Homework 3 Solution Keys

Q1 [10 pts] P.131 Ex.4.1.1: b), e)

b)

Let *p* be the pumping-lemma constant. Pick $w = (P)^p$. String *w* contains *p* ('s, which are followed by *p*)' s. Then when we write $w = xyz$, we know that $|xy| \leq p$, and therefore *y* consists of only ('s. Thus, *xyyz*, which must be in *L* if *L* is regular, consists of more than *p* ('s, followed by exactly *p*)'s. That string is not in *L*, so we contradict the assumption that *L* is regular.

f)

Let *p* be the pumping-lemma constant. Pick $w = 0^p 1^{2p}$. Then when we write $w = xyz$, we know that $|xv| \leq p$, and therefore *y* consists of only 0's. Thus, *xyvz*, which must be in *L* if *L* is regular, consists of more than *p* 0's, followed by exactly 2*p*1's. That string is not in *L*, so we contradict the assumption that *L* is regular.

Q2 [10 pts] P.132 Ex.4.1.2: c)

c)

Let *p* be the pumping-lemma constant. Pick a string 0^{2^p} . Then when we write it as *xyz*, we know that $|xy| \le p$, and therefore *y* consists of only 0's. Let's assume that $|y| = m$, thus, $xy^k z$, which must be in *L* if *L* is regular, consists of $2^p + m^*(k-1)$ 0's. Clearly, for all $k \geq 0$, the total number of 0's cannot always be the power of 2. This string is not in *L*, so we contradict the assumption that *L* is regular.

Q3 [15 pts] P.147 Ex.4.2.4: b), c)

b) **wrong**

If $L = \{a, aab, baa\}$, then $a \setminus L = \{epsilon, ab\}$, then left side = $a(a \setminus L) = \{a, aab\} \neq L$

c) **true**

By doing the concatenation of *L* and *a*, we get a new language *L'*, which is the set of strings *wa* such that *w* is in *L*. Then we go ahead to get the quotient of *L'* and *a*, which by definition is the set of strings *w* such that *wa* is in *L'*. Obviously this leads us back to *L*.

Q4 [10 pts] P.155 Ex.4.3.3

Given a regular language L, we can construct a corresponding DFA for it, say it is A. By reversing the non-accepting states and the accepting states of A, we get a DFA A' which describe the complement of language L, which takes $O(n)$ time if A has at most $O(n)$ states and transitions. It's clear to see the problem whether L contains all strings over its alphabet is equivalent to the problem whether the complement of L is empty. Section 4.3.2 has given us an algorithm to test emptiness of regular languages, so basically we've done.

Q5 [15 pts] P.165 Ex.4.4.2
a) The table of distinguishabilities

b) the minimum-state equivalent DFA

