Homework 3 Solution Keys

Q1 [10 pts] P.131 Ex.4.1.1: b), e)

b)

Let p be the pumping-lemma constant. Pick $w = ({}^{p})^{p}$. String w contains p ('s, which are followed by p)' s. Then when we write w = xyz, we know that |xy| <= p, and therefore y consists of only ('s. Thus, xyyz, which must be in L if L is regular, consists of more than p ('s, followed by exactly p)'s. That string is not in L, so we contradict the assumption that L is regular.

f)

Let p be the pumping-lemma constant. Pick $w = 0^p 1^{2p}$. Then when we write w = xyz, we know that |xy| <= p, and therefore y consists of only 0's. Thus, xyyz, which must be in L if L is regular, consists of more than p 0's, followed by exactly 2p1's. That string is not in L, so we contradict the assumption that L is regular.

Q2 [10 pts] P.132 Ex.4.1.2: c)

c)

Let *p* be the pumping-lemma constant. Pick a string 0^{2^p} . Then when we write it as *xyz*, we know that $|xy| \le p$, and therefore *y* consists of only 0's. Let's assume that |y| = m, thus, $xy^k z$, which must be in *L* if *L* is regular, consists of $2^p + m^*(k-1)$ 0's. Clearly, for all $k \ge 0$, the total number of 0's cannot always be the power of 2. This string is not in *L*, so we contradict the assumption that *L* is regular.

Q3 [15 pts] P.147 Ex.4.2.4: b), c)

b) wrong

If $L = \{a, aab, baa\}$, then $a \mid L = \{epsilon, ab\}$, then left side $= a(a \mid L) = \{a, aab\} \neq L$

c) true

By doing the concatenation of L and a, we get a new language L', which is the set of strings wa such that w is in L. Then we go ahead to get the quotient of L' and a, which by definition is the set of strings w such that wa is in L'. Obviously this leads us back to L.

Q4 [10 pts] P.155 Ex.4.3.3

Given a regular language L, we can construct a corresponding DFA for it, say it is A. By reversing the non-accepting states and the accepting states of A, we get a DFA A' which describe the complement of language L, which takes O(n) time if A has at most O(n) states and transitions. It's clear to see the problem whether L contains all strings over its alphabet is equivalent to the problem whether the complement of L is empty. Section 4.3.2 has given us an algorithm to test emptiness of regular languages, so basically we've done.

Q5 [15 pts] P.165 Ex.4.4.2 a) The table of distinguishabilities

В	Х							
С	Х	Х						
D		Х	Х					
E	Х		Х	Х				
F	Х	Х		Х	Х			
G		Х	Х		Х	Х		
Η	Х		Х	Х		Х	Х	
Ι	Х	Х		Х	Х		Х	Х
	А	В	С	D	Е	F	G	Η

b) the minimum-state equivalent DFA

	0	1
->ADG	BEH	BEH
BEH	CFI	CFI
*CFI	ADG	BEH
>(/	A,D,G 0	0,1 0,1 0,1 1 C,F,I