. Likewise, changing
the cut-o� radius at which agent-agent interactions energies are
ignored can improve runtime, but also changes the amount of global
coordination between agents (see Figure 12).

Finally, our method requires all velocity-dependent forces in the
system to be of the form f(x, v) = −∇2R(x, v) for some scalar-valued
function R, analogous to how many optimization-based integrators
in previous work requires conservative forces f(x) = −∇U (x). While
many nonconservative forces of interest are of our proposed form, it
certainly does not include all possible force functions. For example,
any interaction energy between two agents i and j will induce forces
on both of them, in fact equal and opposite forces if the energy de-
pends on vi − vj . As a consequence of this, asymmetric interactions
such as �eeing and leader-following cannot be updated through
implicit integration. �ese interaction forces may be integrated
explicitly by evaluating them at the beginning of the time step and
treating them as if they were constant. While these explicit forces
may be a source for non-smooth motion at large time steps, our
approach still ensures collision-free behavior even in the presence
of these explicit forces.

8 CONCLUSION
We have shown how a large class of velocity-dependent interac-
tions in multi-agent systems such as crowds can be described using
an anticipatory potential, analogous to the Rayleigh dissipation
function in classical mechanics, and thus simulated e�ectively us-
ing optimization-based implicit integration schemes. Applying our
formulation to the problem of local navigation of multiple virtual
agents, we have proposed the Implicit Crowds model. Compared to
previous techniques for local collision avoidance, we demonstrate

that our approach can guarantee collision-free motions and gener-
ate robust simulations with high-quality behaviors at across a large
range of densities, time steps, and se�ings.
Future work. In the future, we would like to address several of the
limitations discussed above. Ultimately, it would be desirable to �nd
a local scheme for independently updating each agent’s velocity
according to equation (10), that would allow us to exploit the use of
local-global alternating minimization techniques, such as projective
dynamics [Bouaziz et al. 2014], ADMM [Narain et al. 2016], and
descent methods [Wang and Yang 2016], which allow for massive
parallelization. Another interesting direction for future work is
applying our proposed anticipatory potential model to other multi-
agent systems besides crowds, such as tra�c, although this may
require a di�erent pairwise potential formulation than one based
on the smoothed time to collision introduced in this paper.

Furthermore, we believe that our method opens up a wide range
of new possibilities for how crowd simulations are integrated with
larger systems. For example, since the frequency of a human step is
about 1.5-2.5 Hz, an update rate of about 0.4 s for the motion of the
agent’s center of mass would be well suited as input for a footstep-
based character animation system. Additionally, supporting large
time steps suggests the possibility of adaptive time stepping for
crowd simulation in games, where very large time steps could be
used for agents far from the player and small time steps for nearby
agents. Because our system provides robust and accurate behavior
even for relatively large time steps, we believe that it can be naturally
integrated into a level-of-detail system without compromising the
quality of the simulated crowd’s behavior. While the synchronized
nature of the global solve currently precludes such applications, we
hope that this limitation may be overcome with future work.

Finally, we plan to explore applications of nonlinear dissipation
functions to physics-based animation as well. Previous optimization-
based integrators in animation [Gast et al. 2015; Kharevych et al.
2006] have demonstrated linear damping forces, essentially by using
quadratic dissipation functions. �e use of more general dissipa-
tion functions would allow nonlinear dissipative forces such as
Coulomb friction in solid contact and shear-dependent viscosity in
foams, paints, and gels to be incorporated into an optimization-based
time integrator. �erefore, the robustness and e�ciency bene�ts of
optimization-based integration could be extended to a much broader
class of phenomena.
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