CS 150 Lecture Slides

jiang
Text Box
CS 150 Lecture Slides

Motivation

e Automata = abstract computing devices

e Turing studied Turing Machines (= computers)
before there were any real computers

e We will also look at simpler devices than
Turing machines (Finite Automata, Pushdown

Automata, ...), and specification means, such
asgrammars and regular expressions

Note that specification is also computation!

e Unsolvability/undecidability/uncomputability
= what cannot be computed by algorithms

Tao
Typewritten Text

Finite Automata

Finite Automata are used as a model for

e Software for designing digital circuits
e L exical analyzer of a compiler
e Searching for keywords in a file or on the web

Automata-based programming!

e Software for verifying finite state systems,
such as communication protocols

% Computer security
% Computer graphics and fractal compression

% Machine learning/NLP

% Virtual currency (block chains)

jiang
Text Box
c Computer security

jiang
Text Box
c Machine learning/NLP

Tao
Typewritten Text
Automata-based programming!

jiang
Text Box
c Virtual currency (block chains)

jiang
Text Box
c Computer graphics and fractal compression

e Example: Finite Automaton modelling an
on/off switch

Push

Start
) ()

Model of Computation:

Pusn A program

e Example: Finite Automaton recognizing the
string then

Model of Description:
A specification

jiang
Text Box
Model of Computation: A program

jiang
Text Box
Model of Description: A specification

Structural Representations

These are alternative ways of describing an
abstract model.

Grammars: A rule like E = E + FE specifies an
arithmetic expression

o Lineup = Person.Lineup [Recursion! |

says that a lineup is a person in front of a
lineup.

Regular Expressions: Denote structure of data,
e.d.

What symbols are
allowed, how are they
> [A-Z] [a-z]*[] [A-Z] [A-Z]"° ordered, what can be

repeated, etc.

matches Ithaca NY
does not match Palo Alto CA

Question: What expression would match
Palo Alto CA

[A-Z][a-z]*[[[A-Z][a-z]*[][A-Z][A-Z]

jiang
Text Box
Recursion!

jiang
Text Box
[A-Z][a-z]*[][A-Z][a-z]*[][A-Z][A-Z]

jiang
Text Box
What symbols are allowed, how are they ordered, what can be repeated, etc.

Central Concepts

Alphabet: Finite, nonempty set of symbols
Example: ¥ = {0,1} binary alphabet

Example: >~ = {a,b,c,...,z} the set of all lower
case letters

Example: The set of all ASCII characters

Strings: Finite sequence of symbols from an
alphabet 22, e.g. 0011001

Empty String: The string with zero occur-
rences of symbols from 2

e [he empty string is denoted ¢

10

Tao
Typewritten Text

Length of String: Number of positions for
symbols in the string.

lw| denotes the length of string w
|0110| = 4,le| =0

Powers of an Alphabet: X% = the set of
strings of length k with symbols from >

Example: >~ = {0,1}
>1=1{01}

>2 = {00,01,10,11}
>0 = {¢}

Question: How many strings are there in >3

11

The set of all strings over ¥ is denoted **

>*=3>0yuxzlysz?y... E.g. {011

the universe of {0,1}

AlsoO:

>t =>lusz2usz3uy.--

>* =X T U{e

Concatenation: If =z and y are strings, then
xy is the string obtained by placing a copy of
y immediately after a copy of «x
r=aijan...a;,Yy = b1b2...bj

Ty = a1an...a;b1bp...b;

Example: £ = 01101,y = 110, zy = 01101110

Note: For any string x

IrE — eErX — X

12

jiang
Text Box
E.g. {0,1}*

Tao
Typewritten Text
the universe of {0,1}

Tao
Typewritten Text

Tao
Typewritten Text

Languages:

If > is an alphabet, and L C >*
then L is a language

Examples of languages:
e [he set of legal English words
e [he set of legal C programs

e [he set of strings consisting of n O's followed
by n 1's

{¢,01,0011,000111,...}

10"1"n>=0

13

jiang
Text Box
{0 1 | n >= 0}

jiang
Text Box
n n

e [he set of strings with equal number of O's
and 1's

{¢,01,10,0011,0101, 1001,...}

e Lp = the set of binary numbers whose value
IS prime

{10,11,101,111,1011,...}

e The empty language

e The language {e} consisting of the empty
string

Note: 0 # {¢}
Note2: The underlying alphabet X is always

finite
14

Problem: Is a given string w a member of a
language L7 (MembershipQuestior)

Example: Is a binary number prime = is it a
member in Lp

Is11101 € Lp? What computational resources
are needed to answer the question.

Usually we think of problems not as a yes/no
decision, but as something that transforms an
input into an output.

Example: Parse a C-program = check if the
program is correct, and if it is, produce a parse
tree.

Let Ly be the set of all valid programs in prog
lang X . If we can show that determining mem-
bership in Ly is hard, then parsing programs
written in X cannot be easier.

Question: Why?

L => membership question of L => decision problem 15
membership question of L <= L <=

language == (decision) problem!

jiang
Text Box
L => membership question of L => decision problem membership question of L <= L <=

language == (decision) problem!

jiang
Text Box
(Membership Question)

Quick Quiz

Is the following

a) an alphabet

b) a string

c) and/or a language
(multiple answers are allowed)

1) 0101001
2){01, 11,101, 111, 1011}

3) {0, 1, 2}
4) {¢, 0, 1}

Finite Automata Informally

Protocol for e-commerce using e-money

Allowed events:

1. The customer can pay the store (=send
the money-file to the store)

2. The customer can cancel the money (like
putting a stop on a check)

3. The store can ship the goods to the cus-
tomer

4. The store can redeem the money (=cash
the check)

5. The bank can transfer the money to the
store

16

e-commerce

The protocol for each participant:

Star transfer

o e e g
(a) Store

redeem transfer

@)

cancel
pay cancel
T T redeem transfer
Start Start

(b) Customer (c) Bank

17

Completed protocols:

cancel
Star

(a) Store

ship. redeem, transfer,

pay, cancel
i

Start

(b) Customer

pay cancel pay cancel pay cancel

R

C redeemCtransfer g

pay,cancel pay,cancel pay,cancel
pay, ship

®

pay,redeem, pay,redeem,

cancel cancel, ship cancdl, ship
P, ((B0
ship redeem transfer
Start
(c) Bank

18

The entire system as an Automaton

(using Cartesian product):

i ai——
)
(OO
R R

~ OUC

o) ~

o)\OY

A ~ R

o 9

A S\« A

»UC, = »UC

A, A A, R

0D, 99
(90 <

More applications of FA can be found in Linz, Ch. 1.3.

19

jiang
Text Box
o

jiang
Text Box
More applications of FA can be found in Linz, Ch. 1.3.

. Protocol for Sending
Data

e i ‘ timeout
o <G

Start ack

Start {c2, 21, T)

(c2, 5, 20)

1.0, 1
(c4, 1, 30) o L, (c1. 0, 1}

cl. gettimeofday@plt

php5-fpm [0x42ee40 - 0x42ee7(]
c2. lcg_seed

php5-fpm [0x5eab00 - Ox5eab3f]
c3, php_gettimeofday php5S-fpm [0x5f0380 - 0x5f03bf]

cd, unigid phpS-fpm [0x6028c0 - Ox6028ff]
¢5, php_combined_lcg php5-fpm [0x5eab40 - 0x5eab?f]

Figure 5: Attack NFA for case study in Sec. 6. Ini-
tial state go indicated by “Start” and accepting states
indicated with double ovals. T is the maximum

Flush-Reload cycles without transitioning before the
NFA stops accepting new inputs.

Computer Science > Machine Learning

[Submitted on 12 Oct 2018]
Explaining Black Boxes on Sequential Data using Weighted
Automata

Stephane Ayache, Remi Eyraud, Noe Goudian

Understanding how a learned black box works is of crucial interest for the future of Machine Learning. In this
paper, we pioneer the question of the global interpretability of learned black box models that assign numerical
values to symbolic sequential data. To tackle that task, we propose a spectral algorithm for the extraction of
weighted automata (WA) from such black boxes. This algorithm does not require the access to a dataset or to the
inner representation of the black box: the inferred model can be obtained solely by querying the black box, feeding
it with inputs and analyzing its outputs. Experiments using Recurrent Neural Networks (RNN) trained on a wide
collection of 48 synthetic datasets and 2 real datasets show that the obtained approximation is of great quality.

Example of an extracted WA

Figure 5 gives the graphical representation on a WA extracted from a RNN
trained on PAutomaC problem 24. This is not the best obtained WA on that
dataset, but the metrics show that it is still a good approximation of the RNN.

0:0.22

K:-0.15

2016 IEEE 36th International Conference on Distributed Computing Systems Workshops

What’s so Different about Blockchain?
— Blockchain 1s a Probabilistic State Machine —

Kenji Saito and Hiroyuki Yamada
Orb, Inc.
Sumitomo Bldg. 25F, 2-6-1 Nishi-Shinjuku, Shinjuku, Tokyo 163-0225, Japan
Email: {kenji | hiro} @imagine-orb.com!

A. The Problem

We are to understand the essential properties of blockchain
that make 1t different from existing technology for reaching
consensus and managing ledgers, such as Paxos[l1] or its
byzantized versions[4][6][12][13].

B. Blockchain Consensus in Context of Consensus Problem

) X TX TX
....... b 2 converged history

— private history 7N N0

blockz ,+*” .
i oops, longer chain!
-------- *"

blocky > blockz’ () bll:.»::k3’E @

X TX X

Fig. 4. Probabilistic State Machine of a Blockchain

. Recognizing Strings
Ending In “ing”

Not /or g

jiang
Polygonal Line

jiang
Line

jiang
Polygonal Line

jiang
Line

jiang
Text Box
i

jiang
Text Box
Not i

jiang
Text Box
i

Automata to Code

€ In C/C++, make a piece of code for
each state. This code:
1. Reads the next input.
2. Decides on the next state.

3. Jumps to the beginning of the code for
that state.

- Automata to Code

2. /* 1 seen */
c = getNextlinput();
iIf (c == ’n’) goto 3;
else 1If (c == ”’17) goto 2;
else goto 1;
3: /7* ’In” seen */

Deterministic Finite Automata

A DFA is a quintuple

A=(Q,X,9,q0,F)

e () is a finite set of states

e X is a finite alphabet (=input symbols)

e 0 is a transition function (q,a) — p i.e., 5(q,a)=p
® go € Q is the start state

e 'C () is a set of final states

20

Tao
Typewritten Text
i.e., (q,a)=p

Tao
Typewritten Text
d

Tao
Typewritten Text

Example: An automaton A that accepts

L = {201y : z,y € {0,1}*}

The automaton A = ({q0,91,92},{0,1},6,q90,{q1})

as a transition table:

O |1
— 40 || 92 | 90
*q1 | 491 | 91
a2 || 92 | 91

g(QmOO) =02
6(qO!Ol) = ql

N
0(q2,011) = g1

The automaton as a transition diagram:

1 0
Start , 01

21

jiang
Text Box

d(q0,00) = q2

d(q0,01) = q1

d(q2,011) = q1

jiang
Text Box
^

^

^

An FA accepts a string w = ajas---apn if there
IS a path in the transition diagram that

1. Begins at a start state

2. Ends at a final state

or accepting

3. Has sequence of labels ajas - an on the edges

Example: The FA

1
‘ ‘ 0
Start 0 @
1\74 0,1
accepts e.g. the string 01101 and1010,butnot1100r0111

22

jiang
Text Box
or accepting

jiang
Text Box
1

jiang
Line

jiang
Line

jiang
Text Box
and 1010, but not 110 or 0111

jiang
Line

jiang
Line

jiang
Text Box
0,1

jiang
Text Box
0

N
o(g,w): The state of the DFA after starting from state g and reading string w.

e [he transition function é can be extended
to & that operates on states and strings (as
opposed to states and symbols)

Basis: 0(q,€) =q
Induction: 6(q,za) = 6(8(q,x), a) for string x and symbol a

e Now, fomally, the language accepted by A
IS

L(A) = {w:(qq,w) € F} nomore

noless!

e [he languages accepted by FA s are called
regular languages

23

jiang
Text Box
no more!
no less!

Tao
Typewritten Text

jiang
Text Box

d(q,w): The state of the DFA after starting from state q and reading string w.

jiang
Text Box
^

Example: DFA accepting all and only strings
with an even number of O's and an even num-
ber of 1's

Tabular representation of the Automaton

O |1
*— 40 | 92 | 91
d1 | 943 | 90
q2 || 90 | 43
q3 || 91 | 92

24

Example

Marble-rolling toy from p. 53 of textbook

A B
X
X

25

Ex. Ly={binary numbers divisible by 2}
L, ={binary numbers divisible by 3}
L, ={x| x € {0,1}*, x does not contain 000 as a substring}

A state is represented as sequence of three bits
followed by r or a (previous input rejected or
accepted)

For instance, 010a, means
left, right, left, accepted

Tabular representation of DFA for the toy

A B

— 000r | 100r | O11r
*000a | 1007 | O11r
*001a | 1017 | O00a

0107 | 1107 | O01la
*010a || 1107 | O01la
Ollr | 111r | O10a
100r || O10r | 111r
*100a || 0107 | 1117
1017 || O11r | 100a
*101a | O11r | 100a
1107 || O00a | 101a
*110a || 0O00a | 101a
1117 || OOla | 110a

26

A View of the Parallel Computing Landscape. Par Lab, UC Berkeley.
Communications of the ACM, 2009.

1. Finite State Mach.

2. Circuits

3. Graph Algorithms

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. Spectral (FFT)

8. Dynamic Prog

9. Particle Methods

10. Backtrack/B&B

11. Graphical Models

12. Unstructured Grid

Figure 3. The color of a cell (for 12 computational patterns in several general
application areas and five Par Lab applications) indicates the presence of that
computational pattern in that application; red/high; orange/moderate; green/low;
blue/rare.

Micron’s Automata Processor based on NFAs (2013)

JAUTOMATA) AUTOMATA

Ol

The Automata Processor (AP) is a completely new architecture for regular

expression acceleration, including analysis, statistics, and logic operations. It
scales to tens of thousands, even millions of processing elements for the largest
challenges, with energy efficiency far greater than traditional CPUs and GPUs.
[t is much easier to program than FPGAs.

Comparison ACross Architectures

Performance factors: Throughput and Density
Benchmark: 1000 Regexes, 40,000 states

Processing Throughput Area
Rate (Gbps) ()
XeonPhi NA 8 bits/cycle 053 ~400

yon GPU NA 8 bits/cycle 0.5 ~300

Throughput/area
(Gbps/mm?)

<0.001

0.002

Neumann
ASIC (HARE) NA 8 bits/cycle (TS 80

FPGA LUT/BRAM 16 bits/cycle 3.47 45

t
Automata DRAM 8 bits/cycle o a8

0.04
0.07

0.03

Processo
Memory- rocessor

Centric Cache ‘
Automaton SRAM 8 bits/cycle r 28.8 4.3

Impala
P SRAM 16 bits/cycle 80 3:2

(our solution) _

6.7

25

Nondeterministic Finite Automata

An NFA can be in several states at once, or,
viewed another way, it can “guess’ which
state to go to next

Example: An automaton that accepts all and
only strings ending in O1.

1,0
Start _»

Here is what happens when the NFA processes
the input 00101

99— 99— 99 ——» 99— 99— 4

N N

91 91 91

(stuck) \ | \

27

jiang
Text Box
1

jiang
Text Box
,0

Formally, an NFA is a quintuple

A — (Q? Z) 57 q07 F)

e () is a finite set of states
e > is a finite alphabet

e 0 is a transition function from @Q x > to the
powerset of @

e go € Q) is the start state

e 'C () is a set of final states

28

Example: The NFA from the previous slide is

({90, 91,92},1{0,1},6, 90, {q2})

where J is the transition function

0 1
—qo | {90,491} | {90}
q1 | 0 {qgo}
*qD @ Q)

29

Extended transition function J.

Basis: 5(g,¢) = {q}
Induction:
g(q’ za) = U 6(p,a) where x is a string
p€d(q,x) and a is a symbol

Example: Let’'s compute §(gg,00101) on the
blackboard. How about & (q0010)?

e Now, fomally, the language accepted by A is

L(A) = {w : (g0, w) N F # 0}

30

jiang
Text Box
d

jiang
Text Box
^

jiang
Text Box
0

Tao
Typewritten Text

Tao
Typewritten Text

Let's prove formally that the NFA

1,0
Start _»

acceptsthe language {z01 : z € >*}. We'lldo a
mutual induction for the three statements

below based on |w|:
0. we XZ*=qp € 6(qp,w)
1. q1 € 6(qp, w) & w = 20

2. ¢ € 4(qp,w) & w = 201

31

jiang
Text Box
1

jiang
Text Box
,0

Basis: If lw| = 0 then w = e¢. Then statement
(0) follows from def. For (1) and (2) both
sides are false for ¢

Induction: Assume w = za, where a € {0, 1},
|x| = n and statements (0)—(2) hold for x. We
will show on the blackboard in class that the
statements hold for xa.

Ex 1. Design an NFA for
L={x|x € {0,1}* the 3rd last bit of x is a 1}
How many states would be required in the DFA for L?

Ex 2. Design an NFA for the language that contains binary
strings with either two consecutive 0's or two consecutive 1's.

32

Equivalence of DFA and NFA

e NFA's are usually easier to “program” in.

e Surprisingly, for any NFA N thereisa DFA D,
such that L(D) = L(N), and vice versa.

e [hisinvolves the subset construction, an im-
portant example how an automaton B can be
generically constructed from another automa-
ton A.

e Given an NFA

N = (QNazacsN?CIO)FN)
we will construct a DFA

D = (QD, 275D7 {qO}ﬂFD)
such that

L(D) = L(N)

33

T he details of the subset construction:

o Qp={5:5CQn}

Note: |Qp| = 2/9N~| although most states in
Qp are likely to be garbage.

o 'p={SCQN:SNFyF*0D}

e Forevery SCQn and a € 2,

5D(S7 CL) — U 5N(p7 CL)
peS

34

Let's construct ép from the NFA on slide 27

O 1
00)
— {q0} | {90,91} | {90}
{q1}]| @ {qo}
*{qo} || @)

{go0,q1} || {90,491} | {90, a2}
*{q0,92} || {90,491} | {q0}
*{q1,q2} | 0 {g2}

*{q0,91,92} || {90,991} | {90, 92}

35

Note: The states of D correspond to subsets
of states of N, but we could have denoted the
states of D by, say, A — F' just as well.

O |1

Al Al A

— B | E | B
Cl|lA|D
*D || Al A
F|FE|F
xF | E | B
*G || A| D
*xH | E | F

36

We can often avoid the exponential blow-up
by constructing the transition table for D only
for accessible states S as follows:

Basis: S = {qp} is accessible in D

Induction: If state S is accessible, so are the
states in Uges{dp (S, a)

Example: The “subset” DFA with accessible
states only.

1 0

Start m m
gt

37

jiang
Text Box
{

jiang
Text Box
}

Theorem 2.11: Let D be the “subset” DFA
of an NFA N. Then L(D) = L(N).

Proof: First we show by an induction on |w|
that

op({go}, w) = dn (g0, w)

Basis: w = €. The claim follows from def.

38

jiang
Cross-Out

jiang
Cross-Out

Induction:

Sp({ao}, za) € 5p(5p({a0}, z), a)

in. .
= 5p(6n(q0,2), a)

t
= J on(pa)
pESN(QO,fU)

def =
= dn(qo, za)

Now (why?) it follows that L(D) = L(N).

39

Theorem 2.12: A language L is accepted by
some DFA if and only if L is accepted by some
NFA.

Proof: The "“if" partis Theorem 2.11.

For the “only if” part we note that any DFA
can be converted to an equivalent NFA by mod-
ifying the 6p to o) by the rule

e If 5p(q,a) = p, then dx5(q,a) = {p}.

By induction on |w| it will be shown in the
tutorial that if §p(qg, w) = p, then dx(qg, w) =

{r}.

The claim of the theorem follows.

How do you convert an NFA to C/C++ code”. 20

jiang
Text Box
How do you convert an NFA to C/C++ code?

Exponential Blow-Up

There is an NFA N with n+ 1 states that has
no equivalent DFA with fewer than 2™ states

0,1

Sta?l °:_1,QL1,

L(N) ={xlcocz---cp:xz € {0,1}" ¢; € {0,1}}

Suppose an equivalent DFA D with fewer than
2" states exists.

D must remember the last n symbols it has
read, but how?

There are 2™ bitsequences aias---an

Jq,a1a2---an,brby---bn i qg= p(qo,a1a2 - an),
q= p(qo, b1b2 - - - bn),
a1a2"'an7ﬁb1b2"‘bn
41

)
)

jiang
Cross-Out

jiang
Cross-Out

Case 1:

1a2...an
Obs - - - by

Then g has to be both an accepting and
nonaccepting state.

Case 2:

bl"'bi—lobz’—l-l"'bn

Now 6p(qo, a1+ aj—11a;41 - an0'" 1) =
(g, b1 - b;_10b; 41 -+ - b0~ 1)

and (g0, a1 - aj—1la;41---an0"1) € Fp

0p(qo, b1 -+ - bj—10bj41---bn0"" 1) & Fpy

42

jiang
Text Box
D

jiang
Text Box
D

jiang
Text Box
D

jiang
Text Box
D

FA’s with Epsilon-Transitions

An e-NFA accepting decimal numbers consist-
ing of:

1. An optional 4+ or - sign

2. A string of digits

_ _ E.g. -12.5
3. a decimal point +10.0(

4. another string of digits

One of the strings (2) and (4) is optional.

01,...9 01,..9

Start m
€1+1-

43

jiang
Text Box
E.g. -12.5
 +10.00
 5.
 -.6

Example:

e-NFA accepting the set of keywords {ebay, web}
o N o)

Instead of this NFA, we can construct an e-~NFA
that has an e-move for each keyword.

Ex. Design an NFA for
L={x|x € {0,1}*, x begins or ends with 00}

44

An e-NFA is a quintuple (Q, X, 4, qo, F') where §
is a function from @ x (X U {e}) to the powerset

of Q.

Example: The eeNFA from the previous slide

E = ({qO7Q17 © '7Q5}7 {'7 +7 T Oa 17 . 79} 57 q0; {Q5})

where the transition table for ¢ is

€ —+,- | . 0,...,9
— qo éQ1} {a1} | 0)

q1) {2} | {q1,94}
q2 | 0 0) {q3}
q3 | {gs} | 0) {a3}
q4 | 0) {a3} | 0
xqs || 0 0 0 0

45

ECLOSE or e-closure

We close a state by adding all states reachable
by a sequence ee---¢€

Inductive definition of ECLOSE(q)
Basis:

g € ECLOSE(q)

Induction:

p € ECLOSE(q) and r € 6(p,e) =
r € ECLOSE(q)

46

jiang
Text Box
or e-closure

Example of e-closure
L /
For instance,

ECLOSE(1) = {1,2,3,4,6}

&)

@

47

e Inductive definition of § for e-NFA's

Basis:

6(q,€) = ECLOSE(q)

Induction:

6(q, xa) = U ECLOSE(8(p,a))

Let’'s compute on the blackboard in class
6(qp,5.6) for the NFA on slide 43

3(00) = ECLOSE(®) = {00,
8(qo,5) = ECLOSE({0,a}) = {d1,0}, becauss(qo5) U 8(c5) = { Gu.0e)
0(0o,5.) = ECLOSE({tp,:}) = {02,050}

0(0o,5.6) = ECLOSE({ts}) ={0q3,G5}

jiang
Text Box

d(q0,e) = ECLOSE(q0) = {q0,q1}

d(q0,5) = ECLOSE({q1,q4}) = {q1,q4}, because d(q0,5) U d(q1,5) = {q1,q4}

d(q0,5.) = ECLOSE({q2,q3}) = {q2,q3,q5}

d(q0,5.6) = ECLOSE({q3}) = {q3,q5}

jiang
Text Box
^

^

^

^

Given an e-NFA

bE = (QE) Za 5E7 q0, FE)

we will construct a DFA

D = (QD) 275D7QD7FD)
such that
L(D) = L(E)

Details of the construction:

e Qp={5:5C Qg and S = ECLOSE(S)}
e gp = ECLOSE(qp)

e Fp={S:5€Q@Qpand SN Fg # 0}

e 6p(S,a) =
| J{ECLOSE(pP) : p € o(t,a) for some t € S}

49

jiang
Text Box
E

Example: e-NFA E

0,1,....9 0,1,...9
O S
" @@ @@ @
0,1,....9

DFA D corresponding to E

Tao
Oval

Tao
Typewritten Text
 f

Tao
Typewritten Text
.,+,-

Tao
Typewritten Text

Tao
Line

Tao
Typewritten Text
+,-

Tao
Line

Tao
Typewritten Text
.,+,-

Tao
Line

Tao
Line

Tao
Typewritten Text
+,-

Tao
Line

Tao
Typewritten Text
.,+,-

Tao
Line

Tao
Line

Tao
Typewritten Text
+,-,.,0,1,...,9

Theorem 2.22: A language L is accepted by
some e-NFA FE if and only if L is accepted by
some DFA.

Proof: We use D constructed as above and
show by induction that dp(gp, w) = dp(q, ,w)

Basis: 5(qo,€) = ECLOSE(qp) = qp = 0(gp,€)

51

jiang
Text Box
D

jiang
Text Box
0

Induction:

. DEF .
0p(qo0, za) = 9 ECLOSE(6g (p, a))

pe dp(qo.x)

I.H.
— g ECLOSE(d5(p,a))
pE &)(QD,$)

CST A
= &(0,(g, x).a)

DEF _
= dp(gp,za)

52

jiang
Text Box
DEF

I.H.

CST

DEF

jiang
Text Box
D D D

jiang
Text Box
d (d (q , x),a)

jiang
Text Box
^

jiang
Text Box
E

Tao
Rectangle

Tao
Rectangle

Tao
Rectangle

Tao
Rectangle

Tao
Typewritten Text

Regular expressions

An FA (NFA or DFA) is a “blueprint” for con-
tructing a machine recognizing a regular lan-
guage.

A regular expression is a ‘‘user-friendly,” declar-
ative way of describing a regular language.

Example: 01* 4+ 10*

Regular expressions are used in e.g.

1. UNIX grep command

grep PATTERN FILE

2. UNIX Lex (Lexical analyzer generator) and
Flex (Fast Lex) tools.

3. Text/email mining (e.g., for HomeUnion, one of the two

languages for Micron’s Automata Processor)
53

jiang
Text Box
grep PATTERN FILE

Homomorphic Encryption for Finite Automata

Authors: Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, Daniele
Micciancio

Publisher: Springer International Publishing

Published in: Advances in Cryptology — ASIACRYPT 2019

Operations on languages

Union:
LUM={w:welLorweM}

Concatenation:

LM={w:w=uzy,x€ L,ye M}
E.g., {0%0%-{1,13 1%}

POWerS = {021 ,021 3,021 5,041 ,041 3,041 5}

O={e}, L1=L, LFrl=L.LF

Kleene Closure:

G0 .
L= J L'
1=0

Question: What are 0°, (¢, and ¢*

. 54
QuestionWhatis {02,065} " ?

jiang
Text Box
Question: What is {02,03}* ?

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

jiang
Text Box

Tao
Typewritten Text

Tao
Typewritten Text

jiang
Text Box
E.g., {02,04} {1, 13, 15}
 = {021,0213,0215,041,0413,0415}

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
.

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Building regex’s

Inductive definition of regex’s:

Basis: € is a regex and 0 is a regex.

L(e) = {e}, and L(0) = 0.

If a € 2, then a is a regex.

L(a) = {a}.
Induction:

If £ is a regex’s, then (FE) is a regex.
L((E)) = L(E).

If £ and F' are regex’s, then E + F' is a regex.
L(E+ F)=L(E)UL(F).

If £ and F' are regex’s, then E-F' (or simply EF)
is a regex. L(E-F) = L(E)-L(F).

If £ is a regex’'s, then E* is a regex.
L(E*) = (L(E))™.

55

Example: Regex for

L={we{0,1}*: 0 and 1 alternate in w}

(01)* + (10)* + 0(10)* 4+ 1(01)*

or, equivalently,

(e+1)(01)*(e +0)

Order of precedence for operators:

1. Star
2. Dot
3. Plus

Example: 01* 4+ 1 is grouped (0(T)) + 1

56

Ex. Regex'sfor L;={w|w € {0,1}*, wcontains no consecutive 0's}
L,={w]|w € {0,1}* the number of 0's in wis even}.

jiang
Text Box
*)

Equivalence of FA’'s and regex’s

We have already shown that DFA's, NFA's,
and e-NFA'’s all are equivalent.

To show FA's equivalent to regex’s we need to
establish that

1. For every DFA A we can find (construct,
in this case) a regex R, s.t. L(R) = L(A).

2. For every regex R there is an e-NFA A, s.t.
L(A) = L(R).

57

Theorem 3.4: Forevery DFA A= (Q,%X,9,qp, F)
there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be {1,2,...,n},
with 1 being the start state.

o Let R,g?“) be a regex describing the set of
labels of all paths in A from state ¢ to state

j going through intermediate states {1,...,k}
only. Notethat,i andj don'thaveto bein {1, ...,k}.

58

jiang
Text Box
Note that, i and j don't have to be in {1, ...,k}.

R{) will be defined inductively. Note that

L (@ Ry,

jEF

) — L(A)

Basis: £ =0, i.e. no intermediate states.

e Case 1: 1#)

l.e.,arci -> |

(0) _
Rij = EB a

e Case 2: 1=

" =

{a€X:6(i,a)=j}

l.e.,arci ->10re

$ a

{a€3:6(i,a)=1i}

4+ €

59

jiang
Text Box
i.e., arc i -> j

jiang
Text Box
i.e., arc i -> i or e

Induction:

(k)
R(’?—l) doesnotgo throughk
tJ
|
k—1 E—1)* ~(k—1 goesthroughk
Rz{k)<RI(<I§)> Rl(cj) atleastonce

AW AWV

-~

In R (&1
ik Zero or morestringsin R (7

(k-1)
In R ki

60

jiang
Text Box
does not go through k

jiang
Text Box
goes through k at least once

Example: Let's find R for A, where
L(A) ={z0y :z € {1}* and y € {0,1}*}

61

We will need the following simplification rules:
e (e+R)*=R* (e+R)R* = R*
e R+ RS* = RS* e+R+R* = R*
e PR = RO = 0 (Annihilation)

e)+ R= R+ 0 = R (Identity)

62

jiang
Text Box
(e+R)R* = R*

jiang
Text Box
e+R+R* = R*

RO | et+0+1

1 0 0 0)* (0
jo) — Rz(j) + Rgl)(Rgl)) jo)

By direct substitution Simplified
RV | e+ 1+ (e+D(e+1)*(e+1) | 1*
R |0+ (e+1)(e+1)*0 1*0
RY |0+ 0(e+1)*(e+1) 0
RY | e4+0+14+0(+1)*0 e+ 041

22

63

Simplified

Ol
R{Y | 1*0
R |0
RY | e+041

2 1 1 1)* (1
R = R 4 R (RS5) R

By direct substitution

1* 4+ 1*0(e 4 0 + 1)*0

1*0 + 1*0(e + 0+ 1)*(e + 0+ 1)

D+ (e+0+1)(e+0+1)*0
e+0+1+(e+0+1)(e+0+1)*(e+0+1)

64

By direct substitution

R{ | 1% + 1*0(e + 0 + 1)*0

R{2) | 10 4+ 1*0(e + 0+ 1)*(e + 0 + 1)

RSY |0+ (e+0+1)(e+0+1)*0

RSY |e+0+1+(e+0+1)(e+0+1)*(e+0+1)

Simplified

R{?) | 1*

R{2) | 1*0(0 + 1)*
RS2 | 0
R | (0+1)*

The final regex for A is

R{? = 1*0(0 + 1)*

65

Observations

There are n3 expressions Rg?)
Each inductive step grows the expression 4-fold

RZ(;L) could have size 4™

For all {i,57} C{1,...,n}, Rg?) uses R,g,z_l)

so we have to write n? times the regex R]g’]z_l)

but mostof themcanberemovedby annihilation!

We need a more efficient approach:
the state elimination technique

66

jiang
Text Box
but most of them can be removed by annihilation!

The state elimination technique

Let's label the edges with regex’s instead of
symbols O E—— Y0

o7

Tao
Oval

Tao
Oval

Tao
Line

Tao
Typewritten Text
E.g.,

Tao
Typewritten Text
0+1

Tao
Typewritten Text

Tao
Line

Tao
Typewritten Text
0*

Tao
Typewritten Text
s

Tao
Typewritten Text
t

Now, let’'s eliminate state s.

Ry + O, 5*P

11

For each accepting state q, eliminate from the
original automaton all states except gg and gq.

or —0O O

5 = 5:° -

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Typewritten Text
e

Tao
Typewritten Text
e

Tao
Typewritten Text
...

Tao
Typewritten Text
...

Tao
Typewritten Text
or

Tao
Line

For each ¢ € F' we'll be left with an A, that
looks like

R U
DS
Start /\
\/
T
that corresponds to the regex £, = (R+SU*T)*SU*

or with A, looking like

corresponding to the regex E; = R*

e [he final expression is

D £

qe

69

jiang
Text Box
q

jiang
Text Box
q

Notethatthealgorithmalsoworksfor NFAs ande-NFAs.

Example: A, where L(A) ={W :w = x1b, or w =
xlbc, x € {0,1}* {b,c} C {O,1}}

Start_>ml 0,1 ‘0,1

We turn this into an automaton with regex
labels

0+1

Start_»ﬂ 1 e 0+1 ‘ 0+1

70

jiang
Text Box
Note that the algorithm also works for NFAs and e-NFAs.

Start_»ﬂ 1 9 0+1 ‘ 0+1

Let's eliminate state B

0+1

Start 1(0 + 1) 0+1
DS ®

Then we eliminate state C and obtain Ap

0+1

Start_»@ 1(O+1)(O+1)>

with regex (0+1)*1(04+1)(0+1)

71

From

0+1
Start_»Q 10+ 1) »@ 0+1 »@

we can eliminate D to obtain Ag

0+1
Start m 10+ 1)
—® -©

with regex (0 4+ 1)*1(0+ 1)

e [he final expression is the sum of the previ-
ous two regex’s:

(0+1)"1(0+1)(0+ 1)+ (0+1)"1(0 + 1)

72

jiang
Oval

From regex’s to e-NFA'’s

Theorem 3.7: For every regex R we can con-
struct an eNFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for €, @, and a.

)

(a) e-NFAs with properties:

* uniquestartandfinal

states
O ©
* no arcsinto the start

(b) state

* no arcsout of thefinal
state

73

jiang
Text Box
e-NFAs with properties:

* unique start and final states

* no arcs into the start state

* no arcs out of the final state

Induction: Automata for R+ S, RS, and R*

O

©

s
ot

xVa

R
O S
(a)

0

J[>o R Q%S—E»O S
(b)
f /\8
»QS—E»O R @
(©)

€

k

74

Example: We convert (0+1)*1(0+1)

O O
> \s~o—1»©/s'
(b)
€
€

75

It would be very usefulif we couldsimplify regular
languages/expressioaaddetermineheir properties

Algebraic Laws for languages

e LUM=MUL.

Union is commutative.

e (LUM)UN=LU(MUN).

Union is associative.

o (LM)N =L(MN).

Concatenation is associative

Note: Concatenation is not commutative, i.e.,

there are L and M such that LM #* ML.

76

jiang
Text Box
It would be very useful if we could simplify regular languages/expressions and determine their properties.

e)UL=LU()=L.

0 is identity for union.

o {c}L =1IL{e} = L.

{e} is left and right identity for concatenation.
o (L =L0=0.

0 is left and right annihilator for concatenation.

7

o L(IMUN)=LMULN.

Concatenation is left distributive over union.
e (MUN)L=MLUNL.

Concatenation is right distributive over union.
e LUL=1L.

Union is idempotent.

o 0% =1{e}, {e}*={e}

o LT =LL*=L*L, L*=L7T U{e}

78

o (L*)* = L*. Closure is idempotent

Proof:
i

o O
we (L) = we |J| Y L
i=0 \j=0

«— Jk,m,.mce N: W=Wp...W with
wy in L™ . wiin LMK
< Hp E N . w E Lp Wherep: m +...+ my
OO .
— we |J L
1=0
< welL”]

Claim.(L U M)* = (L"M¥)*.

Proof.It is easyto seethatL U M is containedn L*M*, sinceL is containedn L* whichis containec
in L*M*, andsimilarly M is containedn L*M*. Thus,theLHS is containedn the RHS.

To seethatthe RHSis alsocontainedn the LHS, takeanyw in (L*M*)*. Then,w =w; W, ... W,
whereeachsubstringw; is anelementof L*M* andcanthusbewrittenasx;; ... XiVi1 ... Yin, Where
eachsub-substring; is anelementof L andeachy; an elemeniof M. Thus,w is the concatenatiof
asequencef strings,eachof whichis anelemenwof L u M. Thereforejt is astringin (L U M)*.

jiang
Text Box
Claim. (L U M)* = (L*M*)*.

Proof. It is easy to see that L U M is contained in L*M*, since L is contained in L* which is contained in L*M*, and similarly M is contained in L*M*. Thus, the LHS is contained in the RHS.

To see that the RHS is also contained in the LHS, take any w in (L*M*)*. Then, w = w1 w2 ... wn, where each substring wi is an element of L*M* and can thus be written as xi1 ... xikyi1 ... yih, where each sub-substring xij is an element of L and each yij an element of M. Thus, w is the concatenation of a sequence of strings, each of which is an element of L U M. Therefore, it is a string in (L U M)*.

jiang
Text Box
, m1,...,mk

jiang
Text Box
w = w1 ... wk with
w1 in Lm1, ..., wk in Lmk

jiang
Text Box
where p = m1 +...+ mk

Theabovelanguagdawsall concernregexoperationsandcanalso
bewrittenas,e.g, L+ M =M +L and L(M+N) =LM + LN.

Algebraic Laws for regex’s

Evidently e.g. (04+ 1)1 =01+ 11 because{0,1}{1} ={01,11}
Also e.g. (004 101)11 = 0011 + 10111.

More generally

(E+ F)G = EG + FG

for any regex’'s E, F', and G ormoregenerallyany
language%, F, andG.

e How do we verify that a general identity like
above is true?

1. Prove it by hand.

2. Let the computer prove it.

80

jiang
Text Box
The above language laws all concern regex operations and can also be written as, e.g, L + M = M + L and L(M+N) = LM + LN.

jiang
Text Box
or more generally, any languages E, F, and G.

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

In Chapter 4 we will learn how to test auto-
matically if £ = F', for any concrete regex's E
and F', like 01 + 11 =11 + O1.

We want to test general identities, such as

E+F = F+ &, for any regex’'s £ and F.
or language

Method: (The Test Technique!)

symbol

R

1. “Freeze” &£ to a1, and F to a»

2. Test automatically if the frozen identity is
true, e.g. if a1 +ar>» =a>+ a;

Question: Does this always work?

81

jiang
Text Box
symbols

jiang
Line

jiang
Line

jiang
Text Box
or languages

Tao
Typewritten Text
(The Test Technique!)

Answer: Yes, as long as the identities use only
plus, dot, and star.

I.e.regexprof languagerariables
Let's denote a generalized regex, such as (€ + F)E

by

E(E, F)
Now we can for instance make the substitution
S ={£/0,F/11} to obtain

S (E(&, 7)) = (0 +11)0

82

jiang
Text Box
i.e. reg expr of language variables

Theorem 3.13: Fix a ‘“freezing” substitution

Let E(E1,Eo,...,Em) be a generalized regex.

Then for any regex’'s Eq, FE», ..., Em,
or language:

w € L(E(EL, E2, ..., Em))
if and only if there are strings w; € L(Ej), s.t.

w = w 1w2 s wk
d Or, we "think" of
an eachregularexpr
variable€; asa
Ajq Ajo * " Ajp S L(E(ala an,..., am)) symbola;

Informally, to obtainw, we canfirst pick &1 &2 ... ajk in L(E(a1,a2,....an))
andthensubstitutefor eachajj any string from L(E;jj).

Forexamplesupposée(e1,£2) = (€1 + €2)*. Thenstringw s in L((E1+E2)*)
Iff w= w1 wp ... wk suchthataj1 g2 ... gjk isin L((ag + a2)*) and
wj isin L(Ejj).

jiang
Text Box
Informally, to obtain w, we can first pick aj1 aj2 ... ajk in L(E(a1,a2,...,am)) and then substitute for each aji any string from L(Eji).

jiang
Text Box
For example, suppose E(E1,E2) = (E1 + E2)*. Then string w is in L((E1+E2)*) iff w = w1 w2 ... wk such that aj1 aj2 ... ajk is in L((a1 + a2)*) and
wi is in L(Eji).

jiang
Text Box
ji

jiang
Text Box
Or, we "think" of each regular expr variable ei as a symbol ai.

jiang
Text Box
or languages

For example: Suppose the alphabet is {1,2}.
Let E(&1,&E5) be (€1 4+ &5)&1, and let Eq be 1,
and E> be 2. Then

w € L(E(E1, Ez)) = L((E1 + E2)Ey) =

({1ru{2ph){1} = {11, 21}
if and only if
dwq € L(Ejl) , dwy € L(EjZ) L w=w,w,
and
aj,aj, € L(E(a1,a2))) = L((ai1+az)a1) = {aja1,aay}

if and only if In other words. w;1s 1
.. . . L(E) U L(Ey) = {1.2}
j1=J2=1,0rj =2, and j> =1 and w>1s m L(E;) = {2}.

Anotherexamplesupposdeq = 1* andEp = 2*. Then
Lo=L((E1 + E2)E1) = L((1* + 2*)1*) = L(1* + 2*1*).
L((ag + ap)ag) ={a1 a1 + a2 a1}.

Stringwis in Lo iff thereexistwy in L(Ej1) andwp in L(Ej2)
suchthatw = wy wp andaj gj2 isin {a1 a1 + ag a1}.

jiang
Text Box
Another example, suppose E1 = 1* and E2 = 2*. Then
L0 = L((E1 + E2)E1) = L((1* + 2*)1*) = L(1* + 2*1*).
L((a1 + a2)a1) = {a1 a1 + a2 a1}.

String w is in L0 iff there exist w1 in L(Ej1) and w2 in L(Ej2) such that w = w1 w2 and aj1 aj2 is in {a1 a1 + a2 a1}.

jiang
Text Box
j1

jiang
Text Box

jiang
Text Box
j2

jiang
Text Box
2

jiang
Text Box
1

jiang
Text Box
1

jiang
Text Box
2

jiang
Text Box
1

jiang
Text Box
11

jiang
Text Box
21

Seepagel20of thetextbook

Proof of Theorem 3.13: We do a structural
induction of E.

Basis: If E = ¢, the frozen expression is also e.
If E= 0, the frozen expression is also 0.

If E =&, the frozen expression is a. Now

w € L(E(E1) if and only if
w isin L(Ey), sinceL(E(ay)) = {a}.

85

jiang
Text Box
See page 120 of the textbook.

jiang
Text Box
E1

jiang
Text Box
1

jiang
Text Box
(E1))

jiang
Text Box
w is in L(E1), since L(E(a1)) = {a1}.

Induction:
Case 1: E=F 4 G.

Then &(E) = &(F) + &(G), and
L(&(E)) = L(a(F)) U L(#(G))

concreteor languages

Let F'and and G'beregex’'s. Thenw € L(F+G')
if and only if w € L(F') or w € L(G").
Also, astringuisin E(@;, . am)iff itisinF@,, . am)orin

G(ay, ... Qm). Seethebookfor therestof the proofusingthel.H.

Case 2: E=F.G.

Then &(E) = &(F).&(G), and
L(&(E)) = L(&(F)).L(A(G))

concreteor language

Let F' and and G' be regex’'s. Then w € L(F.G")
if and only if w = wywy, w1 € L(F) and wy € L(G').
Also, astringuisin E(@;, .. am) iff u=uu,whereuiisin F(@y ... am)

andu.isinG(ay, ... am). Therestis similarto theabovecase.
Case 3: E=F*.

Prove this case at home.
86

jiang
Text Box
F' + G'

jiang
Text Box
F'

jiang
Text Box
G'

jiang
Text Box
F'.G'

jiang
Text Box
F'

jiang
Text Box
G'

jiang
Text Box
F'

jiang
Text Box
G'

jiang
Text Box

jiang
Text Box
F'

jiang
Text Box
G'

jiang
Text Box

jiang
Text Box
concrete or languages

jiang
Text Box
concrete or languages

jiang
Text Box
.

jiang
Text Box
Also, a string u is in E(a1, ..., am) iff it is in F(a1, ..., am) or in G(a1, ..., am). See the book for the rest of the proof using the I.H.

jiang
Text Box
.

jiang
Text Box
Also, a string u is in E(a1, ..., am) iff u = u1u2 where u1 is in F(a1, ..., am) and u2 is in G(a1, ..., am). The rest is similar to the above case.

The test wouldn't work if the operation
intersection were included in the regular

expressions. E.g.consider EA & =

The testfor regular expressionsand languages

Examples:

To prove (L+ M)* = (L*M™)* it is enough to
determine if (a1 +a3)* is equivalent to (aja?)*

To verify £* = L*L* test if a] is equivalent to
a*a®
147

Question: Does L4+ ML = (L + M)L hold?

To prove (a7 + ay)* == (a1*ay**, we first notice that L((a71*a>*)*) is a
subset of L((a7 + a»)*) because L((a7 +a2)*) = (L(a7 + ap)* ={aj,ay }*is
the universe over {a7,a}

Since both a7 and a) (as strings) are contained in L(a1*a>*), L(aj + a)) is
a subset of L(a1*a>*), and hence L((a7 + a»)¥) is a subset of L((a1* a>*)*).

87

Does a + ba = (a + b)a hold?

jiang
Text Box
To prove (a1 + a2)* == (a1* a2*)*, we first notice that L((a1* a2*)*) is a subset of L((a1 + a2)*) because L((a1 + a2)*) = (L(a1 + a2))* = {a1,a2 }* is the universe over {a1,a2}.

Since both a1 and a2 (as strings) are contained in L(a1* a2*), L(a1 + a2) is a subset of L(a1* a2*), and hence L((a1 + a2)*) is a subset of L((a1* a2*)*).

jiang
Text Box
Does a + ba = (a + b)a hold?

jiang
Text Box

jiang
Text Box
The test for regular expressions and languages

jiang
Text Box
The test wouldn't work if the operation intersection were included in the regular expressions. E.g. consider E L F = f.

Theorem 3.14: E(&1,...,En) =F(&1,...,Em) &
L(&(E)) = L(a(F))

Proof:

(Only if direction) E(E1,....Em) = F(&E1,...,Em)
means that L(E(F1,...,Em)) = L(F(E1,...,En))
for any concrete regex s F1,...,En. In partic-

ular then L(Q(E)) = L(qQ(F))

or language
(If direction) Let FE4,..., E, be concrete regex’s.

Suppose L(Md(E)) = L(&(F)). Then by Theo-
rem 3.13,

Jw; € L(E;),w = Wiy Wiy Gy s Qg € L(&(E)) &
Jw; € L(E;), w = wj, -~ wj,,,aj, ---aj, € L(&F)) <

w & L(F(El, e Em))

88

Seepagel?1of thetextbook

jiang
Text Box
See page 121 of the textbook.

jiang
Text Box
or languages

jiang
Text Box
or languages

Properties of Regular Languages

e Pumping Lemma. Every regular language
satisfies the pumping lemma. If somebody
presents you with fake regular language, use
the pumping lemma to show a contradiction.

e (Closure properties. Building automata from
components through operations, e.g. given L
and M we can build an automaton for L N M.

e Decision properties. Computational analysis
of automata, e.g. are two automata equiva-

lent.

e Minimization techniques. \We can save money
since we can build smaller machines.

89

The Pumping Lemma Informally

Suppose Lgi = {0™1™ : n > 1} were regular.

Then it would be recognized by some DFA A,
with, say, k states.

Let A read 0. On the way it will travel as
follows:

€ PO
0 P1
00 P>
ol Dk

= T < j ! p; = p; Call this state gq.

90

Now you can fool A:

If 5(q,1*) € F the machine will foolishly ac-
cept 071°.

If 6(q,1%) ¢ F the machine will foolishly re-
ject 017,

Therefore Lpp cannot be regular.

e Let's generalize the above reasoning.

91

Theorem 4.1.

The Pumping Lemma for Regular Languages.
Let L be regular.

Then dn,Vw € L : |w| > n = w = zyz for some strings
x, ¥ and z such that

1. yF e

2. lzy| < n

3. VE>0, azyfz e L

92

Proof: Suppose L is regular

Then L is recognized by some DFA A with,
say, n states.

Let w =aqar...am € L, m >=n.
Let p; = 0(qo,a1az - - - a;).

= i <Jip; =Dpj j<=n

93

Now w = xyz, where

l. x =aja>---a;

2. Yy =aj410;42 - aj

3. 2=0aj410j42-..-am

Evidently zy*z € L, for any k> 0. ¢ g.p.

94

Example: Let Leg be the language of strings
with equal number of zero’'s and one’s.

Suppose Legis regular. Pickw =0"1" € L.

By the pumping lemma w = zyz for some strings x,y,z
with |zy| <n, y 7 € and xy*z € Leg

w=000--..-. 00111---11
——— —— ~ _

In particular, xz € Leg (supposedly), but zz has
fewer O'sthan 1’s.

L={0'2|i>}
Considerstringw = oh+iqn

By the pumpinglemma,we canpartitionw asw = xyz

95
K

suchthat|xy|<=n,y <>¢, andxy"zin L.

Butxz = On+1' Iyl 1"is notin L.

jiang
Text Box
L = {0i 1j | i > j}
Consider string w = 0n+1 1n.
By the pumping lemma, we can partition w as w = xyz such that |xy| <= n, y <> e, and xykz in L.
But xz = 0n+1 - |y| 1n is not in L.

Suppose Ly = {1P : p is prime } were regular.
Let n be given by the pumping lemma.

Choose a prime p > n + 2.

p
w=111-----. 11111---11
N— e N~ ~ ~
x Y = with |y| >0and |xy| <n
ly|=m

Now, is xy? "z € Ly, ¢

[zyP 2| = |zz| + (p — m)|y| =
p—m—+(p—m)m=(1+m)(p—m)

which is not prime unless one of the factors
is 1.

e yFe=14+m>1
e m= |yl <|zy|<n, p>n+2

> p—m>n—+2—n=2.

96

Closure Properties of Regular Languages

Let L and M be regular languages. Then the
following languages are all regular:

e Union: LUM

e Intersection: LN M

e Complement: N

e Difference: L\ M (also L - M)
e Reversal: Lt = {wh:w e L}

e Closure: L*.

e (Concatenation: L-M

e Homomorphism: h(a & ... &) = h(@)h(&)...h(a)
h(L) = {h(w) : w € L,h is @ homom. }

e Inverse homomorphism:
(D) ={weX : h(w) eEL,h: X — A is a homom. }

o7

jiang
Text Box
h(a1 a2 ... an) = h(a1)h(a2)...h(an)

jiang
Text Box
*

Theorem 4.4. For any regular L and M, LUM
IS regular.

Proof. Let L = L(F) and M = L(F'). Then
L(E+ F) = LUM by definition.

Theorem 4.5. If L is a regular language over
>, thensois L =X*\L.

Proof. Let L be recognized by a DFA

A — (Q? 2757 QO?F)'
Let B= (Q,%,6,q0,Q\ F). Now L(B) = L.

98

Example:

Let L be recognized by the DFA below

Question: What are the regex's for L and L
99

Theorem 4.8. If L and M are regular, then
sois L NM.

Proof. By DeMorgan's law LN M = LU M.
We already that regular languages are closed
under complement and union.

We shall also give a nice direct proof, the
Cartesian construction from the e-commerce
example.

100

Theorem 4.8. If L and M are regular, then
sois LN M.

Proof. Let L be the language of

Arp = (Qr,. %, 91,91, Fr)
and M be the language of

Ay = Qs =, 00, qnrs Far)

We assume w.l.0.g. that both automata are
deterministic.

We shall construct an automaton that simu-
lates Ay and Ay, in parallel, and accepts if and
only if both Ay and A,; accept.

101

jiang
Text Box
s

If A; goes from state p to state s on reading a,
and A,; goes from state ¢q to state t on reading

a, then A;~p Will go from state (p,q) to state
(s,t) on reading a.

Input a

Start :: Accept

102

Formally

Aran = (Qr x Qs 2,010, (e, anr), Fr X Far),

where

Srnm (P, q),a) = (6r.(p,a),dp(q,a))

It will be shown in the tutorial by an induction
on |w| that

Span((ar, ann),w) = (52(qr, w), Sar(ans, w))

The claim then follows.

Question: Why?

103

Example: (¢) = (a) x (b)

1

Start m@ 0 , 01

(@)

(©)

Another example?
{Binary strings that begin with 1 and 104
represent numbers divisible by 3}

jiang
Text Box
Another example?
{Binary strings that begin with 1 and represent numbers divisible by 3}

Theorem 4.10. If L and M are regular lan-
guages, then so iS L\ M. (AlsodenotedasL - M.)

Proof. Observe that L\ M = LN M. We
already know that regular languages are closed
under complement and intersection.

105

jiang
Text Box
S

Theorem 4.11. If L is a regular language,
then so is L.

Proof 1: Let L be recognized by an FA A.
Turn A into an FA for L, by

1. Reversing all arcs.

2. Make the old start state the new sole ac-
cepting state.

3. Create a new start state pg, with §(pg,e) = F
(the old accepting states).

106

Theorem 4.11. If L is a regular language,
then so is L1t

Proof 2: Let L be described by a regex E.
We shall construct a regex ER, such that
L(ER) = (L(E)*".

We proceed by a structural induction on FE.
Basis: If £ is €, 0, or a, then ER = E.

Induction:

1. E=F4+G. Then Ef = R 4 g&
2. E=FQG. Then EEf = GR.FR

3. E = F*. Then Eft = (Fh)*

We will show by structural induction on E on
blackboard in class that

L(ER) = (L(E)"

107

Homomorphisms

A homomorphismon X is a function h : >~ — ©%*,
where > and © are alphabets.

Let w =ajan---an € Z*. Then

h(w) = h(a1)h(az) - --h(an)

and

h(L) = {h(w) : w € L}

Example: Let h: {0,1}* — {a,b}* be defined by
h(0) = ab, and h(1) = e. Now A(0011) = abab.

Example: h(L(10*1)) = L((ab)™).

108

Theorem 4.14: h(L) is regular, whenever L
IS.

Proof: E.g.,h(0"1+(0+1j0) = h(0) h(1)+(h(0)+h(1)Jh(0)

Let L = L(FE) for a regex E. We claim that
L(h(E)) = h(L).

Basis: If £ is e or). Then h(EF) = E, and
L(h(E)) = L(E) = h(L(E)).

If Eis a, then L(E) = {a}, L(h(E)) = L(h(a)) =
{h(a)} = h(L(E)).

Induction:

Case 1:. G= FE+ F. Now L(h(E+ F)) =
L(h(E)+h(F)) = L(h(E))UL(h(F)) = h(L(E))U
h(L(F)) = h(L(E) UL(F)) = h(L(E + F)).

Case 2: G = E-F. Now L(h(E-F)) = L(h(E))-L(h(F))
= h(L(E))-h(L(F)) = h(L(E)-L(F)) = h(L(E-F)

Case 3: G = E*. Now L(h(E*)) = L(h(E)*) =
L(h(E))* = h(L(E))* = h(L(E)*) = h(L(E*))

109

jiang
Text Box
G

jiang
Text Box
G

jiang
Text Box
G

jiang
Text Box
E.g., h(0*1+(0+1)*0) = h(0)*h(1)+(h(0)+h(1))*h(0)

jiang
Text Box
= h(L(E·F))

jiang
Text Box
h(L(E)*) = h(L(E*))

Inverse Homomorphism

Let h : X — ©* be a homom. Let L C ©F,
and define

hY(L) = {we=*: h(w) € L}

SIEIO

(@

()] 1

(b)

110

Example: Let h: {a,b} — {0,1}* be defined by
h(a) = 01, and h(b) = 10. If L = L((00+1)*),
then h=1(L) = L((ba)*).

Claim: h(w) € L if and only if w = (ba)™

Proof: Let w = (ba)™. Then h(w) = (1001)" ¢
L.

Let h(w) € L, and suppose w ¢ L((ba)*). There
are four cases to consider.

1. w begins with a. Then h(w) begins with
01 and ¢ L((00+ 1)%*).

2. w ends in b. Then h(w) ends in 10 and
¢ L((00 + 1)%).

3. w = zaay. Then h(w) = 20101v and ¢
L((00 4 1)*).

4. w = xbby. Then h(w) = 21010v and €&
L((00 4+ 1)*).

111

Theorem 4.16: Let h : X — ©* be a ho-
mom., and L C ©* regular. Then h~1(L) is
regular.

Proof: Let L bethelanguageof A = (Q,©,46,q0, F).
We define B = (Q, >, v, qo, F'), where

v(g,a) = 6(q, h(a))

It will be shown by induction on |w| in the tu-
torial that 4(qg, w) = §(qo, h(w))

Input a

|

h

Input
Start h(a) t0 A

—_—
Accept/rgect
A -

112

Decision Properties

We consider the following:

1. Converting among representations for reg-
ular languages.

2. IsL =07 Is L finite?

3. Iswel?

4. Do two descriptions define the same lan-
quage”’

113

From NFA’'s to DFA’s

Suppose the e-NFA has n states.

To compute ECLOSE(p) we follow at most n?
arcs.

The DFA has 2" states, for each state S and
each a € ¥ we compute §p(S,a) in n3 steps.
Grand total is O(n32") steps.

If we compute ¢ for reachable states only, we
need to compute §p(S,a) only s times, where s
is the number of reachable states. Grand total
is O(n3s) steps.

114

From DFA to NFA

All we need to do is to put set brackets around
the states. Total O(n) steps.

From FA to regex

We need to compute n3 entries of size up to
4™ Total is O(n34").

The FA is allowed to be an NFA. If we first

wanted to convert the NFA to a DFA, the total
time would be doubly exponential

From regex to FA’s We can build an expres-
sion tree for the regex in n steps.

We can construct the automaton in n steps.
Eliminating e-transitions takes O(n3) steps.

If you want a DFA, you might need an expo-
nential number of steps.

115

Testing emptiness

L(A) #= 0 for FA A if and only if a final state
IS reachable from the start state in A. Total
O(n?) steps.

Alternatively, we can inspect a regex E and tell
if L(E) = 0. We use the following method:

FE=F+4+G. Now L(F) is empty if and only if
both L(F) and L(G) are empty.

E = F'G. Now L(F) is empty if and only if
either L(F') or L(G) is empty.

E = F*. Now L(F) is never empty, since € €
L(E).

E =¢€. Now L(FE) is not empty.
E = a. Now L(FE) is not empty.

E =0. Now L(F) is empty.

116

Finiteness: How to decide if L(A) is finite for DFA A?

Testing membership

To test w € L(A) for DFA A, simulate A on w.
If lw| = n, this takes O(n) steps.

If A is an NFA and has s states, simulating A
on w takes O(ns?) steps.

If A is an e-NFA and has s states, simulating
A on w takes O(ns3) steps.

If L = L(FE), for regex E of length s, we first
convert £ to an e-NFA with 2s states. Then we
simulate w on this machine, in O(ns3) steps.

DoesL((0+1)*0(0+1F1*) contain10101011or 1010111017

117

jiang
Text Box
Finiteness: How to decide if L(A) is finite for DFA A?

jiang
Text Box
Does L((0+1)*0(0+1)31*) contain 10101011 or 101011101?

Equivalence and Minimization of Automata

Let A = (Q,X,9,q0,F) bea DFA, and {p,q} C Q.
We define

p=q & YweX* : §(p,w) € Fiff §(q,w) € F

e If p =q we say that p and ¢q are equivalent

e If p £ q we say that p and q are distinguish-
able

IOW (in other words) p and ¢ are distinguish-
able iff

Jw : d(p,w) € F and §(q,w) ¢ F, or vice versa

118

Example:

5(C,e) € F,6(G,e) ¢ F = C#G

6(A,01) =C € F,6(G,01)=E¢F=A#G

119

What about A and E7

6(A,e) =A¢F,0(BE,e)=E¢F

5(A, 1) =K =46(FE,1)

Therefore §(A,1z) = 6(E, 1z) = 6(K, z)
6(A,00) =G = §(E,00)

6(A,01) =C =4(E,01)

Conclusion: A= FE.
120

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
K

Tao
Typewritten Text
K

We can compute distinguishable pairs with the
following inductive table filling (TF) algorithm:

Basis: If pe F and q € F', then p # q.

Induction: If Ja € X : §(p,a) # §(q,a), @Fa>
then p # q. @)

Example: Applying the table filling algo to A:

B X

C X |X

D X | X [X

E X | X | X

K | X |[X |X X
G [X |[X | X |[X |X |X
H |Xx X [X [X | X [X

A B C D E K G

121

Tao
Text Box

Tao
Typewritten Text
K

Tao
Oval

Tao
Line

Tao
Line

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Theorem 4.20: If p and g are not distin-
guished by the TF-algo, then p =g.

Proof: Suppose to the contrary that that there
is a bad pair {p,q}, s.t.

1. 3w :é(p,w) € F,0(q,w) ¢ F, or vice versa.

2. The TF-algo does not distinguish between
p and q.

Let w = ajar:--an be the shortest string that
identifies a bad pair {p, q}.

Now w # € since otherwise the TF-algo would
in the basis distinguish p from q. Thus n > 1.

122

@00~ 0
@" 00 - "0

Consider states r = §(p,a1) and s = 6(q,aq).
Now {r,s} cannot be a bad pair since {r, s}
would be indentified by a string shorter than w.
Therefore, the TF-algo must have discovered
that » and s are distinguishable.

But then the TF-algo would distinguish p from
q in the inductive part.

Thus there are no bad pairs and the theorem
IS true.

123

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Oval

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Oval

Testing Equivalence of Regular Languages

Let L and M be reg langs (each given in some
form).

TotestifL=M

1. Convert both L and M to DFA's.

2. Imagine a DFA that is the union of the
two DFA’'s (never mind there are two start
states)

3. If TF-algo says that the two start states
are distinguishable, then L #= M, otherwise
L = M.

124

jiang
Text Box
a

Example:

We can ‘see” that both DFA's accept
L(e+ (04 1)*0). The result of the TF-algo is

&y O O ®
=

X X | X

A B C D

Therefore the two automata are equivalent.

125

Minimization of DFA'sS

We can use the TF-algo to minimize a DFA
by merging all equivalent states. IOW, replace
each state p by p/_.

Example: The DFA on slide 119 has equiva-
lence classes {{A, E},{B, H},{C},{D, K}, {G}}.

The “"union” DFA on slide 125 has equivalence
classes {{A,C,D},{B,E}}.

Note: In order for p/_ to be an equivalence
class, the relation = has to be an equivalence
relation (reflexive, symmetric, and transitive).

126

Theorem 4.23: If p=qgandg=r, thenp=r.

Proof: Suppose to the contrary that p # r.
Then Jw such that §(p,w) € F and §(r,w) € F,
or vice versa.

OTH, §(q,w) is either accpeting or not.
Case 1: 6(q,w) is accepting. Then ¢ # r.
Case 2: 6(q,w) is not accepting. Then p # q.
The vice versa case is proved symmetrically

Therefore it must be that p =r.

127

jiang
Text Box
2

AssumeA hasno inaccessiblestates.

To minimize a DFA A = (Q,X,6,q0,F) con-
struct a DFA B=(Q/=,%,v,q90/=, F/-), where

v(p/=,a) = é(p,a)/=
In order for B to be well defined we have to
show that
If p=gq then 6(p,a) =d6(q,a)

If 6(p,a) # 5(q,a), then the TF-algo would con-
clude p # q, so B is indeed well defined. Note
also that F/_ contains all and only the accept-
ing states of A.

128

jiang
Text Box
Assume A has no inaccessible states.

Example: We can minimize

to obtain

129

NOTE: We cannot apply the TF-algo to NFA's.

For example, to minimize

0,1

smn_»ﬂo
©

we simply remove state C.

However, A £ C.

130

Why the Minimized DFA Can’t Be Beaten

Let B be the minimized DFA obtained by ap-
plying the TF-algo to DFA A.

We already know that L(A) = L(B).

What if there existed a DFA C, with
L(C) = L(B) and fewer states than B?

Then run the TF-algo on B “union” C.
Since L(B) = L(C) we have ¢§ = ¢§.

Also, 5(q€,a) = 5(qg,a), for any a.

131

Claim: For each state p in B there is at least
one state q in C, s.t. p=q.

Proof of claim: There are no inaccessible states,
SOp = g(qg, ajap---ay), for somestring ajas - - - ag.
Now ¢ = 8(q§,a1az---ay), and p = q.

Since C has fewer states than B, there must be
two states r and s of B such that r =t = s, for
some state t of C. But then r = s (why?)
which is a contradiction, since B was con-
structed by the TF-algo.

132

Context-Free Grammars and Languages

e We have seen that many languages cannot
be regular. Thus we need to consider larger
classes of langs.

e Contex-Free Languages (CFL's) played a
cen-tral role in natural languages since the
1950’'s, and in compilers since the 1960’s.

e Context-Free Grammars (CFG's) are the ba-
sis of BNF-syntax.

e Today CFL's are increasingly important for
XML and their DTD's.

We'll look at: CFG's, the languages they gen-
erate, parse trees, pushdown automata, and
closure properties of CFL'’s.

PumpingLemma,decisionproperty. 133

jiang
Text Box
Pumping Lemma, decision property.

Informal example of CFG’s

Consider Ly, ={w eI 1w = whty
For example otto € Ly, madamimadam € L,,;.

In Finnish language e.g. saippuakauppias € L,
(Hsoap_merChant”) DoGeeseSeeGod

NoMelonNoLemon
Zilliz

Let > = {0,1} and suppose L,, were regular.
Let n be given by the pumping lemma. Then
w =0"10" € L,,;, and consider any partition xyz = w
with |y| > 0 and |xy| <= n. xyyz is a contradiction.
Let's define L, inductively:

Basis: ¢,0, and 1 are palindromes.

Induction: If w is a palindrome, so are OwO
and lwl.

Circumscription: Nothing else is a palindrome.
134

jiang
Text Box
DoGeeseSeeGod
NoMelonNoLemon
Zilliz

CFGs provide a formal mechanism for definitions
such as the one for L.

o & N

P — €
P—0
P—1
P — 0OPO
P—1P1

O and 1 are terminals

P is a variable (or nonterminal, or syntactic

category)

P is in this grammar also the start symbol.

1-5 are productions (or rules)

Somerealexampledrom Sipser

135

jiang
Text Box
Some real examples from Sipser.

Formal definition of CFQG’s

A context-free grammar is a quadruple

G = (V,T,P,S)

where
V is a finite set of variables or nonterminals.
T is a finite set of terminals.

P is a finite set of productions of the form
A — «, where A is a variable and a € (VUT)*

S is a designated variable called the start symbol.

136

Example: G, = ({P},{0,1}, A, P), where A =
{P—>¢P—0,P—1,P—0P0,P— 1P1}.

Sometimes we group productions with the same
head, e.g. A= {P — ¢|0|1|0P0|1P1}.

Example: Regular expressions over {0,1} can
be defined by the grammar

Gregex = ({E£}, {0, 1,+,50,€,%,(,)}, A, E)

where A =

{FE—-0,F—1,F—FEE E—FE+E,E— FEE— (E)}
E->¢g E—>¢

137

jiang
Text Box
E -> e, E -> f

Tao
Typewritten Text

Example: (simple) expressions in a typical prog
lang. Operators are + and *, and arguments
are identfiers, i.e. strings in

Ll(la+b)(a+b+0+1)%) e.g, a*(a+ b00)

The expressions are defined by the grammar

G={FEI},T,PFE)

where T'={4,%,(,),a,b,0,1} and P is the fol-
lowing set of productions:

E—1
F—-FEF+FE
E— ExFE

I —a
I —b
I — Ia
I — Ib
I — I0
I — 11

©OONOO A~

©

138

Tao
Typewritten Text

Tao
Typewritten Text

Derivations using grammars

e Recursive inference, using productions from
body to head

e Derivations, using productions from head to

body.

Example of recursive inference:

String Lang | Prod | String(s) used
(i) | a I 5 -
(i) | b I 6 -
(iii) | b0 I 9 (ii)
(iv) | b0O I 9 (iii)
(v) | a) 1 (i)
(vi) | b0O E 1 (iv)
(vii) | a + b0O0 E 2 (v), (vi)
(viii) | (a 4 b00) E 4 (Vii)
(ix) | a* (a4 0b00) | E 3 (v), (Viii)

139

Let G = (V,T,P,S) be a CFG, AcV,
{a, 8} C(VUT)*, and A — v € P.

Then we write

aAB = a8

or, if G is understood

aApB = ayi
and say that aA@ derives avg.

We define = to be the reflexive and transitive
closure of =, IOW:

Basis: Let a € (VUT)*. Then a = a.

Induction: If a = 3, and 8 = ~, then a = ~.

140

Example: Derivation of a* (a+ b00) from E in
the grammar of slide 138:

E=FE+«+E=I+FE=a*E=ax*(E)=
ax(E4+FE) = ax(I4+F) = ax(a+FE) = ax(a+1) =
a* (a4 10) = a* (a+ I00) = a * (a + b0O)

So, we can write E = a = (a + b00).

Note: At each step we might have several rules
to choose from, e.qg.

I«FE=axFE=ax(F), versus
I«E=1x%x(F)=ax(F).

Note2: Not all choices lead to successful deriva-
tions of a particular string, for instance

E=FE+FE

won't lead to a derivation of a x (a 4+ b00).
141

Leftmost and Rightmost Derivations

L eftmost derivation :> Always replace the left-
most variable by one of its rule-bodies.

Rightmost derivation =: Always replace the
rightmost variable by one of its rule-bodies.

Leftmost: The derivation on the previous slide.
Rightmost:

F=FEFxFE =
Ex(E) = Ex(E+FE) = Ex(E+1) = Ex(E+10)
= Ex(E+100) = Ex(E+b00) = Ex*(I+b00)

— E % (a+b00) = I % (a+ b00) = a * (a + b00)

We can conclude that E = a * (a 4 500)

142

The Language of a Grammar

If G(V,T,P,S) is a CFG, then the language of
G is

L(G) ={weT": 5= w)}
i.e. the set of strings over T* derivable from

the start symbol.

If G is a CFG, we call L(G) a
context-free language (or CFL).

Example: L(G,,) is a context-free language.
Theorem b5.7:

L(Gpa) = {w € {0,1}* : w = w''}

Proof: (D-direction.) Suppose w = wf. We
show by induction on |w| that w € L(Gpq;)

143

Basis: |w| = 0, or |lw| = 1. Then w is €0,
or 1. Since P —- ¢, P — 0, and P — 1 are
productions, we conclude that P % w in all
base cases.

Induction: Suppose |w| > 2. Since w = wf,
we have w = 0z0, or w = 1z1, and z = .

If w = 020 we know from the IH that P = z.
T hen

P = 0P0= 0z0 = w
Thus w e L(Gpal)-

The case for w = 1x1 is similar.

144

(C-direction.) We assume that w € L(G)pg)
and must show that w = w'*.

Since w € L(Gpg;), We have P = w.

We do an induction onthe length of =.

Basis: The derivation P = w is done in one
step.

Then w must be ¢,0, or 1, all palindromes.

Induction: Let n > 1, and suppose the deriva-
tion takes n 4+ 1 steps. Then we must have

w= 0z0 < OP0 « P

Hence, P2 z
or

w=1zxl £1P1 <« P

where the second derivation is done in n steps.

By the IH x is a palindrome, and the inductive
proof is complete.
145

jiang
Text Box
n

Ex. Design CFGs for the following languages:

L, ={balanced parentheses} = {&,(),(()),00.((0)),0(0).(0)0, ..} (the Dyck language)
L,={0M1" 2P| m,n, p >=0,m =n + p}

Ly={w]|w € {0,1}*,w <> wh}

Sentential Forms

Let G = (V,T,P,S) bea CFG, and o € (VUT)*.
If

S5

we say that « is a sentential form.

If S :> o we say that « is a left-sentential form,

and |f S = o We say that o is a right-sentential
form

Note: L(G) is those sentential forms that are
in T*. (i.e., sentences)

146

Tao
Typewritten Text
(i.e., sentences)

Tao
Typewritten Text

Tao
Typewritten Text

Example: Take G from slide 138. Then Ex (I + F)
IS a sentential form since

F=FExE = FEx(F)= FEx(E+F)=Ex(I+F)

This derivation is neither leftmost, nor right-
most

Example: a x E is a left-sentential form, since

El:>E>|<El:>I>|<El:>a,*E

Example: Ex(E -+ FE) is a right-sentential form,
since

E=E+«E=Ex(E)= Ex(E+E)

147

Parse Trees

o If w € L(G), for some CFG, then w has a
parse tree, which tells us the (syntactic) struc-
ture of w

e w could be a program, a SQL-query, an XML-
document, etc.

e Parse trees are an alternative representation
to derivations and recursive inferences.

e [here can be several parse trees for the same
string

e Ideally there should be only one parse tree
(the “true” structure) for each string, i.e. the
language should be unambiguous.

e Unfortunately, we cannot always remove the
ambiguity.
148

Constructing Parse Trees

Let G = (V,T,P,S) be a CFG. A treeis a parse
tree for G If rooted, ordered

1. Each interior node is labelled by a variable
in V.

2. Each leafis labelled by a symbol in VUT U {e}.
Any e-labelled leaf is the only child of its
parent.

3. If an interior node is lablelled A, and its
children (from left to right) labelled

X17X27"'7Xk7
then A — X1Xp...X, € P.

149

® O

Tao
Oval

Tao
Oval

Tao
Line

Tao
Typewritten Text
rooted, ordered

Tao
Typewritten Text

Tao
Typewritten Text

Example: In the grammar

E—1
FE—-FE+FE
E— ExE

W N

the following is a parse tree:
E
N
E + E
\

Il

T his parse tree shows the derivation E = I+ FE

150

Example: In the grammar

P — €
P—0
P—1
P — 0OPO
P—1P1

o & e

the following is a parse tree:

It shows the derivation of P = 0110.
151

The Yield of a Parse Tree

The yield of a parse tree is the string of leaves
from left to right.

Important are those parse trees where:
1. The yield is a terminal string.

2. The root is labelled by the start symbol

We shall see the the set of vields of these
important parse trees is the language of the
grammar.

152

Example: Below is an important parse tree

/\\

| /\\

\ /\\
\

/\

/\

b

The yield is a * (a + b00).

Compare the parse tree with the derivation on

slide 141.
153

Let G = (V,T,P,S) be a CFG, and A ¢ V.
We are going to show that the following are
equivalent:

1. We can determine by recursive inference
that w is in the language of A

2. A w

3A%waMAéw

4. There is a parse tree of GG with root A and
yield w.

To prove the equivalences, we use the following
plan.

Parse
Leftmost < tree

derivation / \
/ Rightmost

Derivation +— derivation Recursive

\—/ Inference

154

From Inferences to Trees

Theorem 5.12: Let G = (V,T,P,S) be a
CFG, and suppose we can show w to be in
the language of a variable A. Then there is a
parse tree for GG with root A and vield w.

Proof: We do an induction of the length of
the inference.

Basis: One step. Then we must have used a
production A — w. The desired parse tree is
then

155

by
inferenct

jiang
Text Box
by inference

jiang
Underline

Induction: w is inferred in n + 1 steps. Sup-
pose the last step was based on a production

A— X1 X0 Xp,
where X; e VUT. We break w up as
wiw?2 - - - Wi,

where w; = X;, when X; € T', and when X; € V,
then w, was previously inferred being in-(X) in
at most n steps.

By the IH there are parse trees ¢ with root X;
and yield w;. Then the following is a parse tree
for G with root A and yield w:

156

jiang
Text Box
L()

From trees to derivations

we’'ll show how to construct a leftmost deriva-
tion from a parse tree.

Example: In the grammar of slide 138 there
clearly is a derivation

E = 1= Ib= ab.

Then, for any o and g there is a derivation

a3 = alB = alblB = aabp.

For example, suppose we have a derivation

E=E+E=E+ (E).
Then we can choosea = F + (and 3=) and

continue the derivation as
F+(E)=FE+ ()= FE+ (Ib) = FE + (ab).

This is why CFG’s are called context-free.

157

Theorem 5.14: Let G = (V,T,P,S) be a
CFG, and suppose there is a parse tree with
root labelled A and yield w. Then A % win G.

Proof: We do an induction on the height of
the parse tree.

Basis: Height is 1. The tree must look like

A

Consequently A — w € P, and A Z:> w.

158

Induction: Height is n + 1. The tree must

look like
A
// \
X, X, X,
AL A

Then w = wjwy---wg, where
1. If Xi e T, then w; = Xi-

2. If X; €V, then X; %wi in G by the IH.

159

Now we construct A :> w by an (inner) induc-
tion by showing that

Vi: A % wiwo - - wiX'L'—I—lX'L'—I—Q s Xk'

Basis: Let : = 0. We already know that
A ﬁ X]_X,L'_|_2 S Xk'
Induction: Make the IH that

A %n} wiwo - - - wi—lXiXi—|—1 cee Xk'
(Case 1:) X; € T. Do nothing, since X; = w;

gives us

A%wlewZXZ_HXk

160

(Case 2:) X; € V. By the IH there is a deriva-
tion X; = Q] = Qp = = W By the contex-
free property of derivations we can proceed
with

A

wiwz w1 XXy o Xg =

wiw2 - w101 Xy o X =

Wiw2 - Wi 102X 41 0 X =

WQWy -« Wi QWi X1 X

161

Example: Let's construct the leftmost deriva-
tion for the tree

N
(AN
RPN
AN
N

Suppose we have inductively constructed the
leftmost derivation

EFE=1=a

Im Im

corresponding to the leftmost subtree, and the
leftmost derivation

E=(E)=>(E+E)=>U+FE)=>(a+FE)=>
(a+1) = (a+10) = (a + 100) = (a + b00)

corresponding to the righmost subtree.

162

For the derivation corresponding to the whole
tree we start with E ﬁ E x E and expand the
first £ with the first derivation and the second
E with the second derivation:

B
E*Eﬁ
I*Eﬁ
a*Eﬁ
a,*(E)ﬁ
a*(E—I—E)ﬁ
a*(]—l—E)ﬁ
a*(a—I—E)ﬁ
a*(a—l—])ﬁ
a*(a—I—IO)ﬁ
a*(a—I—IOO)ﬁ
a * (a + b00)

163

From Derivations to Recursive Inferences

Observation: Suppose that A = X1 X5+ X1 = w.
Then w=wjwy---wg, where X; = W;

The factor w; can be extracted from A = w by
looking at the expansion of X; only.
Example: £ = ax*b+ a, and

F= F «x FEF 4+ FE
N~~~

X1 Xo X3 X4 Xs

We have

FE = ExE+FE=1I«xF+FEF=1x]1+FE =
Ix]I+1=ax]+1=axb+1=axb+a

By looking at the expansion of X3 = E only,
we can extract

E=1=0b.

164

jiang
Text Box
*

Theorem 5.18: Let G = (V,T,P,S) be a
CFG. Suppose A % w, and that w is a string
of terminals. Then we can infer that w is in
the language of variable A.

Proof: We do an induction on the length of
the derivation A % w.

Basis: One step. If A ? w there must be a
production A — w in P. The we can infer that
w iS in the language of A.

165

Induction: Suppose A % w in n 4+ 1 steps.
Write the derivation as

A?XlXQ---Xk%w

The as noted on the previous slide we can
break w as wiws---wy where X; % w;. Fur-

thermore, X; % w; can use at most n steps.

Now we have a production A — X{1Xo--- Xy,
and we know by the IH that we can infer w; to
be in the language of X;.

T herefore we can infer wiwy ---wg to be in the
language of A.

166

Gram Matic (Paul Cernea):
https://itunes.apple.com/ca/app/gram-matic/id914302373?mt=8

Ambiguity in Grammars and Languages

In the grammar

E—1
F—-FE+FE
E — ExFE

W=

the sentential form E + E x E has two deriva-
tions:
F=F+F=F+ExFE

and
EFE=FxFE=F+ FExFE

This gives us two parse trees:

/\\ /\\

E E

/\\ /\\

(@) (b)

167

Tao
Typewritten Text
Gram Matic (Paul Cernea):
https://itunes.apple.com/ca/app/gram-matic/id914302373?mt=8

The mere existence of several derivations is not
dangerous, it is the existence of several parse

trees that ruins a grammar. But, multiple left-most(or right-most)

derivationsdo causeambiguity.

Example: In the same grammar

5. I —a
I —b
I — Ia
I — Ib
I — IO
10. I — 11

W NO

the string a + b has several derivations, e.q.

F=F+F=14+F=a+FEF=a+1=a-+0b
and
F=F+FEF=FEF+I1I=14+1=14+b=a-+05b

However, their parse trees are the same, and
the structure of a + b is unambiguous.

168

jiang
Text Box
But, multiple left-most (or right-most) derivations do cause ambiguity.

Definition: Let G = (V, T, P, S) bea CFG. We
say that G is ambiguousifthereis a stringin T*

that has more than one parse tree rooted at S.

If every string in L(G) has at most one parse
tree, (G is said to be unambiguous.

Example: The terminal string a4+ a *xa has two

parse trees:

/\\
/\\

(@

/\\
/\\

(b)

169

Tao
Oval

. Unambiguous Grammar

@ Construct a unique leftmost derivation for
a given balanced string of parentheses by
scanning the string from left to right.

* |If we need to expand B, then use B -> (RB If
the next symbol is “(” and € if at the end.

* |If we need to expand R, use R ->) if the next
symbol is “)” and (RR if it is “(”.

The Parsing Process

Remaining Input: Steps of leftmost
()0 derivation:

T B

Next

symbol

The Parsing Process

Remaining Input: Steps of leftmost
0)0 derivation:

T B

Next (RB

symbol

The Parsing Process

Remaining Input: Steps of leftmost
N0 derivation:
T B

(RB

Next
symbol ((RRB

The Parsing Process

Remaining Input: Steps of leftmost
)() derivation:

T B

Next (RB

symbol ((RRB

(ORB

The Parsing Process

Remaining Input: Steps of leftmost
0 derivation:
T B
Next (RB
symbol ((RRB
(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
) derivation:
T B (0)(RB
Next (RB
symbol ((RRB

(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
derivation:
T B (0)(RB
A RB (008
symbol ((RRB
(ORB

(0)B

The Parsing Process

Remaining Input: Steps of leftmost
derivation:
T B (0)(RB
A RB (008
symbol ((RRB (0O
(ORS o

(0)B '

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

Tao
Line

LL(1) Grammars

@ As an aside, a grammar like

, where you can always figure
out the production to use In a leftmost
derivation by scanning the given string
left-to-right and looking only at the next
one symbol Is called LL(1).

+ “Leftmost derivation, left-to-right scan, one
symbol of lookahead.”

LL(1) Grammars — (2)

€ Most programming languages have
LL(1) grammars.

€ LL(1) grammars are never ambiguous.

Ex. Provethe CFGfor Dyck languageB -> (B)B | €
IS LL(1).

Tao
Typewritten Text
Ex. Prove the CFG for Dyck language B -> (B)B |
is LL(1).

Tao
Typewritten Text
e

Removing Ambiguity From Grammars

Good news: Sometimes we can remove ambi-
guity “by hand” (without changingthe language

Bad news: There is no algorithm to do it

More bad news: Some CFL's have only am-
biguous CFG's

We are studying the grammar

E—I|E+E|ExE|(E)
I—alb|Ia|Ib|I0]|I1

There are two problems:

1. There is no precedence between * and +

2. There is no grouping of sequences of op-
erators, e.g. is E+ FEF + E meant to be

E4+(E+E)or (E4+E)+E.

170

jiang
Text Box
(without changing the language)

Solution: We introduce more variables, each
representing expressions of same “binding strength”.

1. A factor is an expresson that cannot be
broken apart by an adjacent * or +. Our
factors are

(a) Identifiers

(b) A parenthesized expression.

2. A term is an expresson that cannot be bro-
ken by 4+. For instance a*b can be broken
by alx or xal. It cannot be broken by 4,
since e.g. al +axb is (by precedence rules)
same as al 4+ (a*xb), and axb+ al is same
as (a*b)+al.

3. The rest are expressions, i.e. they can be
broken apart with * or +.

171

wWe'll let F' stand for factors, T for terms, and E
for expressions. Consider the following gram-
mar:

I -al|b|la|lb|I0]|I1
F—T|(E)

T — F|TxF
E—T|E+T

W=

Now the only parse tree for a + a x a will be

/\\

T
F F 1
1 1 a

172

Why is the new grammar unambiguous?

Intuitive explanation:

e A factor is either an identifier or (E), for
some expression E.

e [he only parse tree for a sequence

Jixfo*x--xfp_1%fn

of factors is the one that gives fi*x fox---xf,_1
as a term and f, as a factor, as in the parse

tree on the next slide. IOW, consecutivanultiplicationsare

calculatedrom left to right.

e An expression is a sequence

t1+t2+"'+tn—l+tn

of terms t;. It can only be parsed with
t1+to+---+1t,_1 as an expression and t, as
a term.

173

jiang
Text Box
IOW, consecutive multiplications are calculated from left to right.

N
N

N

174

Leftmost derivations and Ambiguity

The two parse trees for a + a * a

/\\ /\\
/\\ /\\

(@ (b)
give rise to two derivations:
EﬁE—l—Eﬁ]—l—Eﬁa—l—Eﬁa—l—E*E
ﬁa—l—]*Eﬁa—l—a*Eﬁa—l—a*]ﬁa—l—a*a
and
EﬁE*EﬁE—I—E*EﬁI—I—E*Eﬁa—I—E*E
ﬁa—l—[*Eﬁa—l—a*Eﬁa—l—a*Iﬁa—l—a*a

175

In General:

e One parse tree, but many derivations

e Many leftmost derivation implies many parse
trees.

e Many rightmost derivation implies many parse
trees.

Theorem 5.29: For any CFG G, a terminal
string w has two distinct parse trees if and only
if w has two distinct leftmost derivations from
the start symbol.

176

Sketch of Proof: (Only If.) If the two parse
trees differ, they have a node with dif-
ferent productions, say A — X1 Xo--- X and
A — Y1Y>---Yy. The corresponding leftmost
derivations will use derivations based on these
two different productions and will thus be dis-
tinct.

(If.) Let's look at how we construct a parse
tree from a leftmost derivation. It should now
be clear that two distinct derivations gives rise
to two different parse trees.

177

jiang
Text Box
with

jiang
Text Box
A

Inherent Ambiguity

A CFL L is inherently ambiguous if all gram-
mars for L are ambiguous.

Example: Consider L =

{a™b"cd™ in > 1,m > 1} u{a"b"c"d" in>1,m > 1}.

A grammar for L is

S— AB|C
A — aAb| ab
B — ¢Bd | cd
C — aCd | aDd
D — bDc | bc

178

Let's look at parsing the string aabbcedd.

/S\
AN N
2NN

(@

179

From this we see that there are two leftmost
derivations:

S z:> AB l:> aAbB z:> aabbB l:> aabbecBd z:> aabbeedd

and

S z:> C z:> aCd z:> aaDdd l:> aabDcdd z:> aabbcedd

It can be shown that every grammar for L be-
haves like the one above. The language L is
inherently ambiguous.

Thereis no algorithmto determinaf a CFL is inherentlyambiguous.
Thereis no algorithmto determinaf a CFGis ambiguous.

180

jiang
Text Box
There is no algorithm to determine if a CFL is inherently ambiguous. There is no algorithm to determine if a CFG is ambiguous.

Pushdown Automata

A pushdown automaton (PDA) is essentially an
e-NFA with a stack.

On a transition the PDA:

1. Consumes an input symbol. |ore

2. Goes to a new state (or stays in the old).

3. Replaces the top of the stack by any string
(does nothing, pops the stack, or pushes a
string onto the stack)

Finite
Input - gtoartl(terol - Accept/reject
A
Y 75

Stack

181

jiang
Text Box
or e

jiang
Line

jiang
Line

jiang
Line

jiang
Line

jiang
Line

jiang
Line

jiang
Rectangle

jiang
Text Box
Z0

Example: Let's consider

with “grammar’ P —- OPO, P — 1P1, P — e.
A PDA for Lywr hasthree states, and operates
as follows:

1. Guess that you are reading w. Stay in
state O, and push the input symbol onto
the stack.

2. Guess that you're in the middle of ww!t.
Go spontanteously to state 1.

3. You're now reading the head of wlt. Com-
pare it to the top of the stack. If they
match, pop the stack, and remain in state 1.
If they don't match, go to sleep.

4. If the stack is empty, go to state 2 and
accept.

182

jiang
Text Box
th

The PDA for Lywr @S a transition diagram:

0,2,/0z,

1, 24/17,

0,0/00

0,1/01

1,0/10 0,0/
1,1/11 1,1/ ¢

183

Actions of the

001100

T

o

|

Zy

PDA

12

jiang
Text Box
0

Actions of the PDA

01100

T

Qo

l
0
Zo

jiang
Text Box
0

Actions of the PDA

1100

N OO «— QO =

jiang
Text Box
0

PDA

Actions of the

100

Uo

o
> 1 O O N

jiang
Text Box
0

PDA

Actions of the

100

d,

o
> 1 O O N

jiang
Text Box
1

Actions of the PDA

0

NOO «— o —»©O

jiang
Text Box
1

Actions of the PDA

NO «— o +—H*©

jiang
Text Box
1

Actions of the PDA

jiang
Text Box
1

Actions of the PDA

jiang
Text Box
2

PDA formally

A PDA is a seven-tuple:
P=(Q,%,T,6q0, Zo, F),
where
e () is a finite set of states,
e > s a finite input alphabet,
e [is a finite stack alphabet,

e §:QX(EZU{ehx T — 2@xT" is the transition
function,

e go IS the start state,

e /o € I is the start symbol for the stack,
and

o F'C () is the set of accepting states.

184

jiang
Text Box
(

jiang
Text Box
)

Example: The PDA

0,7,/07,
1, 74/17,
0, 0/00
0,1/01
1,0/10
1,1/11

IS actually the seven-tuple

P = ({q07 q1; QQ}7 {07 1}7 {07 1, ZO}7 67 q0, ZO7 {QQ})7

where § is given by the following table (set

brackets missing):

0,% | 1,20 |00 0,1 1,0 1,1 €% | e0 | e1
— qo || 90,020 | qo0,1Z0 | q0,00 | 0,01 | go0,10 | go,11 | q1,%0 | q1,0 | q1,1
q1 q1, € q1, € q2, Zo
*q2

185

Instantaneous Descriptions

A PDA goes from configuration to configura-
tion when consuming input.

To reason about PDA computation, we use
instantaneous descriptions of the PDA. An ID
IS a triple

(q,w,7)

where q is the state, w the remaining input,
and ~ the stack contents.

Let P = (Q,x,I,6,q90,Zp, F) be a PDA. Then
YVweX*gel™*:

(p,a) € 6(q,a,X) = (q,aw, XB) F (p,w, af).
yield

We define £ to be the reflexive-transitive clo-
sure of .

186

jiang
Text Box
yield

Example: On input 1111 the PDA

0,7,/07,

1, 74/12,

0, 0/00

0,1/01

1,0/10 0,0/c¢
1,1/11 1,1/¢

has the following computation sequences:

187

1111, 7)

y

, 111,17) (g

v

11,117) (g,

y

. 1,1117) (g

e, 111170) (g,

e, 111170) (g

1111,Z ,) — (4, ,

111,17 4) == (g,

1,11Z,) (4,

T

1,1117) (g,

l

,8,1120) (ql,

(4,

1111, Z)

11, Z,)

11, Z)

188

The following properties hold:

1. If an ID sequence is a legal computation for
a PDA, then so is the sequence obtained
by adding an additional string at the end
of component number two.

2. If an ID sequence is a legal computation for
a PDA, then so is the sequence obtained by
adding an additional string at the bottom
of component number three.

3. If an ID sequence is a legal computation
for a PDA, and some tail of the input is
not consumed, then removing this tail from

all ID’s results in a legal computation
sequence.

189

Theorem 6.5: Vwe X% yel*:

(q,2,) F (p,y,8) = (g, 2w, ay) F (p,yw, 37).

Proof: Induction on the length of the sequence
to the left.

Note: If v = € we have proerty 1, and if w = ¢
we have property 2.

Note2: The reverse of the theorem is false.
For property 3 we have

Theorem 6.6:

(q, 2w,) F (p,yw, B) = (q,,) F (p,y,).

190

jiang
Text Box
g

Acceptance by final state

Let P = (Q,X,I,6,q0, 20, F) be a PDA. The
language accepted by P by final state is

L(P) = {w : (g0, w, Zo) F (g,¢,), q € F}.

Example: The PDA on slide 183 accepts ex-
actly Lywr-

Let P be the machine. We prove that L(P) =

waT-

(D-direction.) Let x € Lywr. Then z = wwR,
and the following is a legal computation se-
quence

*k b S
(g0, ww?®, Zg) ¥ (qo, w?, wfZo) F (g1, w!t, wZy) F
(q1,€, Zo) F (g2, ¢, Zp).

191

(C-direction.)

Observe that the only way the PDA can enter
qo is if it is in state g7 with top stack symbol = z,

Thus it is sufficient to show that if (qq, =, Zg) F
(q1,€, Zp) then z = wwf, for some word w.

We'll show by induction on |z| that

(QOaxaa) lik (QIaeaa) — T = wwR-

Basis: If xt = ¢ then z is a palindrome.

Induction: Suppose x = aqas:---an, Wheren > 0,
and the IH holds for shorter strings.

Ther are two moves for the PDA from ID (qg, z, o):

192

jiang
Text Box
top stack symbol = z0

Move 1: The spontaneous (qg,x, o) F (q1,z,).
Now (qq1,z,a) I (q1,¢, B) implies that 16| < |af,
which implies 8 # «a.

Move 2: Loop and push (gg,a1an---an,a) F
(q0,a2 - -an,a1c).

In this case there is a sequence

(q07a’1a2"'an,06) = (qO,aQ---a,n,aJla) ... B
(Q]_,an,a]_()é) - (QJ_) 6704).

Thus a1 = an and

k
(g0,a2 - an,a1a) F (q1,an,a1a).

By Theorem 6.6 we can remove a,,. | herefore

*
(g0, a2 apn—1,a100F (q1,€,a100).

Then, by the IH a>---a,_1 = ny. Then z =
a1yyfay, is a palindrome.

193

Give afinal-statePDA for balancedracketqor Dyck language)B -> BB | (B) | €
L,={0m1" 2P |m,n,p >=0, m+n=p}

Acceptance by Empty Stack

Let P = (Q,X,I,9,q0,Zp,F) be a PDA. The
language accepted by P by empty stack is

N(P) = {w : (g0, w, Zo) F (g,¢,€)}.

Note: g can be any state.

Question: How to modify the palindrome-PDA
to accept by empty stack? three ways to do it!

Give anempty-stackPDA for balancedracketgor Dyck language)B -> BB | (B) | €

194

jiang
Text Box
Give a final-state PDA for balanced brackets (or Dyck language): B -> BB | (B) | e

jiang
Text Box
Give an empty-stack PDA for balanced brackets (or Dyck language): B -> BB | (B) | e

jiang
Text Box
three ways to do it!

jiang
Text Box
 L2 = {0m 1n 2p | m,n, p >= 0, m+n = p}

From Empty Stack to Final State

Theorem 6.9: If L = N(Py) for some PDA
Py =(Q,x,I,6Nn,90,Z0), then 3 PDA Py, such
that L = L(Pyp).

Proof: Let

Pp = (QU{po,ps}, =, U{Xo}, 0, po; X0, {prs})
where 6 (po, €, Xo) = {(qo, ZpXp)}, and for all
g€ Q,ae>XU{e},Y eIl :0p(q,a,Y) =0dn(q,a,Y),
and in addition (ps,€) € 6p(q,¢, Xo).

g, Xo/s

Start

195

We have to show that L(Pr) = N(Py).

(Ddirection.) Let w e N(Py). Then

(g0, w, Zo) L = (g, ¢,6),

for some ¢q. From Theorem 6.5 we get

(g0, w, ZoXo) k; = (g, Xo).

Since o C o we have

(g0, w, ZgXp) E (q,G X0)-

We conclude that

*
(po, w, Xo) b (90, w, ZoXo) F, (g,€, Xo) I (pf, € €).

(Cdirection.) By inspecting the diagram.

196

Let's design Py for for catching errors in strings
meant to be in the if-else-grammar G

S — ¢|SS|iS|iSe.

Here e.g. {ieie, iie,iei} CLG) and e.qg. {ei,ieeii} NLG)= (.
The diagram for Py is

e // €
i, Z/27
Notethatthis PDA doesnot
Start really accepthe complemenbf
—>@ L(G); it gets"stuck" assoonit
detectghefirst excesse".

Formally,

PN — ({Q}7{i76}7{z}75N7Q7 Z),
where 6n(q,i, Z2) = {(q, Z22)},
and dn(q,e,2) = {(q,€)}.

QuestionDoesonestatesufficefor empy-stackPDAs?

197

jiang
Text Box
L(G)

jiang
Text Box
L(G)

jiang
Line

jiang
Text Box
Note that this PDA does not really accept the complement of L(G); it gets "stuck" as soon it detects the first excess "e".

jiang
Text Box
Question: Does one state suffice for empy-stack PDAs?

From Px we can construct

PF — ({pa%r}a {7:7 6}7 {Za XO}7 5F7p7 X07 {’I“}),
where
dp(p, e, Xo) = {(q, 2X0)},
6r(q,i,2) = 6n(q,1,2) =1{(q,Z22)},
6r(q,e,Z) = 6n(q,e,Z) = {(q,€)}, and
6r(q, 6, Xo) = {(r,€)}

The diagram for Pg is

198

From Final State to Empty Stack

Theorem 6.11: Let L = L(Pr), for some

PDA Pr=(Q, =, T, 8r, qo, Zo, F'). Then 3 PDA
Py, such that L = N(Py).

Proof:. Let

Py = (QU{po,p}, =, T U{Xo},dN,Po, X0)
where dn(po, €, Xo) = {(q0,Z0X0)}, dn(p,€,Y)
= {(p,e)}, for Y e TU{Xg}, and for all ¢ € Q,
a € ZUA{e}t, Y €T : 6n(q,a,Y) = dp(q,a,Y),
and in addition Vq € F, and Y € I U{Xp} :
(p,e) €0n(g,€Y).

Start

199

We have to show that N(Py) = L(Pp).
(C-direction.) By inspecting the diagram.

(D-direction.) Let w € L(Pr). Then

(g0, w, Zo) F = (g, ¢,),

for some g € F,a € I'*. Since ép C 4y, and
Theorem 6.5 says that Xg can be slid under
the stack, we get

(g0, w, ZoX0) = (g,¢,aXp).

The Py can compute:

(po, w, Xo) - (g0, w, ZoXo) t -~ (g, aXo) b = (p, e €).

200

Ex. Construct an empty-stack PDA for Ly ={w |w € {0,1}*, w <> wh}.

Equivalence of PDA’s and CFG’s

A language is

generated by a CFG
if and only if it is

accepted by a PDA by empty stack
if and only if it is

accepted by a PDA by final state

PDA by
final state

We already know how to go between null stack
and final state.

201

From CFG’'s to PDA'’s

Given G, we construct a PDA that simulates Zé

We write left-sentential forms as

Ao

where A is the leftmost variable in the form.
For instance,

E
\(a;"\f\)/

€T «
N—_——

tail

Let A« l:> xBa. This corresponds to the PDA
first having consumed x and having Aa on the
stack, and then on € it pops A and pushes £.

More fomally, let y, s.t. w = zy. Then the PDA
goes non-deterministically from configuration
(q,y, Aa) to configuration (q,vy, Ba).

202

At (q,vy,Ba) the PDA behaves as before, un-
less there are terminals in the prefix of 3. In
that case, the PDA pops them, provided it can
consume matching input.

If all guesses are right, the PDA ends up with
empty stack and input.

Formally, let G = (V,T,Q,S) be a CFG. Define
Pq as

({Q}7T7 V U T7 67 q7 S)7

where

6(q,6,A) ={(¢,8) - A— B € Q},
for AeV, and

5(q7 a? a’) — {(Q7 e)}?

for a € T.

Example: On blackboard in class.

€,S/0S0
S->0S0] 151 SS|e P 203

€,S/ISS
—> €,Sk
010/8

1,1k

jiang
Text Box
S -> 0S0 | 1S1 | SS | e

jiang
Line

jiang
Line

jiang
Line

jiang
Text Box
q

jiang
Text Box
e,S/0S0
e,S/1S1
e,S/SS
e,S/e
0,0/e
1,1/e

Theorem 6.13: N(Pg) = L(G).
Proof:

(D-direction.) Let w € L(G). Then

S=71=>72= = =w

Let v;, = x;;. We show by induction on ¢ that

wherex; is a string of terminals
anda; beginswith avariable

(Q7 w, S) |i< (Q7 Yi, ai)a

where w = x,y;.

204

jiang
Text Box
where xi is a string of terminals and ai begins with a variable

Basis: For : = 1,71 = b; Thus z1 = ¢, and

y1 = w. Clearly (¢q,w,S) F (q,w,S).

Induction: IH is (q,w,S) K (q,vy;, ;). We have
to show that

(Q7yi7ai) = (Q7yi—|—17ai—|—l)
Now «; begins with a variable A, and we have
the form

T, A = x;
14X RN Bx
i Yi4-1

By IH Ay is on the stack, and y; is unconsumed.
From the construction of Pg it follows that we
can make the move

(q,v;. A%) F (q,v;, BX). because;.: 1s

aprefix of w

If 8 has a prefix of terminals, we can pop them
with matching terminals in a prefix of y;, end-
ing up in configuration (q,¥y;4+1,a;4+1), Where
Q41 is the tail of the sentential form

Xi+1 Aj+1 — Vi+1-

Finally, since v, = w,*vve have ap = €, and y, =
e, and thus (q,w,S) F (q,¢,¢€), i.e. w € N(Pg)

205

jiang
Text Box
form

jiang
Text Box
xi+1ai+1

jiang
Text Box

jiang
Text Box
, A

jiang
Text Box
t

jiang
Text Box
because xi+1 is a prefix of w

jiang
Text Box
*

(C-direction.) We shall show by an induction
on the length of Iik, that

(&) If (q,z,A) K (q,¢,¢€), then A S 2.

Basis: Length 1. Then it must be that A — ¢
is in G, and we have (q,¢) € 6(q,e,A). Thus
A e

Induction: Length is n > 1, and the IH holds
for lengths < n.

Since A is a variable, we must have

(C_[,CC,A) = (Q7x7Y1Y2'“Yk) IR = (Q7€7€)
where A — Y1Yo---Y. is in G.

206

We can now write = as xzjxo---x,, according
to the figure below, where Y1 = B,Y> = a, and
Y3=0C.

207

jiang
Text Box
= a

jiang
Text Box
k

Now we can conclude that

*
(¢, xixi41 2k, Vi) F (@, i1+ Tgs €)
iN less than n steps, for all i € {1,...,k}. If Y;

IS a variable we have by the IH and Theorem
6.6 that

Y; =
If Y; is a terminal, we have |x;| = 1, and Y; = «;.
Thus Y; = z; by the reflexivity of =.
Hence, A= Y Ys... Y — X1Xo...X= X
The claim of the theorem now follows by choos-
ing A =S5, and z = w. Suppose w € N(P).
Then (q,w,S) F (q,¢,¢), and by (&), we have
S = w, meaning w € L(G).

208

jiang
Text Box
Hence, A Y1Y2 ... Yk x1x2...xk = x

jiang
Line

jiang
Line

jiang
Line

jiang
Text Box
*

jiang
Text Box
n

jiang
Line

jiang
Text Box

From PDA’s to CFG’s

Let's look at how a PDA can consume z =
x1xo - xp and empty the stack.

Do
4
Py
Y,
D1
Y
Dy,
- - g | -
X1 X2 Xk

We shall define a grammar with variables of the
form [p,_1Y;p;] representing going from p;_q1 to
p; with net effect of popping Y;.

209

lempty-stacl|

Formally, let P = (Q,%,I,9,q0,Zp) be a PDA.
Define G = (V,>X, R, S), where

V = {[pXq] : {p,q} CQ, X €eT}U{S}
R = {S — [q0Z0op] : p € Q}U
{laX7g] — a[rYiri] - [rp—1Yere]
a € > U{e},
{ri,..,m) € Q,
(r,Y1Y2---Yy) € 0(q,a,X)}

Ifk=0,ie.Y;Y,..Yc=¢,then [gXr] — a

210

jiang
Text Box
empty-stack

Example: Let's convert

e, 7/ €
i, /77

s ()

— O

PN — ({Q}a {7:7 6}7 {Z}a 5N7 q, Z)7

where §xn(q,1,Z2) = {(q,22)},
and dn(q,e, Z) = {(q,e)} to a grammar

G = (V,{i,e}, R, S),

where V = {[q¢Zq], S}, and
R ={lq9Zq] — ilgZqllaZql,[9Zq] — e,S —[qZql}

If we replace [¢Zq] by A we get the productions
S— Aand A — iAAle.

211

Example: Let P = ({p,q},{0,1},{X, Zo},6,q, Zo),
where § is given by

1. 0(q,1,Zo) = {(q, X Zp)}

2. 6(q,1,X) ={(¢, XX)}

3. 6(q,0,X) ={(p,X)}

4. 6(q,e,X) = {(q,€)}

5. 6(p,1,X) = {(p,e)}

Whatl a
6. 6(p,0,2Z0) = {(g,Z0)} thisallDDaX%l::igpt??es

to a CFG.

212

jiang
Text Box
What language does this PDA accept?

We get G = (V,{0,1}, R, S), where

V = {[pXp], [pX4ql, [pZop], [PZ0q], S}

[aXql, [aXp], [gZop], [GZoq]
and the productions in R are

S — [aZoql|laZop]

From transition (1):

9 Z0q]
qZ04q]
qZop)

— 1

— 1

qZop)]

— 1

9 X qllgZoq!
g Xp,
— 1{qXql|lqZop.

(g X p]

pZoq]

'pZop]

From transition (2):

gXq
g X q]
g Xp.
(g X p]

— 1
— 1

— 1

— 1

(X q]
g X p)
(X q][
(g X p]

qXq
pXq]
g Xp.
pXp]

213

jiang
Text Box
[qXq], [qXp], [qZ0p], [qZ0q]

From transition (3):

[¢Xq] — O[pXq]
[¢Xp] — O[pXp]

From transition (4):

[Xq] — €

From transition (5):

[pXp] — 1

From transition (6):

[pZoq] — O[qZpq]
[pZop] — O[qZop]

214

Theorem 6.14: Let (G be constructed from a
PDA P as above. Then L(G) = N(P)

Proof:

(D-direction.) We shall show by an induction
on the length of the sequence F that

(#) If (¢, w, X) F (p,e€) then [¢Xp] S w.

Basis: Length 1. Then w is an a or ¢, and

(p,e) € 6(q,w, X). By the construction of G we
have [¢Xp] — w and thus [¢Xp] = w.

215

Induction: Length isn > 1, and & holds for
lengths < n. We must have

(Q7w7X) - (TO,%‘,Y]_YQ"'Yk) SRR (p7€76)7

where w = ax or w = ex. It follows that
(rog,Y1Y>---Y) € 8(q,a,X). Then we have a
production

[¢ X 7] — alroY1r1] - [rp—1Yersl,

for all {rq,...,r.} C Q.

We may now choose r; to be the state in
the sequence = when Y; Is popped. Let x =
wiwsy - - - wg, Where w; is consumed while Y; is
popped. Then

*
(ri—la Wy, YL) = (ria €, E)'

By the IH we get

*
[ri—1Yr] = w;

216

jiang
Text Box
x

jiang
Text Box
Note that rk = p

We then get the following derivation sequence:

[=7] [qX7] = alroYir1] - [re_1Yire] =
aw1[r1Yoro][roYars] - -« [rp_1Yire] =

*
awiwa[roYarz] - [rp_1Yirr] =

awiw W — W =ax

217

jiang
Text Box
= ax

jiang
Text Box
rk = p

(D-direction.) We shall show by an induction
on the length of the derivation = that

(V) If [¢Xp] = w then (g, w, X) F (p, ¢ €)

Basis: One step. Then we have a production
[¢Xp] — w. From the construction of G it
follows that (p,e) € 6(q,a, X), where w = a.
But then (q,w, X) - (p, e, €).

Induction: Length of = isn > 1, and Q holds
for lengths < n. Then we must have

k=1

[qX] = a[roYiri][r1Yors] - - [rp_1Yirs] = w

We can break w into aws - - - wy, such that [r;_1Y;r;] =
w;. From the IH we get

*
(7“7;_]_, Wy, Y:L) = (rfb €, E)

218

jiang
Text Box
1

jiang
Text Box
rk = p

From Theorem 6.5 we get

k
(rim1, Wiw;4q - W, YiYiqq - Yg) F
(ri,wigq Wk, Yiqq - Yg)

Since this holds for all < € {1,...,k}, we get

(¢, awywy - - - W, X)F since (ry, Y;Y>...Yy) € 8(ga,X)

(ro,wiwy -+ wg, Y1Ya -+ Yp) F
(r1,wp- - wy, Yo Y3) F

(ro, w3 wy, Yz Y3) F
(p, €, €).

P =TIk

Q1.Canyou give a 1-stateemptystackPDA for L; ={ 0"1" | n >=0}?

Q2:How to decideif aPDA M acceptsa stringw?

219

jiang
Text Box
p = rk

jiang
Text Box
 Q1. Can you give a 1-state empty stack PDA for L1 = { 0n1n | n >= 0}?

 Q2: How to decide if a PDA M accepts a string w?

Deterministic PDA's

A PDA P =(Q,x,I,d,q0,Zo, F) is determinis-
tic iff

£
1. 6(q,a, X) is always empty or a singleton.

2. If §(q,a, X) is nonempty, then (g, e, X) must
be empty.

Example: Let us define

Lwcwr == {U)CU]R LW E {O, 1}*}
Then Lycwr 1S recognized by the following DPDA

2,102,
L Zol127,
,0/00
,1/01
,0/10 0,0
,1/11 1

sart {_) o)
@ @)

L OOFr O

220

jiang
Text Box
e

We’'ll show that RegularCc L(DPDA) Cc CFL

Theorem 6.17: If L is reqular, then L = L(P)
for some DPDA P.

Proof:. Since L is regular there is a DFA A s.t.
L =L(A). Let

A=(Q,%,64,q0,F)
We define the DPDA

P=(Q,x,{Zp},dp,qo0, Zo, F),
where

op(q,a, Zg) = {(6a(q,a), Zp)},
for all p,q € Q, and a € Z.

An easy induction (do it!) on |w| gives

* —~
(g0, w, Zg) F (p,€,Z0) & 04(q0, w) = p

The theorem then follows (why?)

221

What about DPDA’'s that accept by null stack?

They can recognize only CFL’s with the prefix
property.

A language L has the prefix property if there
are no two distinct strings in L, such that one
is a prefix of the other.

Example: Lycwr has the prefix property.

Example: {0}* does not have the prefix prop-
erty.

Theorem 6.19: L is N(P) for some DPDA P
if and only if L has the prefix property and L
is L(P") for some DPDA P'.

Proof: Homework

222

e We have seen that RegularC L(DPDA).

e Lycwr € L(DPDA)\ Regular

e Are there languages in CFL\L(DPDA).
Yes, for example Lywr.

e What about DPDA’'s and Ambiguous Gram-
mars?

Lywr has unamb. grammar S — 0S0|1S51]e

but is not L(DPDA).
But LL(k) languages

are in L(DPDA)!
For the converse we have

Theorem 6.20: If L = N(P) for some DPDA
P, then L has an unambiguous CFG.

Proof: By inspecting the proof of Theorem
6.14 we see that if the construction is applied
to a DPDA the result is a CFG with unique
leftmost derivations.

223

Theorem 6.20 can actually be strengthened
as follows

Theorem 6.21: If L = L(P) for some DPDA
P, then L has an unambiguous CFG.

Proof: Let $ be a symbol outside the alphabet
of L, and let ' = L$%.

It is easy to see that L’ has the prefix property.

By Theorem 6.20 we have L' = N(P’) for some
DPDA P’.

By Theorem 6.20 N(P’) can be generated by
an unambiguous CFG G’

Modify G’ into G, s.t. L(G) = L, by adding the
production

$— ¢

Since G’ has unique leftmost derivations, G
also has unique Im’s, since the only new thing
we're doing is adding derivations

w$ = w

to the end.
224

L(DPDA) are called deterministic CFLs, equivalent to LR (k) languages.

Properties of CFL's

o Simplification of CFG's. This makes life eas-
ier, since we can claim that if a language is CF,
then it has a grammar of a special form.

e Pumping Lemma for CFL's. Similar to the
regular case.

e (Closure properties. Some, but not all, of the
closure properties of regular languages carry
over to CFL’s.

e Decision properties. We can test for mem-
bership and emptiness, but for instance, equiv-
alence of CFL's is undecidable.

225

Chomsky Normal Form

We want to show that every CFL (without ¢)
is generated by a CFG where all productions
are of the form

A— BC, or A —a

where A, B, and C are variables, and a is a
terminal. This is called CNF, and to get there
we have to

1. Eliminate useless symbols, those that do
not appear in any derivation S = w, for
start symbol S and terminal w.

2. Eliminate e-productions, that is, produc-
tions of the form A — e.

3. Eliminate unit productions, that is, produc-
tions of the form A — B, where A and B
are variables.

226

Eliminating Useless Symbols

e A symbol X is useful for a grammar G =
(V,T,P,S), if there is a derivation

S aXB S w
G G

for a teminal string w. Symbols that are not
useful are called useless.

e A symbol X is generating if X % w, for some
weT*

e A symbol X is reachable if S % aX3, for
some {a,8} C (VUT)*

It turns out that if we eliminate non-generating
symbols first, and then non-reachable ones, we
will be left with only useful symbols.

227

Example: Let G be
S — ABla, A —b

S and A are generating, B is not. If we elimi-
nate B we have to eliminate S — AB, leaving
the grammar

S—a, A—b
Now only S and a are reachable. Eliminating
A and bleaves us with

S —a

with language {a}.

OTH, if we eliminate non-reachable symbols
first, we find that all symbols are reachable.
From

S — ABla, A —b

we then eliminate B as non-generating, and
are left with

S—a, A—Db

that still contains useless symbols
228

Theorem 7.2: Let G = (V,T,P,S) be a CFG
such that L(G) # 0. Let G; = (Vq,T4,P1,S)
be the grammar obtained by

1. Eliminating all nongenerating symbols and
the productions they occur in. Let the new
grammar be Go = (Vo,15, P>, S).

2. Eliminate from G- all nonreachable sym-
bols and the productions they occur in.

Then(G71 has no useless symbols, and
L(G1) = L(G).

229

jiang
Text Box
n

Proof: We first prove that G1 has no useless
symbols:

Let X remainin VqUTy.

Since X was not eliminated in step 2, there are
a and 3, such that S = aXg8 in Go. Further-
more, every symbol used in this derivation is
also reachable, so S = aXg in G1.

Now every symbol in a X3 is reachable and in
VouUuls O V7 UTq, so each of them is generating
in Go.

The terminal derivation aX3 = zwy in Gs in-
volves only symbols that are reachable from S,
because they are reached from symbols in aXg.
Thus the terminal derivation is also a dervia-
tion In Gq, i.e.,

S S aXfB = zwy

in Gq.
230

jiang
Text Box
from

jiang
Text Box
in

jiang
Text Box
But this is not enough!

We then show that L(Gq1) = L(G).
Since P; C P, we have L(G1) C L(G).

Then, let w € L(G). Thus S % w. Each sym-
bol is this derivation is evidently both reach-

able and generating, so this is also a derivation
of 4.

Thus w € L(G1).

231

We have to give algorithms to compute the
generating and reachable symbols of G = (V, T, P, S).

The generating symbols g(G) are computed by
the following closure algorithm:

Basis: ¢(G) ==

Induction: If a € ¢(G) and X — « € P, then
9(G) == g(G) U {X}.

Example: Let G be S — ABla, A —b
Then first g(G) == {a, b}.

Since S — a we put S in ¢g(G), and because
A — b we add A also, and that's it.

232

jiang
Text Box
*

jiang
Underline

Theorem 7.4: At saturation, ¢g(G) contains
all and only the generating symbols of G.

Proof:

We'll show in class by an induction on the
stage in which a symbol X is added to ¢g(G)
that X is indeed generating.

Then, suppose that X is generating. Thus
X % w, for some w € T*. We prove by induc-

tion on this derivation that X € g(G).

Basis: Zero Steps. Then X is added in the
basis of the closure algo.

Induction: The derivation takes n > 0 steps.
Let the first production used be X — «. Then

X:>a;>w

and a = w in less than n steps and by the IH
a € g(G). From the inductive part of the algo
it follows that X € g(G).

233

jiang
Text Box
*

jiang
Text Box
by

The set of reachable symbols r(G) of G =
(V,T,P,S) is computed by the following clo-
sure algorithm:

Basis: r(G) == {S}.

Induction: If variable Aer(G) and A - a € P
then add all symbols in o to r(G)

Example: Let G be S — ABla, A —b
Then first r(G) == {S}.

Based on the first production we add {A, B,a}
to r(G).

Based on the second production we add {b} to
r(G) and that's it.

Theorem 7.6: At saturation, r(G) contains
all and only the reachable symbols of G.

Proof: Homework.
234

Eliminating e-Productions

We shall prove that if L is CF, then L\ {e} has
a grammar without e-productions.

Variable A is said to be nullable if A= e.

Let A be nullable. We'll then replace a rule
like

A — BAD
with
A— BAD, A — BD

and delete any rules with body e.

We'll compute n(G), the set of nullable sym-
bols of a grammar G = (V, T, P,S) as follows:

Basis: n(G) == {A: A—e€ P}

Induction: If {C1 C5 - - -, C} Cn(G) and
A—C1Cy---CrLe P,thenn(G) ==n(G) U {A}.
235

Theorem 7.7: At saturation, n(G) contains
all and only the nullable symbols of G.

Proof: Easy induction in both directions.

Once we know the nullable symbols, we can
transform G into G1 as follows:

e For each A — X1 Xo:--- X, € P with m < k&
nullable symbols, replace it by 2™ rules, one

with each sublist of the nullable symbols ab-
sent.

Exeption: If m = k we don't delete all m nul-
lable symbols.

e Delete all rules of the form A — e.

236

Example: Let G be

S — AB, A — aAAle, B— bBBle

Now n(G) = {A,B,S}. The first rule will be-
come

S — AB|A|B
the second
A — aAA|aA|aAla
the third
B — bBB|bB|bBlb

We then delete rules with e-bodies, and end up
with grammar G

S — AB|A|B, A — aAAlaAla, B — bBB|bB|b

237

Theorem 7.9: L(G1) = L(G) \ {¢}.

Proof: We'll prove the stronger statement:

(1) A= win Gy ifandonly ifw# e and A = w
in G.

C-direction: Suppose A = w in Gy1. Then
clearly w #= ¢ (Why?). We'll show by an in-
duction on the length of the derivation that
AZ win G also.

Basis: One step. Then there exists A — w
in G1. From the construction of 4 it follows
that there exists A — « in GG, where « is w plus
some nullable variables interspersed. Then

A= o= uw

in (.

238

jiang
Text Box
ro

Induction: Derivation takes n > 1 steps. Then

A= X1Xo--- X = win Gy

and the first derivation is based on a produc-
tion

A—>Y1Y2'-'Ym n G

where m > k, some Y;'s are X;'s and the other
are nullable symbols of G.

Furthermore, w = wiwsy - - - wg, and X; = w; in
(G1 in less than n steps. By the IH we have
X, = w; in G. Now we get

A?Y1Y2---Ym%>X1X2---Xk%wlwz---wkzw

239

jiang
Text Box
th

D-direction: Let A % w, and w # e. We'll show
by induction of the length of the derivation
that A = w in Gy.

Basis: Length is one. Then A — w is in G,
and since w # € the rule is in G1 also.

Induction: Derivation takesn > 1 steps. Then
it looks like

A?YlYQ---Ym%w
Now w = wiws - - - wm, and Y; % w; in less than

n steps.

Let X1Xo--- X}, be those Y;'s in order, such
that w; #Ze. Then A — X1 X5--- X is a rulein
G1q.

Now X1 Xo5--- Xg % w (Why?)

240

Each X;/Y; % w; in less than n steps, so by

IH we have that if w7 e then Y; = w; in Gy,
Thus

A= X1Xo-- X3 = w in Gy

The claim of the theorem now follows from
statement (#) on slide 238 by choosing A = S.

241

jiang
Text Box
 j

Eliminating Unit Productions

A— B

IS a unit production, whenever A and B are
variables.

Unit productions can be eliminated.
Let's look at grammar

I - al|b|la|Ib|I0O|I1
F—1|(F)

T— F|TxF
E—-T|E+T

It has unit productions ¥ — T, T — F, and
F — 1

242

We'll expand rule E — T and get rules

E—-F E—->TxF

We then expand E — F' and get

E — I(E)|T x F

Finally we expand E — I and get

E—al|b|Ia|Ib|I0|I1|(E)|T*F

The expansion method works as long as there
are no cycles in the rules, as e.g. in

A—- B, B—-C,C—=A

The following method based on unit pairs will
work for all grammars.

243

(A, B) is a unit pair if A = B using unit pro-
ductions only.

Note: In A — BC, C — ¢ we have A = B, but
not using unit productions only.

To compute u(G), the set of all unit pairs of
G = (V,T,P,S) we use the following closure
algorithm

Basis: u(G) == {(A,A): AeV}

Induction: If (A,B) € u(G) and B —- C € P
then add (A,C) to u(G).

Theorem: At saturation, uw(G) contains all
and only the unit pair of G.

Proof:. Easy.

244

Given G = (V,T,P,S) we can construct G; =
(V,T, Py,S) that doesn’t have unit productions,
and such that L(G1) = L(G) by setting

PP={A—a:a¢é¢V,B—a€c P, (A B)cu(@G)}

Example: For

get

Pair

the grammar of slide 242 we

Productions

(E, E)
(E,T)
(E, F)
(E, 1)
(T,T)
(T, F)
(T, 1)
(F, F)
(F, 1)
(I,1)

E— FE+4+T

E—TxF
E—al|b|la|Ib|I0|I1
T — T x F

T — (F)

T —a|b|la|Ib|I0|I1
F—al|b|la|Ib|I0|I1
I —-al|b|lla|lb|I0|I1

The resulting grammar is equivalent to the
original one (proof omitted).

245

To “clean up” a grammar we can

Summary

1. Eliminate e-productions

2. Eliminate unit productions

3. Eliminate useless symbols

in this order.

This cannotbedone
earlierdueto theremoval
of e—productions and unit
productions.

246

jiang
Text Box
This cannot be done earlier due to the removal of e-productions and unit productions.

Chomsky Normal Form, CNF

We shall show that every nonempty CFL with-
out € has a grammar G without useless sym-
bols, and such that every production is of the
form

e A— BC, where {A,B,C} CV, or

o A—a, whereAcV,and aeT.

To achieve this, start with any grammar for
the CFL, and

1. “Clean up” the grammar.

2. Arrange that all bodies of length 2 or more
consists of only variables.

3. Break bodies of length 3 or more into a
cascade of two-variable-bodied productions.

247

jiang
Text Box
V

e For step 2, for every terminal a that appears
in a body of length > 2, create a new variable,
say A, and replace a by A in all bodies.

Then add a new rule A — a.

e For step 3, for each rule of the form
A — B1By--- By,

k > 3, introduce new variables C1,C5,...CL_»,
and replace the rule with

A — B1Cy
Ci1 — By(s

Cr—3 — Bp_2CL_»
1Bk

Ck—Q — Bk

248

Illustration of the effect of step 3

@

A
/T
B1 B2 B

JANJAN A

(b)

249

Example of CNF conversion

Let's start with the grammar (step 1 already
done)

E—SE+T|T«F|(E)|a|b|la|Ib|I0]|I1
T —TxF|(E)a|b|Ia|Ib|I0]|I1
F—(E)|a|b|la|Ib|I0]|I1

I —al|b|la|Ib|I0|I1

For step 2, we need the rules

A—a B—b272—0,0—1

P—+ M—xL— (,R—)

and by replacing we get the grammar

E — EPT |TMF |LER|al|b|IA|IB|IZ|I1O
T—-TMF|LER|a|b|IA|IB|IZ|IO
F—-LER|a|b|IA|IB|IZ|IO

I -al|b|IA|IB|IZ|IO
A—a,B—b27—0,0—1

P—+ M-—x*xL—(,R—)

250

jiang
Line

jiang
Line

For step 3, we replace

E — EPT by E — ECy,C1 — PT

E—-TMFT —TMEF by
E—-TC,,T —TCr,Co — MF

F — LER,T — LER,F — LER by
F— LC3, T — LC3, F— LC3,C3 — ER

The final CNF grammar is

E—EC1|TCy|LC3|a|b|IA|IB|I1Z |10
T —-TCy | LC3|al|b|IA|IB|IZ|I1O
F—LC3|al|lb|IA|IB|IZ|IO

I —-a|b|IA|IB|I1IZ |10

Cq— PI,Cyo - MF,C3 — FER
A—a,B—b272—0,0—1

P—+ M-—xL—(,R—)

251

The Pumping Lemma for CFL'’s

Statement
Applications

INntuition

@ Recall the pumping lemma for regular
languages.

@ It told us that if there was a string long
enough to cause a cycle in the DFA for
the language, then we could “pump”
the cycle and discover an infinite
sequence of strings that had to be In
the language.

Intuition — (2)

@® For CFL’s the situation is a little more
complicated.

€ \We can always find pieces of any
sufficiently long string to “pump” In
tandem.

¢ That is: If we repeat each of the two pieces
the same number of times, we get another
string in the language.

Statement of the CFL Pumping
Lemma

For every context-free language L
There Is an integer n, such that
For every string z in L of length > n
There exists z = uvwxy such that:
1. |Jvwx| < n.
2. |vx| = 0.
3. Foralli> 0, uvwxly isin L.

Proof of the Pumping Lemma

@ Start with a CNF grammar for L — {€}.

@ Let the grammar have m variables.
@®Pick n = 2™,
®Let z€ L and|z| > n.

®We claim (“Lemma 1) that a parse
tree with yield z must have a path of
length m+2 nodes or more.

Proof of Lemma 1

@ If all paths in the parse tree of a CNF
grammar are of length < m+1, then the
longest yield has length 2™, as in:

m variables
<

one terminal

)
_ ~

2M-1 terminals

Back to the Proof of the
Pumping Lemma
€ Now we know that the parse tree for z
has a path with at least m+1 variables.

@ Consider some longest path.

@ There are only m different variables, so
among the m+1 we can find two
nodes with the same label, say A.

€ The parse tree thus looks like:

Parse Tree In the Pumping-
Lemma Proof

Can’t both
be €. < 2™ = n because

height is at most m+2

Pump Zero Times

Pump Twice

10

Pump Thrice Etc., Eftc.

11

Using the Pumping Lemma

€ Non-CFL'’s typically involve trying to
match two pairs of counts or match two
strings.

¢ : The text uses the pumping
lemma to show that {ww | w In (O+1)*}
IS not a CFL.

12

Example 1

A ={0"1"2" | m > 0} is not context free.

Proof Assume, to the contrary, that A is context free. By Pumping
Lemma there exists a constant n such that every z € A of length > n
IS divided into z=uvwxy such that vwx| <n, |vx| > 1, and for every
i >0, uv'wx'y € A.

Let z = 0"1"2". Since |vwx| <n, vwx is either in 0*1* or 1*2*. So it is
not the case uv?wx?y has the same number of 0s, 1s, as 2s.]
A better way to write the proof:
Proof. Pick z = 0"n 1”n 2”*n. Consider partition uvwxy = z such that |[vwx| <= n and |vx| > O.
0..01..12..2
VWX
VWX
Case 1: vwx doesn't contain any 2. Then, u v*2 w x*2 y has more 0s or 1s than 2s.

Case 2: vwx contains a 2 (and thus doesn't contain any 0). Then, u v*2 w x*2 y has more 1s or 2s than 0s.

In either case, pumping doesn't work.

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box

Tao
Typewritten Text
z

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
z = uvwxy

Tao
Typewritten Text

Tao
Typewritten Text
vwx

Tao
Typewritten Text
vx

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
uv

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
wx

Tao
Typewritten Text
y

Tao
Typewritten Text
z

Tao
Typewritten Text
uv

Tao
Typewritten Text
wx

Tao
Typewritten Text
y

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
vwx

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
vwx

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
A better way to write the proof:
Proof. Pick z = 0^n 1^n 2^n. Consider partition uvwxy = z such that |vwx| <= n and |vx| > 0.
 0 ... 0 1 ... 1 2 ... 2
 vwx
 vwx
Case 1: vwx doesn't contain any 2. Then, u v^2 w x^2 y has more 0s or 1s than 2s.
Case 2: vwx contains a 2 (and thus doesn't contain any 0). Then, u v^2 w x^2 y has more 1s or 2s than 0s.
In either case, pumping doesn't work.

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Compare with { 0*a # 0"b # 0{a+b} | a,b >= 0}, which is a CFL.

Example 2

B = {a#b#c | a,b and c are binary numbers such that a 4+ b = ¢} is not
context free.

Proof Assume, to the contrary, that B is context free. Let n be the
constant from Pumping Lemma for B. Let z = 10"#10"#10"*1, where
a=b=2"and ¢ = 2"*1, Let uvwxy be the decomposition of z as in the
lemma with [vwx| <= n and |vx| > 0.

For “pumping” to be possible, v has to be a nonempty part of a or that
of b and x a nonempty part of c. If v either is a part of a or contains the
‘1’ of b, since |vwx| < n, x cannot contain a part of c. Thus, v is a part of
bandv € 0*.

10..0#10..0#10...00

\Y W X

Tao
Text Box
m

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n+1

Tao
Text Box
n

Tao
Text Box
n+1

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
z

Tao
Typewritten Text
uvwxy

Tao
Typewritten Text
z

Tao
Typewritten Text
v

Tao
Typewritten Text
x

Tao
Typewritten Text
v

Tao
Typewritten Text
vwx

Tao
Typewritten Text

Tao
Typewritten Text
x

Tao
Typewritten Text
v

Tao
Typewritten Text
v

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
1 0 ... 0 # 1 0 ... 0 # 1 0 ... 0 0
 v w x

Tao
Typewritten Text
with |vwx| <= n and |vx| > 0.

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Typewritten Text
Compare with { 0^a # 0^b # 0^{a+b} | a,b >= 0}, which is a CFL.

Proof Continued

If x contains the first symbol of ¢, then uwy is not in B because now c is
0 while a = 2".

If x € 0%, then uv?wx?y ¢ B because now the equation becomes 2" +
2M= 2" for some m > n.

Thus, B is not context-free.]

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
x

Tao
Typewritten Text
x

Tao
Typewritten Text
uv

Tao
Typewritten Text
wx

Tao
Typewritten Text
y

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
uwy

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Text Box

Tao
Text Box

Example 3

C ={ww | w € {0,1}*} is not context free.

Proof Assume C'is context free. Let n the constant from the pumping
lemma for C. 0..01..10..01..1

Let z = 0"170"", which is in C. T wx

VWX

Let z=uvwxy be the decomposition of z such that |vx| > 0, |[vwx| < n,
and for every ¢ > 0, uv'wx'y € C.

If v contains a symbol from the first 0”7 then x cannot contain one from
the second 0", so pumping doesn’t work. If v contains only symbols from
the first 17 then x cannot contain one from the second 1”7, so pumping
doesn’t work. If v contains only symbols from the second 071”7 then
pumping does not work. i

In all three cases, u w y would not be in C!

=

Tao
Sticky Note
Consider how the center of string will shift when v/x are deleted.

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box
n

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Text Box

Tao
Typewritten Text
z

Tao
Typewritten Text
z = uvwxy

Tao
Typewritten Text
z

Tao
Typewritten Text
vx

Tao
Typewritten Text
vwx

Tao
Typewritten Text

Tao
Typewritten Text
uv

Tao
Typewritten Text

Tao
Typewritten Text
wx

Tao
Typewritten Text
y

Tao
Typewritten Text
v

Tao
Typewritten Text
x

Tao
Typewritten Text
v

Tao
Typewritten Text
x

Tao
Typewritten Text
v

Tao
Typewritten Text

Tao
Typewritten Text
0 ... 0 1 ... 1 0 ... 0 1 ... 1
 v w x

Tao
Typewritten Text
v w x

Tao
Typewritten Text
v w x

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text
In all three cases, u w y would not be in C!

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Application

Corollary. The class of context-free languages is not closed under
Intersection.

Proof Let L; = {0°172% | i = j} and L, = {0°192% | j = k}. Then L,
and Lo are both context-free. If the class were closed under intersection
then Ly N Ly = {0™1"2™ |m > 0} were context-free.]

Corollary. The class of context-free languages is not closed under
complement.

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box
m

Tao
Text Box

Tao
Text Box

Closure Properties of CFL'’s

Consider a mapping

. In otherwords,we mapaletter
s Y — oA of = to alanguageoverA

where > and A are finite alphabets. Let w €&
> *, where w = ajas---an, and define

s(aras---an) =s(ay)s(az) --- -s(an)
and, for L C %,
s(L) = |J s(w)
weEL

Such a mapping s is called a substitution.

252

jiang
Text Box
In other words, we map a letter of S to a language over D

Example: ¥~ = {0,1}, A = {a, b},
s(0) ={a"b" :n > 1},s(1) = {aa, bb}.

Let w =01. Then s(w) = s(0)-s(1) =
{a™"aa :n > 1}U {a"b" T2 :n > 1}

Let L ={0}*. Then s(L) = (s(0))* =
{a™1b"1q™2p™2 . .. q"kD"k 1 k > 0,n; > 1}

Theorem 7.23: Let L be a CFL over >, and s
a substitution, such that s(a) is a CFL, Va € 3.
Then s(L) is a CFL.

253

We start with grammars
G=(V,>X,P5S) e.g.,S->0S| ¢
for L, and
Ga = (Va,Ta, Pa, Sa) e.g., X ->axb | ab
for each s(a). We then construct
G =W'.1 P S)
where e.g.,S->XS| ¢
X ->aXb | ab

V= (UaEZ VCL) UV

T = Uees Ta

P’ = Uges Pu plus the productions of P
with each a in a body replaced with sym-
bol S,.

254

Tao
Typewritten Text
e.g., S -> 0S |

Tao
Typewritten Text

Tao
Typewritten Text
e

Tao
Typewritten Text
e.g., X -> aXb | ab

Tao
Typewritten Text
e.g., S -> XS |
 X -> aXb | ab

Tao
Typewritten Text
e

Now we have to show that
o L(G") = s(L).

Let w € s(L). Then Jx = ajas---an in L, and
dx; € s(a;), such that w = x5 - - Tn.

A derivation tree in G’ will look like

S

S S
a1 42
X1)

Thus we can generate Sq;Sa, - Sa, in G’ and
from there we generate xq1xo---xp, = w. Thus
w e L(G").

255

jiang
Text Box
ro

Then let w € L(G"). Then the parse tree for w
must again look like

Now delete the dangling subtrees. Then you
have vyield

SaySas -+ Say,

where aias---an € L(G). Now w belong
to s(ajas---ap), which is containedn §L).

256

jiang
Text Box
belongs

jiang
Text Box
contained in S(L).

Applications of the Substitution Theorem

Theorem 7.24: The CFL's are closed under
(7) : union, (47) : concatenation, (7i7) : Kleene
closure and positive closure 4+, and (iv) : ho-
momorphism.

Proof: (¢): Let L1 and L, be CFL's, let L =
{1,2}, and 8(1) = L]_,S(Q) = Lo».
Then L1 UL, = s(L).

(i1) : Here we choose L = {12} and s as before.
Then Lqi-Lo = S(L)

(4i3) : Suppose Ly is CF. Let L = {1}*,5(1) =
Ly. Now Lj = s(L). Similar proof for +.

(iv) : Let L1 be a CFL over 3>, and h a homo-
morphism on 2. Then define s by

a+— {h(a)}
Then h(L) = s(L).

257

jiang
Text Box
1

jiang
Text Box
1

Theorem: If L is CF, then so iS L.

Proof: Suppose L is generated by G = (V, T, P, S).
Construct G® = (v, T, PE,S), where

Pi=fA—>af':4—>aepP}

Show at home by inductions on the lengths of
the derivations in G (for one direction) and in
GTt (for the other direction) that (L(G))! =
L(GHE).

Eg., {Omlnzmﬂl}R _ {2m+n1mon}

258

jiang
Text Box
S

Let Ly = {0™1™2" :n > 1,5>1}. The Ly is CF
with grammar
S — AB

A — 0A1|01
B — 2B|2

Also, Lo = {0%1"2™ : n > 1,7 > 1} is CF with
grammar

S — AB
A — OA|O
B — 1B2|12

However, L1 N Ly = {0"1"2" : n > 1} which is
not CF (as shown in the last lecture).

259

E.g., {palindromes} M {even length strings} = {even length palindromes}

Theorem 7.27: If L is CF, and R regular,

then LN R is CF.

Proof. Let L be accepted by PDA

P=(Qp,x,T,0p,qp, Zo, Fp)
by final state, and let R be accepted by DFA

A=(Qa,2Z,04,94,Fa)
We'll construct a PDA for L N R according to

the picture

FA
state

Y

Input

_ | PDA
T | state

reject

Stack

260

jiang
Text Box
F

Formally, define

P/: (QPXQA,,Z,F,(S,(C]P,C]A),ZO,FPXFA)

where

3((q,p),a, X) = {((r,04(p,a)),7) : (r,7) € 6p(g,a, X)}

whereaisin Z U {¢&}

Prove at home by an induction If, both for P
and for P’ that

(qpawazO) lik (Q7€77) in P

if and only if

((ap,q4),w, Zp) - ((q, SA(CIA,UJ)),E,W) in P’/

The claim thenfollows (Why7?)

261

jiang
Text Box
n

jiang
Text Box
where a is in S U {e}

jiang
Text Box
A

jiang
Text Box
q

Theorem 7.29: Let L,Lq,L> be CFL's and R
regular. Then

1. L\ Ris CF E.g., Dyck language \ [(]* =

nested balanced parentheses

2. L is not necessarily CF

3. L1\ Lo is not necessarily CF

Proof:

1. Ris regular, LN R is CF and LN R =
L\ R.

2. If L always was CF, it would follow that

LiNLy=Lq1UL»>

An example?
always would be CF. Non-squares!

3. Note that >* is CF, so if L1\ Lo was always
CF, then so would ~*\ L = L.

262

jiang
Text Box
CF

Tao
Typewritten Text
E.g., Dyck language \ [()]* =
nested balanced parentheses

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Typewritten Text

Tao
Stamp

Tao
Typewritten Text
An example?
Non-squares!

Tao
Typewritten Text

Tao
Typewritten Text

Inverse homomorphism

Let h: X — ©* be a homom. Let L C ©*, and

define 1
h™ (L) ={we *: h(w) € L}

Now we have

Theorem 7.30: Let L be a CFL, and h a
homomorphism. Then h~1(L) is a CFL.

Proof: The plan of the proof is

Buffer
a h(a)
| nput >~ h >

y

PDA » Accept/
state reject
!
Y

Stack

263

Let L be accepted by PDA
P=(Q,9,I,6,4q0, Zo, F)

We construct a new PDA

P'=(Q, =, 1,8, (q,€), Zg, F x {€})

where
Q' ={(q,x) : q € Q,x € suffix(h(a)),a € =}

0'((q,€),a,X) = {((q,h(a)),X) : € # a €
>.geQ, X erl}

6" ((g,bx),¢, X) = {((p,z),7) : (p,v) € 6(q,b,X),b €
> U{et,qe @, X T}

Show at home by suitable inductions that

e (qo,h(w),Zo) F (p,e,v) in P if and only if
* .
((q0,€),w, Zg) F ((p,€),€,7) in P’

Notethath(E) = €. 264

jiang
Text Box
S

jiang
Text Box
Note that h(e) = e.

Decision Properties of CFL'’s

We'll look at the following:

e Complexity of converting among CFG's and
PDA 's

e Converting a CFG to CNF
e Testing L(G) #= 0, for a given G
e Testing w € L(G), for a given w and fixed G.

e Preview of undecidable CFL problems

265

jiang
Text Box
G

Converting between CFGs and PDA's

e Input size is n.

e n is the total size of the input CFG or PDA.

The following work in time O(n)

1. Converting a CFG to a PDA (slide 203)

2. Converting a ‘“final state” PDA
to a “null stack” PDA (slide 199)

3. Converting a “null stack” PDA
to a ‘“final state” PDA (slide 195)

266

Avoidable exponential blow-up

For converting a PDA to a CFG we have
(slide 210)
At most n3 variables of the form [pXg¢]

If (I‘,Y1Y2 s Yk) c 5(q, CL,X)}, we'll have O(n”)
rules of the form

[aX7g] — alrYiry] - [rp_1Yergl

e By introducing k—2 new states we can mod-
ify the PDA to push at most one symbol per
transition. Illustration on blackboard in class.

PUt (rY3...YkIY2Y1) in 6(qlalx)
Put (ry4.vi, Y3Y2) in O(rys_yiE Y2)

267

jiang
Text Box
Put (rY3...Yk,Y2Y1) in d(q,a,X)
Put (rY4...Yk,Y3Y2) in d(rY3...Yk,e,Y2)
...

e Now, k will be <2 for all rules.
e Total length of all transitions is still O(n).

e Now, each transition generates at most n2
productions

e Total size (and time to calculate) the gram-
mar is therefore O(n3).

268

Converting into CNF

Good news:

1. Computing r(G) and ¢g(G) and eliminating
useless symbols takes time O(n). This will
be shown shortly

(slides 229,232,234)

2. Size of u(G) and the resulting grammar
with productions Pj is O(n?)

(slides 244,245)

3. Arranging that bodies consist of only vari-
ables is O(n)

(slide 248)

4. Breaking of bodies is O(n) (slide 248)

269

Bad news:

e Eliminating the nullable symbols can make
the new grammar have size O(2")

(slide 236)
The bad news are avoidable:

Break bodies first before eliminating nullable
symbols

e Conversion into CNF is O(n?)

270

Testing emptiness of CFL'’s

L(G) is non-empty if the start symbol S is gen-
erating.

A naive implementation on ¢g(G) takes time
O(n?).

g(G) can be computed in time O(n) as follows:

Generating?

A 2
B |yes

271

Creation and initialzation of the array is O(n)

Creation and initialzation of the links and counts
is O(n)

When a count goes to zero, we have to

1. Finding the head variable A, checkingif it
already is "yes” in the array, and if not,
queueing it is O(1) per production. Total
O(n)

2. Following links for A, and decreasing the
counters. Takes time O(n).

Total time is O(n).

What if L is given as a PDA?

How to test if L(G) is infinite? 272

jiang
Text Box
g

jiang
Text Box
What if L is given as a PDA?
How to test if L(G) is infinite?

Themembershiguestiol

we L(G)?

Inefficient way:

Suppose G is CNF, test string is w, with |w| =
n. Since the parse tree is binary, there are
2n — 1 internal nodes.

Generate all binary parse trees of G with 2n—1
internal nodes.

Check if any parse tree generates w

273

jiang
Text Box
The membership question

CYK-algo for membership testing

The grammar G is fixed and in CNF.
Input iIs w =ajas---an

We construct a triangular table, where X;; con-
tains all variables A, such that

*
A ? A;Qi4q -Gy

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45
Xll X22 X33 X44 X55

274

To fill the table we work row-by-row, upwards

The first row is computed in the basis, the
subsequent ones in the induction.

Basis: X;;, == {A: A — q; is in G}
Induction:

We wish to compute X;;, whichisinrow j —i+ 1.

A € Xy, if
Aéaiai—l—l---aj, it

forsome k < j,and A — BC, we have

B é A;Ai41 " " Ay and Cé Ap4 1042 " - Gy, if

B e Xz'k; and C & X(k+1)j

275

jiang
Text Box
(k+1)j

Example:

(G has productions

S AB|BC
BAla
CClb

ABla

Q& =
Ll

{54.G
54,G
8 {8
s4 B {SG {54
B {4¢ {4¢ {B {4¢G

276

To compute Xz-j we need to compare at most
n pairs of previously computed sets:

(Xiir Xi+1,5), (Xg 41, Xigo5), -+, (X5 -1, Xjjj)

as suggested below

For w = ai---an, there are O(n2) entries XZj
to compute.

For each X;; we need to compare at most n
pairs (Xig, Xp+1,5)-

Total work is O(n3).
277

jiang
Text Box
+

Preview of undecidable CFL problems

The following are undecidable:

1. Is a given CFG G ambiguous?

2. Is a given CFL inherently ambiguous?

3. Is the intersection of two CFL's empty?

4. Are two CFL's the same?

5. Is a given CFL universal (equal to >*)7

Open: Does a DFA accept any prime number?

278

=]

Tao
Sticky Note
From Jeff Shallit (Ken Regan blog). Also, the smallest DFA accepting x but not y, for two strings of length n.

279

Undecidability

Everything is an Integer
Countable and Uncountable Sets
Turing Machines

Recursive and Recursively
Enumerable Languages

Integers, Strings, and Other Things

Data types have become very
Important as a programming tool.

€ But at another level, there is only one
type, which you may think of as
Integers or strings.

- Text

@ Strings of ASCII or Unicode characters
can be thought of as binary strings,
with 8 or 16 bits/character.

@ Binary strings can be thought of as
Integers.

@ It thus makes sense to talk about “the i-th
string”.

Binary Strings to Integers

& There's a small glitch:

* If you think them simply as binary integers,
then strings like 101, 0101, 00101, ... all
appear to represent 5.

@ Fix by prepending a “1” to the string
before converting to an integer.

¢ Thus, 101, 0101, and 00101 are the 13t
21st, and 37t strings, respectively.

. Images

¥ Represent an image in (say) GIF.
€ The GIF file is an ASCII string.

Convert string to binary.

@ Convert binary string to integer.

& Now we have a notion of “the i-th
Image”.

: Proofs

@ A formal proof is a sequence of logical
expressions, each of which follows from
the ones before It.

€® Encode mathematical expressions of
any kind in Unicode.

Convert expression to a binary string
and then an integer.

Proofs — (2)

€ But since a proof is a sequence of
expressions, it would be convenient to
have a simple way to separate them.

& Also, we need to indicate which
expressions are given.

Proofs — (3)

€ Quick-and-dirty way to introduce new
symbols into binary strings:

1. Given a binary string, precede each bit by O.

4 : 101 becomes 010001.

2. Use strings of two or more 1's as the special
symbols.
4 : 111 = “the following expression is

given”; 11 = “end of expression.”

. Encoding Proofs

1110100011111100000101110101...

A given End of Expressi‘k
expression expression S

follows

A given
An ex- expression
pression Notice this follows
1 could not
be part of

the “end”

. Programs

@®Programs are just another kind of data.
@ Represent a program in ASCII.

€ Convert to a binary string, then to an
Integer.

€ Thus, it makes sense to talk about “the
I-th program”.

¢

10

Finite Sets

@ Intuitively, a finite set is a set for
which there Is a particular integer that
IS the count of the number of members.

4 : {a, b, c} is a finite set; its
cardinality is 3.
@It is impossible to find a 1-1 mapping

between a finite set and a proper
subset of itself.

11

Infinite Sets

® Formally, an /nfinite set is a set for which
there iIs a 1-1 correspondence between
Itself and a proper subset of itself.

¢ . the positive integers {1, 2, 3, ...}
IS an infinite set.

* There Is a 1-1 correspondence 1<->2, 2<->4,
3<->6,... between this set and a proper
subset (the set of even integers).

12

Countable Sets

® A countable set is a set with a 1-1
correspondence with the positive integers.

* Hence, all countable sets are infinite.
¢ . All integers.
¢ 0<->1; -i <-> 2i; +i <-> 2i+1.
¢ Thus, orderis O, -1, 1, -2, 2, -3, 3,...
4 . set of binary strings, set of Java
programs.

13

. Pairs of Integers

@ Order the pairs of positive integers first
by sum, then by first component:

&®[1,1], [2,1], [1,2], [3.,1], [2,2], [1,3].
[4,1], [3.2],..., [1,4], [5,1],...

@ Interesting exercise: Figure out the
function f(1,]) such that the pair [i,}]
corresponds to the integer f(i,]) in this
order.

14

Enumerations

® An enumeration of a setis a 1-1
correspondence between the set and
the positive integers.

€ Thus, we have seen enumerations for
strings, programs, proofs, and pairs of
Integers.

15

How Many Languages?

@ Are the languages over {0,1}* countable?
No; here’s a proof.

@ Suppose we could enumerate all
languages over {0,1}* and talk about “the
I-th language.”

@ Consider the language L = { w | w is the
I-th binary string and w Is not in the I-th
language}.

16

Proof — Continued

]
& Clearly, L is a language over {0,1}*.
@ Thus, it is the j-th language for som /X
particular J. Recall: L={ w ||wis \he
@ Let x be the j-th string. i-th binary stringland w is

@®IsxinL? ”Wﬂguage}.

* |f so, x Is not In L by definition of L. j-th
¢+ If not, then x Is In L by definition of L.

17

Diagonalization Picture

Strings

1 2 3 4 5 ..
170,110

1

Languages

oo H~ w N PP
o

Diagonalization Picture

Strings Can’t be
Flip each arow —
diagonal 1 2 3 4 S5 . It disagrees
entry @ O|1,1] 0 - inanentry

0 of each row.
Languages

(@) A W N B
=
N\

19

Proof — Concluded

€ We have a contradiction: x is neither in
L nor not In L, so our sole assumption
(that there was an enumeration of the
languages) Is wrong.

€ Comment: This is really bad; there are
more languages than programs.

€®E.g., there are languages that are not
accepted by any program/algorithm.

Recalllanguagesireessentiallydecisionproblemsandalgorithms 20
acceptinghelanguage$asicallysolvethe decisionproblems.

jiang
Text Box
Recall languages are essentially decision problems and algorithms accepting the languages basically solve the decision problems.

Hungarian Arguments

€ \We have shown the existence of a
language with no algorithm to test for
membership, but we have no way to
exhibit a particular language with that
property.

@ A proof by counting the things that work
and claiming they are fewer than all
things is called a Hungarian argument.

21

Turing-Machine Theory

€ The purpose of the theory of Turing
machines Is to prove that certain
specific languages have no algorithm.

@ Start with a language about Turing
machines themselves.

@ Reductions are used to prove more
common questions undecidable.

22

Picture of a Turing Machine

Action: based on
the state and the
tape symbol under

the head: change

State state, rewrite the
symbol and move the

l head one square.

A/B|C| A D

Infinite tape with
squares containing
tape symbols chosen

from a finite alphabet =

Why Turing Machines?

€ \Why not deal with C programs or
something like that?

¢ : You can, but it is easier to prove
things about TM'’s, because they are so
simple.
+ And yet they are as powerful as any
computer.

e More so, Iin fact, since they have infinite memory.

24

Then Why Not Finite-State
Machines to Model Computers?

@ In principle, you could, but it is not
Instructive.

€ Programming models don’t build in a
limit on memory.

@ In practice, you can go to Fry's and buy
another disk.

But finite automata vital at the chip
level (model-checking).

25

Turing-Machine Formalism

® A TM is described by:

A finite set of states (Q, typically).

An /nput alphabet (2, typically).

A tape alphabet (I', typically; contains 2).
A transition function (0, typically).

A start state (g, In Q, typically).

A blank symbol/ (B, In I= 2, typically).

€ All tape except for the input is blank initially.
7. A set of final states (F < Q, typically).

B 0 D =

26

Conventions

€4, b, ... are input symbols.
®... X, Y, Z are tape symbols.

®...w, X, Y, z are strings of input
symbols.

@, B,... are strings of tape symbols.

27

The Transition Function

€ Takes two arguments:
1. A state, in Q.
2. A tape symbol inT.

€ 5(q, 2) is either undefined or a triple of
the form (p, Y, D).
¢ pIs a state.
¢ Y Is the new tape symbol.
* Ds a direction, L or R.

28

Actions of the TM

@ Ifd(q, 2) = (p, Y, D) then, in state q,
scanning Z under its tape head, the
TM:

1. Changes the state to p.
2. Replaces Z by Y on the tape.

3. Moves the head one square In direction D.
€ D = L: move left; D = R; move right.

29

. Turing Machine

€ This TM scans its input right, looking
for a 1.

@ If it finds one, it changes it to a 0, goes
to final state f, and halts.

@ If it reaches a blank, it changes it to a
1 and moves left.

30

. Turing Machine — (2)

& States = {q (start), f (final)}.
@ Input symbols = {0, 1}.

€ Tape symbols = {0, 1, B}.
€05(g, 0) = (g, 0, R).

€0(q,1) =(f, 0, R).

®0(q,B) =(q, 1, L).

31

Simulation of TM

0(q, 0) = (g, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

32

Simulation of TM

0(q, 0) = (g, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

33

Simulation of TM

0(q, 0) = (q, 0, R)
5(g, 1) = (f, 0, R)

o(q,B) =(q, 1, L)

34

Simulation of TM

0(q, 0) = (g, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

35

Simulation of TM

0(q, 0) = (q, 0, R)
5(q, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

36

Simulation of TM

0(q, 0) = (q, 0, R)
5(g, 1) = (f, 0, R)

0(q, B) = (q, 1, L)

l No move is possible.
The TM halts and

B/ B|O[0O|0[B/|... accepts_

37

Instantaneous Descriptions of
a Turing Machine

@ Initially, a TM has a tape consisting of a
string of input symbols surrounded by
an infinity of blanks in both directions.

€ The TM is in the start state, and the
head Is at the leftmost input symbol.

38

T™ ID’s — (2)

€ An ID is a string aqp, where of is the
tape between the leftmost and
rightmost nonblanks (inclusive).

€ The state q is immediately to the left of
the tape symbol scanned.

@ If g is at the right end, it is scanning B.

¢ |If g Is scanning a B at the left end, then
consecutive B’s at and to the right of g are
part of B.

39

jiang
Text Box
b

T™ ID’s — (3)

@ As for PDA’s we may use symbols + and
-* 1o represent “becomes Iin one move”

and “becomes In zero or more moves,”
respectively, on ID’s.

¢ : The moves of the previous TM
are g00+0qg0+00gt+0g01+00qgl1+000f

40

i

2.

Formal Definition of Moves

If 0(q, 2) = (p, Y, R), then

® aqZBraYpp

€ If Z is the blank B, then also aqtaYp
If 0(q, 2) = (p, Y, L), then

€ For any X, aXqZBropXYp

€ In addition, gZB+pBYpP

41

Languages of a TM

€ A TM defines a language by final state,
as usual.

O®L(M) = {w | gowt+*I, where | is an ID
with a final state}.

€ Or, a TM can accept a language by
halting.

®H(M) = {w | gowt+*I, and there is no
move possible from ID 1}.

42

1.

2.

Equivalence of Accepting and
Halting

If L=L(M), then thereisa TM M’
such that L = H(M’).

If L = H(M), then thereisa TM M”
such that L = L(M”).

43

Proof of 1: Acceptance ->
Halting

€ Modify M to become M’ as follows:

1. For each final state of M, remove any
moves, so M’ halts In that state.

2. Avoid having M’ accidentally halt.

€ Introduce a new state s, which runs to the right
forever; that is d(s, X) = (s, X, R) for all symbols X.

¢ If g is not final, and d(q, X) is undefined, let
0(q, X) = (s, X, R).

44

Proof of 2: Halting ->
Acceptance

€ Modify M to become M” as follows:

1. Introduce a new state f, the only final
state of M”.

2. f has no moves.

3. If (g, X) is undefined for any state q and
symbol X, define it by 8(q, X) = (f, X, R).

45

Recursively Enumerable
Languages

€ We now see that the classes of
languages defined by TM’s using final
state and halting are the same.

@ This class of languages is called the
recursively enumerable languages.

* Why? The term actually predates the
Turing machine and refers to another
notion of computation of functions.

AMB ={<G> | Gis anambiguouFG}

46

jiang
Text Box
AMB = {<G> | G is an ambiguous CFG}

Recursive Languages

® An algorithm is a TM that is
guaranteed to halt whether or not it
accepts.

@®If L = L(M) for some TM M that is an
algorithm, we say L Is a recursive
(or decidable) language.

* Why? Again, don’t ask; it is a term with a
history.

Church-TuringThesis:Halting Turing machines 47
are equivalento intuitive notion of algorithms.

jiang
Text Box
Church-Turing Thesis: Halting Turing machines
are equivalent to intuitive notion of algorithms.

. Recursive Languages

®Every CFL is a recursive language.
+ Use the CYK algorithm.

® Every regular language is a CFL (think
of its DFA as a PDA that ignores Its
stack); therefore every regular
language Is recursive.

€ Almost anything you can think of is
recursive.

But notHALT ={<M> | M is aTM thathaltson everyinput}
or AMB = {<G> | Gis anambiguouFG}
or EQCFG={<G,,G,> | G; andG, areCFGs,L(G,) = L(Gy)}

jiang
Text Box
But not HALT = {<M> | M is a TM that halts on every input}
or AMB = {<G> | G is an ambiguous CFG}
or EQCFG = {<G1,G2> | G1 and G2 are CFGs, L(G1) = L(G2)}

An examplenon-recursivéundecidable)anguage:
ATM ={ <M,w>| TM M acceptsstringw }

Proof. Supposehat AT\ Isrecursiveanddecidedoy an
algorithm(TM) H. Constructa TM D asfollows:

Foranyinput<M> whereM isaTM, runH on
<M,<M>> andaccepiff H rejects.In otherwords,D
accept<M> iff M doesnotaccepkM>.

Whatwould D doon<D>?

It shouldaccepD> iff D rejects<D> !

49

jiang
Text Box
An example non-recursive (undecidable) language:
ATM = { <M,w> | TM M accepts string w }

Proof. Suppose that ATM is recursive and decided by an algorithm (TM) H. Construct a TM D as follows:

 For any input <M> where M is a TM, run H on <M,<M>>, and accept iff H rejects. In other words, D accepts <M> iff M does not accept <M>.

What would D do on <D>?

It should accept <D> iff D rejects <D> !

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	Text1:

