
Accurate Identification of Ortholog Groups among Multiple Genomes

Guanqun Shi∗

Department of Computer Science, University of California,
Riverside, CA 92521. Email: gshi@cs.ucr.edu

Meng-Chih Peng
Department of Computer Science, University of California,

Riverside, CA 92521. Email: mpeng@cs.ucr.edu

Tao Jiang
Department of Computer Science, University of California,

Riverside, CA 92521. Email: jiang@cs.ucr.edu

Abstract: The identification of orthologous genes shared by multiple genomes plays an important role in evolu-
tionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0,
for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a
new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system,
we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0
for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of
disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one
gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the
SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups
(or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological
constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool
MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outper-
forms MultiParanoid and the Roundup multi-ortholog repository in real data experiments using gene symbols as
a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about
gene births, duplications and losses in evolution, which may be of independent biological interest.

Keywords: Ortholog assignment, comparative genomics, multiple genome comparison, genome rearrangement.

1 Introduction

The ever-increasing number of completely sequenced genomes brings great opportunities as well as chal-
lenges to the study of comparative genomics. It makes the study of the evolutionary history of closely
related species at the genome level possible. It also enhances our ability to perform gene functional anal-
yses across different species. For these purposes as well as many other applications, the identification of
orthologous genes across different species often serves as a starting point.

1.1 Definitions

Orthologous genes (i.e., orthologs) are genes in different genomes that evolved from a common ancestral
gene through speciation events [8]. They are more likely to preserve the original gene function. As a
result, orthologs are often used as universal and unique landmarks within each genome as well as links
across different genomes [15].

Orthology between two genomes is usually thought of as a many-to-many relationship due to post-
speciation gene duplications [28]. However, if we know which genes are the direct descendants of the

∗To whom correspondence should be addressed

1



ancestral genes and which are duplicated after the speciation, then we can define a one-to-one orthology
relationship between the two direct descendant genes of each ancestral gene (such a pair of genes are said
to form an ortholog pair), while treating the duplicated genes as inparalogs [22, 24].

When multiple genomes are being compared, the orthology relationship is more complicated because
of the interleaving between speciation and gene duplication events. In this paper, we extend the above
one-to-one orthology relationship between a pair of genomes to multiple genomes in a straightforward way
and define an ortholog group for a given set of genomes as a maximal set of genes (from different genomes)
that are the direct descendants of the same ancestral gene. Note that the genes in such an ortholog group
are not separated by any gene duplication. Hence, this definition, although a bit stringent, is faithful to
the original definition of orthology in [8]. For example, according to this definition, there are 4 ortholog
groups in Figure 1(b): (α4,1, α5,1, α7,1), (α4,2, α5,2), (α4,3), (β6,1, β7,1). We note in passing that other more
general definitions of ortholog groups have been considered in the literature and used in popular orthology
databases such as COG [26] and EnsemblCompara [28]. In these definitions, orthology is considered as
a many-to-many relationship and thus paralogs (i.e., genes that are separated by duplications) are often
allowed in an ortholog group. We prefer treating orthology as a one-to-one relationship because it makes
the presentation of the paper simpler and validation of our results cleaner.

S
1

S
7

S
2

S
3

S
4

S
5

S
6

(a)

α1,1

α2,2    α2,1

α5,2    α5,1α4,3     α4,2    α4,1

α3,1    β3,1

β6,1 α7,1    β7,1

Gene

birth

S2

S5S4 S7S6

S3

S1

Gene

loss

Gene

duplication

Gene

duplication

(b)

1 1 0 1

(c)

1 1 0 0

(d)

1 0 0 0

(e)

0 0 1 1

(f)

1 1 0 1

1

0

1

10

1

0

0

0

(g)

Figure 1: (a) The species tree for four species: S4, S5, S6, S7. (b) An example of genome evolution for the four
species in (a). (c) The TOG for genes α4,1, α5,1, α7,1 in (b). (d) The TOG for genes α4,2, α5,2 in (b). (e) The TOG
for genes α4,3 in (b). Note that, in this paper, we will only be interested in ortholog groups containing at least two
genes, and singleton ortholog groups will be ignored since they consist of only inparalogs from individual genomes.
(f) The TOG for genes β6,1, β7,1 in (b). (g) An example of a TOG labeling. The labeling suggests two ortholog
groups in the TOG, one consisting of two genes from the two leftmost species and the other two genes from the last
three species.

1.2 Existing Ortholog Assignment Tools

Most of the traditional ortholog identification methods are based on sequence similarity search, such as
COG/KOG [26], OrthoMCL [20], InParanoid/MultiParanoid [3, 22] and HomoloGene [29]. Generally
speaking, these methods first calculate some pairwise similarity scores and then use some clustering
algorithms to identify ortholog pairs or groups. Take the InParanoid program for example. It assigns a
gene pair with the bidirectional best hit (i.e., BBH ) as a main ortholog pair and uses it as the “seed” to
cluster similar genes from both genomes into an ortholog group. As its extension to multiple genomes,

2



the MultiParanoid program basically clusters the pairwise orthology results of InParanoid to generate
ortholog groups for multiple genomes. Though the BBH requirement for a main ortholog pair seems to
be reasonable when comparing two genomes, it becomes too stringent when comparing multiple genomes.
As a result, the MultiParanoid program may miss a lot of true ortholog groups when some of the ortholog
pairs are not BBHs. OrthoMCL is an ortholog assignment program similar to InParanoid, but uses a
different clustering algorithm (the Markov Clustering algorithm, or MCL) to find ortholog groups for
multiple genomes. However, it cannot resolve the many-to-many orthology relationship among multiple
genomes effectively. As a result, the ortholog groups found by OrthoMCL may include lots of “recent”
inparalogs from each genome [20].

Another popular method to identify orthologs is based on phylogenetic trees, such as TreeFam [19],
PhyOP [11], and EnsemblCompara GeneTrees [28]. A phylogeny can be used conveniently to represent the
evolution of a gene family. However, tree-based methods generally present orthology as a many-to-many
relationship. Most of them can never tell the “parent-daughter” relationships among duplicated genes
[12]. As a result, most tree-based methods cannot differentiate orthologs that are direct descendants of an
ancestral gene and those inparalogs that are products of recent duplications. Consequently, each ortholog
group found by these methods tends to include lots of lineage-specific duplicated inparalogs.

By taking other information into consideration, such as gene positions and genome rearrangement,
some combinatorial approaches have been proposed in recent years. CCCPart is a synteny-base approach
to find orthologs based on the assumption that isofunctional genes are well preserved both in common
gene neighborhood as well as in sequence similarity between two or more species [4, 6]. However, it is
known that genome rearrangement is very common between closely related genomes [13, 17, 21, 23]. In
fact, there might be many microrearrangments even within the same synteny block [21]. Based on genome
rearrangement, a high-throughput ortholog assignment system called MSOAR [9] has been developed. It
is based on the assumption that orthologs should correspond to each other on the evolutionary path
that minimizes the number of rearrangements and post-speciation duplications. By dealing with tandem
gene duplications explicitly using a phylogenetic approach, an improved system MSOAR 2.0 was recently
reported in [24], which has been shown to outperform the original system MSOAR in terms of prediction
accuracy. However, MSOAR and MSOAR 2.0 can only assign orthologs between two genomes. As an
extension to MSOAR, MultiMSOAR tries to assign orthologs among multiple genomes by using a simple
clustering method based on the pairwise results of MSOAR [10]. However, the MultiMSOAR program
can actually handle only three genomes well. When more genomes are involved, MultiMSOAR may not
find ortholog groups accurately because it does not take into account the phylogenetic relationship among
the genomes. Furthermore, MultiMSOAR only considers those ortholog clusters that do not have gene
losses in any species to be ortholog groups. This constraint might be acceptable for three closely related
species, but it is too stringent when considering more species, since we expect to see many gene births and
losses as well as duplications in the evolutionary history. As a consequence, we should allow gene losses
within an ortholog group and ortholog groups to be composed of genes from a subset of the genomes.

1.3 Current Work

In this paper, we develop a system called MultiMSOAR 2.0 to identify ortholog groups for multiple
genomes. In addition to being an extension of MSOAR 2.0 to multiple genomes, MultiMSOAR 2.0
presents a new combinatorial approach for constructing ortholog groups. Compared with MultiMSOAR,
MultiMSOAR 2.0 allows gene losses within an ortholog group and ortholog groups involving genes only
from a subset of the genomes. It also attempts to minimize the number of gene births, losses and
duplications within a gene family when assigning ortholog groups. Moreover, compared with many other
ortholog assignment tools for multiple genomes, MultiMSOAR 2.0 can provide more information about
genome evolution in terms of gene births, losses as well as duplications.

An outline of MultiMSOAR 2.0 is shown in Figure 2. In short, MultiMSOAR 2.0 constructs gene
families for all the genomes first by using sequence similarity search (i.e., BLASTp) and the clustering
algorithm MCL as done in [24]. Then it applies MSOAR 2.0 to find ortholog pairs between all pairs of

3



Construct gene 

families for the 

input genomes

Apply MSOAR 2.0 to 

identify ortholog pairs 

between each pair of 

the input genomes

Partition all genes 

within a gene 

family into TOGs

Label the internal 

nodes of each 

TOG under the 

parsimony principle

Output ortholog groups 

based on the labeling 

and report gene births, 

losses and duplications

Figure 2: An outline of MultiMSOAR 2.0.

genomes. After that, it builds a weighted multipartite graph using the pairwise orthology information and
sequence similarity between each pair of orthologs and attempts to find a maximum weight matching for
each gene family. Then it partitions each family into a set of disjoint sets of orthologous genes (called super
ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. Each such
SOG may potentially consist of several ortholog groups. In order to partition a SOG into ortholog groups,
MultiMSOAR 2.0 labels the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene
from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs).
MultiMSOAR 2.0 then employs one of the two algorithms devised in this paper (called the NodeCentric
and TreeCentric algorithms) to label the internal nodes of each TOG based on the parsimony principle
and some biological constraints. Ortholog groups can then be trivially identified from each fully labeled
TOG. The details of each of the main steps in Figure 2 are explained in the Methods section. Note that
each ortholog group found by MultiMSOAR 2.0 is contained in some TOG but a TOG may contain several
ortholog groups. An example is shown in Figure 1(g), where the TOG contains two ortholog groups and
the second ortholog group contains a gene loss.

2 Methods

2.1 Homology Search and Gene Family Construction

Since we have multiple genomes, we define a gene family to consist of all homologous genes on all the
genomes under study. As in [9, 24], only protein coding genes will be considered. To cluster all the genes
into gene families, we combine all protein sequences from all genomes together, and perform an all-vs-all
BLASTp homology search [2]. Then we use the popular clustering program MCL [7] to construct gene
families. Similar methods have been used in many other papers [19, 20, 25].

2.2 Pairwise Genome Comparison

Since we try to identify ortholog groups among multiple genomes based on pairwise comparison, the
prediction accuracy of ortholog pairs between two genomes is critical for the performance of our multiple
genome system. MSOAR 2.0 has shown to be the most accurate prediction tool for assigning one-to-one
ortholog pairs between two closely related genomes [24]. So, it is preferable to use the output of MSOAR
2.0 as the input to our current system. For a comparison among S genomes, we apply MSOAR 2.0 to all
pairs of the S genomes, and use the S ∗ (S − 1)/2 pairwise comparison results to define a multipartite for
each gene family to be partitioned in MultiMSOAR 2.0.

2.3 Partition of Each Gene Family into TOGs

In our definition of ortholog groups, each group may include at most one gene from each genome. However,
a gene family may include many homologous genes from each genome (i.e., paralogs), making it necessary
to split the genes in a family into TOGs, such that each TOG contains at most one gene from every
genome. This is done by employing a heuristic maximum weight S-dimensional matching algorithm as
follows. Similar methods have been used in [10, 27].

Suppose we have S genomes, G1, G2, ..., GS , where S ≥ 3. For a given gene family, the number of

4



genes from each genome are denoted as n1, n2, ..., nS . We can construct an S-partite (or S-stage) graph
G with ni (1 ≤ i ≤ S) vertices in the part corresponding to genome Gi (called stage i). We add edges
to G by using the pairwise orthology information produced by MSOAR 2.0. Specifically, we add an edge
between two vertices in G if and only if the corresponding two genes are from two different genomes and
they are assigned as an ortholog pair by MSOAR 2.0. We assign a weight to such an edge, which is the
BLASTp similarity score between the ortholog pair.

Since we would like to obtain a perfect S-dimensional matching with the maximum weight among the
S stages, we need to add some dummy vertices to some of the stages in G to make them all have the
same number of vertices. Let N = max1≤i≤S ni be the maximum number of paralogs on any genome in
the gene family. Then we add N − ni (1 ≤ i ≤ S) dummy vertices to the i-th stage. The maximum
(S-dimensional) matching problem for S-partite graphs (where S ≥ 3) is known to be NP-hard [16], and
N could be large for a real gene family when a large number of genomes are considered. So, we will use
a heuristic optimization approach to find a good matching. Since the maximum weight matching for a
bipartite graph can be computed by the Hungarian algorithm in cubic time [18], we first find a maximum
weight bipartite matching for two stages in G, combine them into one stage, and apply the Hungarian
algorithm iteratively on the remaining stages in G until only one stage is left. This results in a matching
for the original S-partite graph G. This approach is very similar to the method used in MultiMSOAR
[10], except that we use a post-order traversal on the species tree to decide the order that stages are
combined. This way, a stage is always combined with another stage that is close to it on the species tree.
Another difference is that we use the bit score as the weight of an edge in G. If there is no edge between
two vertices in different stages, we deem that there is an edge with weight 0 between them.

An example of the gene family partition is shown in Figure 1, where the figures in (c), (d), (e) represent
3 TOGs for the α gene family while Figure 1(f) represents a single TOG for the β gene family.

2.4 Labeling of TOGs

In order to identify ortholog groups within a TOG, we need to label the internal nodes (which correspond
to ancestral genomes) using binary representations as well. Here, 1 means that the a gene is present in
the corresponding ancestral genome while 0 means absence. Two constraints will be assumed:

1. Intratree constraint : If node u is labeled with a 0 and u has an ancestral node that is labeled with
a 1, then every descendant node of u must be labeled with a 0.

2. Intertree constraint : Suppose that u and v are two nodes such that each of them is labeled with a
1 in at least one TOG. Then every node on the path connecting u and v must be labeled with a 1
in at least one TOG.

The intertree constraint makes sure that no gene is born twice in evolution, which is a commonly
accepted hypothesis in molecular evolution since double gene birth events are extremely rare. The intratree
constraint follows from the definition of orthology (that orthologs evolved through speciation only).

Among all the labelings of the TOGs satisfying the above two constraints, we would like to find one
that minimizes the number of gene births, duplications and losses in the evolution of the family. Since
each edge of a TOG whose nodes are labeled with 01 or 10 represents a gene birth/duplication or a gene
loss, we need to find a parsimonious way to label the internal nodes so that the number of 01 or 10 edges
is minimized. For simplicity, let us call a 01 or 10 change on an edge a flip.

We can now formulate the TOG labeling problem as a combinatorial optimization problem as follows:

TOG Labeling: Given N TOGs, find a binary labeling of all the internal nodes of the TOGs so that
both intratree and intertree constraints are satisfied and the total number of flips is minimized.

The problem can be solved by a trivial exhaustive search algorithm that considers all possible labelings
of the TOGs. However, since a binary tree with S leaves has S − 1 internal nodes, this algorithm runs in
time O(2N ·(S−1)), which is impractical even if N = S = 10. We need to find more efficient solutions to
this problem.

5



Before we proceed with our algorithms, we first prove the following two lemmas, which will help
accelerate the speed of our labeling algorithm.

Lemma 1. If two child nodes are labeled as 1, then in any optimal labeling, their parent node must be
labeled as 1.

Proof. Suppose that in an optimal labeling L, an internal node P is labeled as 0 in some TOG but both
of its children are labeled as 1. If we change the label of P to 1, the two constraints will not be violated,
and there will be two fewer flips on the two edges from P to its two children. Even if this change might
incur a new flip on the edge from P to its parent node, the total number of flips will still be reduced.
This is a contradiction to the assumption that L is an optimal labeling, which completes our proof.

Lemma 2. If two child nodes are labeled as 0, then there is an optimal labeling, where their parent node
is labeled as 0.

Proof. Suppose that an internal node P of some TOG T is labeled as 1 while both of its children are
labeled as 0 in some optimal labeling. If we change the label of P to 0, it is easy to see that the intratree
constraint will not be violated. However, the intertree constraint might be violated if the node P is also
labeled as 0 in all other TOGs. Then, according to Lemma 1, the two child nodes of P cannot be labeled
as 1 at the same time in each of the other TOGs. If each of the two child nodes of P is labeled as 0 in
all other TOGs, then we are safe to change the label of P from 1 to 0 in the TOG T since the change
will not violate the intertree constraint. Otherwise, there is at least one TOG T ′, in which the two child
nodes of P are labeled as 0 and 1, respectively. In this case, we can change the label of P in T ′ to 1. From
the proof of Lemma 1, we know that changing the label of P in T will decrease the number of flips by at
least 1, while changing the label of P in T ′ may increase the number of flips by at most 1. If we change
the labels of node P is TOGs T and T ′ simultaneously, the total number of flips will not increase and
thus the labeling is still optimal. Moreover, such a simultaneous change will keep the intertree constraint
satisfied. This completes the proof of Lemma 2.

The TOG labeling problem is trivial to compute without the intratree and intertree constraints. If we
only consider the intratree constraint, the problem can still be solved by using dynamic programming in
polynomial time. However, the intertree constraint makes the problem much harder. Here, we propose two
different algorithms to solve the TOG labeling problem: the NodeCentric algorithm and the TreeCentric
algorithm. The algorithms are sketched below.

The basic idea behind the NodeCentric algorithm is to label all N TOGs simultaneously by dynamic
programming. In other words, it labels each internal node of the species tree with a binary vector of N
bits. In order to keep track of the validity of the two constraints, we will use label 0′ (when considering
some TOG) to indicate that (i) the current node is labeled as 0 in the TOG and (ii) some descendant of
the current node is labeled as 1 in the TOG. Thus, the label 0 now means that all descendant nodes are
also labeled as 0. The algorithm proceeds in post-order. For each internal node u in the species tree, it
enumerates all possible label vectors at u and for each vector, it computes the minimum number of flips
in the subtree under node u by considering all feasible label vectors of its two children without violating
the two constraints. By Lemmas 1 and 2, we can quickly fix the label of u in a TOG if the labels of its
two children in the same TOG are both fixed as 0 or both fixed as 1.

Since the left and right children can be considered separately, it seems that the above algorithm would
run in O(S · (3N ·3N )) = O(S ·9N ) time, which could be impractical if N is large. However, with a careful
analysis, we find that at most 3 (instead of 9) combinations of the parent-child labels are possible in a
TOG. If the parent label is fixed as 0, then the child label must be fixed as 0 as well. Otherwise, the
parent label could be 0′ or 1. If it is 0′, then the child label could be either fixed as 0 or one of 0′ and 1. If
the parent label is 1, then the child label must be fixed either as 0 or as 1 due to the intratree constraint.
So, in any case, at most 3 combinations of the parent-child labels should be considered in a TOG and
hence, a total number of 3N values need to be computed. The intertree constraint may reduce the number

6



of legal combinations even further. This implies an efficient implementation of the NodeCentric algorithm
with time complexity O(S · 3N ).

While the NodeCentric algorithm goes through each node sequentially, the TreeCentric algorithm goes
through each TOG sequentially. For a subset of fully labeled TOGs on the same species tree, the union
TOG is a fully labeled TOG obtained by taking the Boolean or operation on the labels of each given TOG
at the same node of the species tree. Let us order the TOGs arbitrarily as T1, T2, . . . , TN . For each Ti, the
TreeCentric algorithm enumerates all possible union TOGs covering T1, T2, . . . , Ti−1. For each such union
TOG T i−1, it enumerates all feasible binary labelings of the TOG Ti by taking into account the intratree
constraint. It also records the number of flips in TOG Ti for each such feasible labeling of Ti. This second
enumeration process can be done efficiently by dynamic programming. Then it computes and records the
minimum number of flips in the TOGs T1, T2, . . . , Ti for each union TOG T i covering T1, T2, . . . , Ti, by
taking advantage of the previously recorded minimum number of flips in T1, T2, . . . , Ti−1 for each union
TOG T i−1. Finally, the minimum number of flips in all TOGs T1, T2, . . . , TN is obtained by considering
all possible union TOGs covering T1, T2, . . . , TN and taking into account the intertree constraint. Since
the number of different union TOGs is 2S−1, the above algorithm runs in O(N · 4S−1) time.

Both the NodeCentric and TreeCentric algorithms are exponential time algorithms. However, in
practice, the number of genomes in comparison is expected to be small (usually S ≤ 15). So we can use
the TreeCentric algorithm to find an optimal TOG labeling efficiently. When the value of N is smaller, it
is faster to apply the NodeCentric algorithm. Note that, the two algorithms may find different labelings
for the same input, both of which are optimal.

2.5 Ortholog Group Identification

After labeling all TOGs, it is straightforward to identify ortholog groups. Starting from the root of each
TOG, we can find the highest ancestral nodes labeled as 1. All genes at the descendent leaves of such
an ancestral node form an ortholog group. An example is shown in Figure 1(g). In addition, with the
labeling of each TOG, we can easily identify evolutionary events including gene births and losses as well
as duplications. For each edge in the TOG, if the parent-child labeling is 1-0, then there is a gene loss. If
the labeling is 0-1, and the parent node is labeled as 0 in all other TOGs, then it represents a gene birth.
Otherwise, it represents a gene duplication.

3 Experiments and Results

In order to test the performance of our system MultiMSOAR 2.0, we first apply it to simulated data, and
compare it with the popular ortholog assignment tool MultiParanoid [1] for multiple genomes. For real
data experiments, besides comparison with MultiParanoid, we also compare our results with Roundup
[5], which is a well known multi-genome repository of orthology information.

3.1 Simulation Results

Our simulation test is an extension of the one in [24] for testing the performance of MSOAR 2.0. However,
we now need to simulate more genome evolutionary events, including gene mutations, gene births, gene
duplications, gene losses, genome rearrangements (including reversals, translocations, fusions and fissions)
and speciations. To make things easier, we only simulate the evolution of S (S ≤ 15) single-chromosomal
genomes as done in [24]. In order to generate S contemporary genomes, we first generate a random species
tree T with S leaf nodes. Each internal node in T represents an ancestral genome while the leaf nodes
represent the current genomes. Each edge in T represents a speciation event. We then randomly generate
a genome with 100 genes consisting of 3,000 nucleotides each at the root of T . For each speciation event,
we simulate E evolutionary events, which include α gene duplications, β gene births, γ gene losses, and
(1− α− β − γ) genome rearrangements. To generate the gene duplications, we randomly choose a gene,
copy it and insert it into the genome next to the original copy or at a random position, depending on

7



whether the duplication is tandem or random (here we assume 50% of all duplications are tandem, as
done in [24]). To simulate the birth of a new gene, we create a new gene and randomly insert it into the
genome. To simulate the loss of a gene, we randomly choose a gene and delete it from the genome. For
genome rearrangements, since there is only one chromosome, only reversals are considered. Reversals are
simulated by randomly choosing two positions on the genome and reverse all the genes between them. To
simulate gene (point) mutations, we set a gene mutation rate µ to allow all the genes on all the existing
genomes to have µ mutations between every two evolutionary events. In other words, a molecular clock
is assumed. In summary, our simulation data is controlled by a 6-parameter set: (S,E, µ, α, β, γ), where
S is the number of species, E the total number of evolutionary events after each speciation, µ the gene
mutation rate, and α, β, γ the percentages of gene duplications, births and losses among the E events,
respectively.

To study the effects of different parameters on the performance of MultiMSOAR 2.0, we set the default
values for each parameter as S = 5, E = 10, µ = 0.5%, α = 40%, β = 10%, γ = 10%, and we will vary one
parameter at a time. To measure the prediction accuracy, we use two popular measurements: sensitivity
and specificity. Here, sensitivity is defined as the number of the true ortholog groups (i.e., true positives)
identified by a program divided by the total number of known ortholog groups, and specificity is defined
as the number of true ortholog groups identified divided by the number of ortholog groups output. We
compare the ortholog groups found by MultiMSOAR 2.0 and MultiParanoid. In order for an identified
ortholog group to be a true positive (i.e., TP), we require that all genes in the identified ortholog group
match exactly with all the genes in a known ortholog group. For each parameter set, we generate 10
simulated data sets and run MultiMSOAR 2.0 and MultiParanoid on these data respectively. Finally we
calculate the average prediction accuracies of the two programs on each parameter set. The prediction
accuracies of the two programs are shown in Figures 3.

4 6 8 10

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Species

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

MultiParanoid Sensitivity
MultiParanoid Specificity
MultiMSOAR 2.0 Sensitivity
MultiMSOAR 2.0 Specificity

(a)

5 10 15 20

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Evolutionary Events

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

MultiParanoid Sensitivity
MultiParanoid Specificity
MultiMSOAR 2.0 Sensitivity
MultiMSOAR 2.0 Specificity

(b)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.
5

0.
6

0.
7

0.
8

0.
9

Gene Mutation Rate

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

MultiParanoid Sensitivity
MultiParanoid Specificity
MultiMSOAR 2.0 Sensitivity
MultiMSOAR 2.0 Specificity

(c)

0.2 0.3 0.4 0.5 0.6

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Percentage of Gene Duplication Events

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

MultiParanoid Sensitivity
MultiParanoid Specificity
MultiMSOAR 2.0 Sensitivity
MultiMSOAR 2.0 Specificity

(d)

Figure 3: Comparison of MultiMSOAR 2.0 and MultiParanoid on simulated data. (a) Simulation results on the
parameter set (∗, 10, 0.5%, 40%) where the parameter S is varied. (b) Simulation results on the parameter set
(5, ∗, 0.5%, 40%) where the parameter E is varied. (c) Simulation results on the parameter set (5, 10, ∗, 40%) where
the parameter µ is varied. (d) Simulation results on the parameter set (5, 10, 0.5%, ∗) where the parameter α is
varied.

Figures 3(a), (b), (d) show that with the increase of the number of species, the number of evolutionary
events, and the number of gene duplications, the prediction accuracies of both programs decrease since
it becomes harder for them to correctly identify ortholog groups. However, we notice that the decrease
in accuracy for MultiMSOAR 2.0 is mild while the decrease is sharp for MultiParanoid, especially in
Figure 3(d). This could be because when more genes are duplicated, it becomes increasingly difficult for
MultiParanoid to decide if a duplication happened in an ancient genome or in a more recent genome.
Thus, it might confuse some ancient duplications with recent duplications and miss calling some true
ortholog groups. On the other hand, MultiMSOAR 2.0 infers the time of each duplication explicitly when
labeling TOGs, and is thus more resilient to the increase of gene duplication events. However, since the
labeling algorithm used in MultiMSOAR 2.0 is based on the parsimony principle and the optimal labeling
might not be unique, the actual labeling given by MultiMSOAR 2.0 may not necessarily reflect the true
evolutionary history. As a result, when the number of gene duplications increases, the prediction accuracy

8



of MultiMSOAR 2.0 also decreases, but much more slowly than in the case of MultiParanoid.
Figure 3(c) is very interesting. With the increase of gene mutation rate µ from 0.2% to 1%, the

sensitivities of both programs and the specificity of MultiMSOAR 2.0 increase a little bit. This is because
when µ increases, it becomes slightly easier for both programs to differentiate duplicated genes from
their original copies based on sequence similarity. However, when µ goes from 1% to 3%, the prediction
accuracies of both programs sharply decrease. This is because the sequence similarity between homologous
genes originated from a common ancestral gene becomes weaker with the increase of µ. As a result, it
becomes harder for MultiParanoid to identify ortholog groups solely based on sequence similarity, and for
the MCL algorithm used in MultiMSOAR 2.0 to correctly cluster homologous genes into a gene family.
Without correct gene families, we cannot expect MultiMSOAR 2.0 to find the ortholog groups correctly.

Generally speaking, from the four figures above, we can see that the prediction accuracy of Mul-
tiMSOAR 2.0 is significantly higher than that of MultiParanoid. With more species, more evolutionary
events and more gene duplications, the advantage of MultiMSOAR 2.0 over MultiParanoid becomes more
apparent. Besides, in the simulation, MultiMSOAR 2.0 is always able to achieve at least 80% prediction
accuracy (in terms of sensitivity and specificity) as long as the gene mutation rate is not too high. This
is pretty remarkable considering the large number of species and evolutionary events involved. Moreover,
MultiMSOAR 2.0 can provide much more information about gene births, losses and duplications in ad-
dition to identifying ortholog groups. In the simulation tests, MultiMSOAR 2.0 is able to predict gene
birth, loss and duplication events with an accuracy more than 60% in general. Due to the page limit, the
prediction accuracies of these events by MultiMSOAR 2.0 on simulated data are shown in the Appendix.

3.2 Real Data Experiments

Since MultiMSOAR 2.0 is a tool to identify ortholog groups for multiple genomes that are closely related
on a genome scale, to test its performance on real data, we choose to use the mammalian genomes that have
been completely sequenced. We downloaded seven mammalian genomes from the Ensembl genome browser
(http://www.ensembl.org/): human (Homo sapiens), chimpanzee (Pan troglodytes), macaque (Macaca
mulatta), mouse (Mus musculus), rat (Rattus norvegicus), cow (Bos taurus) and opossum (Monodelphis
domestica) (version 57, March 2010). The species tree for the seven mammalian genomes is downloaded
from Ensembl as well.

For the purpose of comparison, we choose to compare the results of MultiMSOAR 2.0 with those of
the popular tool MultiParanoid and ortholog database Roundup. For MultiParanoid, we deem all the
genes in the same cluster output by the program as an ortholog group assigned by MultiParanoid. We
run MultiMSOAR 2.0 and MultiParanoid on the real data sets respectively and compare their results.
Roundup is a recently developed multi-genome repository of orthologs for over 250 genomes [5]. We down-
load the ortholog groups for the concerned genomes from its website (http://roundup.hms.harvard.edu/).
Since Roundup uses genomes from different sources, we need to map the genes used in Roundup to the
corresponding genes used in Ensembl.

Some other tools and databases are also available for ortholog assignment among multiple genomes,
such as the OrthoFocus program, and the Ensembl ortholog database. However, OrthoFocus is a program
to identify orthologs in family-focused studies and it is inapplicable to genome-scale comparisons [14].
We tried to compare our results with the well known Ensembl ortholog database [28]. However, we found
the comparison inappropriate. First of all, Ensembl requires the user to specify a “center” genome based
on which a multi-genome orthology information will be retrieved. As a result, the orthology information
provided by Ensembl might miss many ortholog groups that do not involve the center genome. Second,
it only supports queries of orthology information for up to 5 species, which is quite limited compared to
the large number of completely sequenced genomes. Third, it generally presents orthology as a many-
to-many relationship and when more genomes are being compared, it uses a single-linkage method to
combine ortholog groups. Thus, an ortholog group defined by Ensembl may include many paralogous
genes from each genome. Since we define orthology as a one-to-one relationship, it would be difficult for
us to fairly compare the results of MultiMSOAR 2.0 with those in the Ensembl ortholog database.

9



3.2.1 Results on Human, Mouse and Rat

Since human, mouse and rat are the best annotated genomes, we can use gene symbols to validate the
ortholog groups assigned among the three genomes by different programs. The same validation method
has been used in many other papers [9, 10, 24]. By using gene symbols, we can define true ortholog
groups (TPs), false ortholog groups (FPs), and unknown ortholog groups as follows. If an ortholog group
contains genes that have different gene symbols, then this group is counted as an FP. If at most one of
the genes in the group have gene symbols, then this group is counted as an unknown. Otherwise, we treat
the group as a TP. An ortholog group is defined as assignable if its genes appear in at least two genomes
and have exactly the same gene symbol. We use the same measurements sensitivity and specificity as
defined in the simulation to measure the prediction accuracies of the three programs. The performance
of the programs is shown in Table 1.

Table 1: Performance of the three programs on human, mouse and rat.
Program Assignable TPs TPs FPs Unknowns Total Sensitivity Specificity
MultiMSOAR 2.0 15,598 14,051 2,399 2,919 19,369 90.08% 85.42%
MultiParanoid 15,598 13,697 2,609 2,328 18,634 87.81% 84.00%
Roundup 14,616 10,094 2,424 6,790 19,308 69.06% 80.66%

The low sensitivity of Roundup in Table 1 may be caused by the mapping of gene IDs from Roundup
to Ensembl since quite a few of the genes in Roundup were mapped to the unknowns in Ensembl. Nev-
ertheless, we can see that MultiMSOAR 2.0 achieves the best sensitivity and specificity among all three
programs. This is mainly because MultiParanoid only considers sequence similarity when assigning or-
tholog groups. Though Roundup is based on the reciprocal smallest distance algorithm, which is different
from the reciprocal BLAST hits used in MultiParanoid, it fails to consider other information as well. In
contrast, MultiMSOAR 2.0 combines gene order with sequence similarity and thus is able to make more
accurate predictions.

3.2.2 Results on All Seven Mammalian Genomes

When comparing the seven mammalian genomes including human, chimpanzee, macaque, mouse, rat,
cow, and opossum, we cannot validate the ortholog groups predicted by the three programs using gene
symbols since not all of the genomes have been annotated with gene symbols. So, we only consider the
common and different ortholog groups assigned by MultiMSOAR 2.0, MultiParanoid and Roundup. The
comparison results are shown in Table 2.

Table 2: Ortholog groups shared by the three programs on the seven mammalian genomes.
Programs 7 genomes 6 genomes 5 genomes 4 genomes 3 genomes 2 genomes

MultiMSOAR 2.0 12,034 3,772 1,337 584 875 3,195
MultiParanoid 11,397 3,311 1,127 609 800 2,728
Roundup 4,294 5,574 3,965 2,098 1,475 2,720
MultiMSOAR 2.0 and MultiParanoid 9,075 2,237 633 239 348 1,483
MultiMSOAR 2.0 and Roundup 3,122 610 120 49 96 353
MultiParanoid and Roundup 2,676 532 127 80 121 429
All three programs 2,614 464 103 35 68 254

Table 2 shows the numbers of ortholog groups involving 2 to 7 genomes that were identified by the
three programs. From Table 2, we can see that the numbers of ortholog groups found by MultiMSOAR
2.0 and MultiParanoid are close to each other for each number of genomes involved while they differ
a lot from those of Roundup. Again, this might be caused by the mapping from the data used in
Roundup repository to the data used in Ensembl. Nevertheless, MultiMSOAR 2.0 identified the most
number of ortholog groups involving all seven genomes, and it shares 9,075 common ortholog groups

10



with MultiParanoid, which provides an indirect support of the ortholog groups found by MultiMSOAR
2.0. Moreover, we find that the closer the genomes contained in an ortholog group are in the species
tree, the more likely it is shared between MultiMSOAR 2.0 and MultiParanoid (actual data not shown).
The large number of ortholog groups involving all seven genomes found by both MultiMSOAR 2.0 and
MultiParanoid is a manifest of the evolutionary closeness of the seven mammalian species. The number of
ortholog groups involving 4 genomes found by both programs is pretty small here, since there is no subtree
in the species tree consisting of exactly four species. Hence, an ortholog group of size four would have to
involve gene losses. Since there is only one subtree consisting of three species (i.e., human, chimpanzee,
and macaque), most of the 875 ortholog groups of size 3 found by MultiMSOAR 2.0 (679, or about 77.6%)
consist of genes from the three species. Similarly, 1,772/3,195 (55.46%) and 1,083/3,195 (32.49%) of the
ortholog groups of size two consist of genes from mouse-rat and human-chimpanzee respectively, both of
which are the closest pairs in the species tree.

4 Conclusion and Discussion

In this paper, we have extended the pairwise ortholog assignment system MSOAR 2.0 to a multi-genome
ortholog assignment system MultiMSOAR 2.0. By comparing with the well known multi-genome ortholog
assignment tool MultiParanoid on simulated data, we demonstrated that MultiMSOAR 2.0 achieves a
significantly higher prediction accuracy. Our real data experiments on seven closely related mammalian
genomes also show the superior performance of MultiMSOAR 2.0 over MultiParanoid and the multi-
genome ortholog repository Roundup. Moreover, not only can MultiMSOAR 2.0 identify ortholog groups
accurately, it can also provide accurate information about gene births, losses and duplications, which may
shed additional insight on genome evolution.

5 Acknowledgements

We would like to thank Liqing Zhang for many constructive discussions. This work was supported in part
by National Science Foundation grant IIS-0711129.

References

[1] A. Alexeyenko, I. Tamas, G. Liu, and E. L. L. Sonnhammer. Automatic clustering of orthologs and inparalogs
shared by multiple proteomes. Bioinformatics, 22(14):e9–15, July 2006.

[2] S. F. Altschul, W. Gish, W. Miller, et al. Basic local alignment search tool. Journal of Molecular Biology,
215(3):403–410, October 1990.

[3] A. C. Berglund, E. Sjölund, et al. InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids
Research, 36(Database issue), January 2008.

[4] F. Boyer, A. Morgat, L. Labarre, et al. Syntons, metabolons and interactons: an exact graph-theoretical
approach for exploring neighbourhood between genomic and functional data. Bioinformatics, 21(23):4209–
4215, 2005.

[5] T. F. DeLuca, I. Wu, J. Pu, et al. Roundup: a multi-genome repository of orthologs and evolutionary distances.
Bioinformatics, 22(16):2044–2046, August 2006.

[6] Y. P. Deniélou, F. Boyer, M. F. Sagot, and A. Viari. Recovering isofunctional genes: a synteny-based approach.
Actes des Journée Ouvertes de Biologie, Informatique et Mathématiques, 2008.

[7] A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale detection of protein
families. Nucleic Acids Research, 30(7):1575–1584, 2002.

[8] W. M. Fitch. Distinguishing homologous from analogous proteins. Syst Zool, 19(2):99–113, June 1970.

11



[9] Z. Fu, X. Chen, V. Vacic, et al. MSOAR: A high-throughput ortholog assignment system based on genome
rearrangement. Journal of Computational Biology, 14(9):1160–1175, 2007.

[10] Z. Fu and T. Jiang. Clustering of main orthologs for multiple genomes. Journal of Bioinformatics and
Computational Biology, 6(3):573–584, 2008.

[11] L. Goodstadt and C. P. Ponting. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny
for dog and human. PLoS Comput Biol, 2(9):e133, 09 2006.

[12] M. V. Han and M. W. Hahn. Identifying parent-daughter relationships among duplicated genes. Pacific
Symposium on Biocomputing, pages 114–125, 2009.

[13] S. Hannenhalli and P. Pevzner. Transforming men into mice (polynomial algorithm for genomic distance
problem). In FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS’95), Washington, DC, USA, 1995. IEEE Computer Society.

[14] A. E. Ivliev and M. G. Sergeeva. OrthoFocus: program for identification of orthologs in multiple genomes in
family-focused studies. Journal of Bioinformatics and Computational Biology, 6(4):811–824, August 2008.

[15] Z. Jiang, J. Michal, J. Melville, and H. Baltzer. Multi-alignment of orthologous genome regions in five species
provides new insights into the evolutionary make-up of mammalian genomes. Chromosome Research, 13(7):707–
715, 2005.

[16] V. Kann. Maximum bounded 3-dimensional matching is max snp-complete. Inf. Process. Lett., 37(1):27–35,
1991.

[17] W. J. Kent, R. Baertsch, et al. Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse
and human genomes. Proceedings of the National Academy of Sciences of the United States of America,
100(20):11484–11489, 2003.

[18] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics, 52(1):7–21, 2005.

[19] H. Li, A. Coghlan, J. Ruan, et al. TreeFam: a curated database of phylogenetic trees of animal gene families.
Nucleic Acids Research, 34(suppl-1):D572–580, 2006.

[20] L. Li, C. J. Stoeckert, and D. S. Roos. OrthoMCL: Identification of ortholog groups for eukaryotic genomes.
Genome Research, 13(9):2178–2189, 2003.

[21] P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: Lessons from human and mouse
genomes. Genome Research, 13(1):37–45, 2003.

[22] M. Remm, C. E. Storm, and E. L. Sonnhammer. Automatic clustering of orthologs and in-paralogs from
pairwise species comparisons. Journal of Molecular Biology, 314(5):1041–1052, 2001.

[23] M. Semon and K. H. Wolfe. Rearrangement rate following the whole-genome duplication in teleosts. Molecular
Biology and Evolution, 24(3):860–867, 2007.

[24] G. Shi, L. Zhang, and T. Jiang. MSOAR 2.0: Incorporating tandem duplications into ortholog assignment
based on genome rearrangement. BMC Bioinformatics, 11(1):10, January 2010.

[25] V. Shoja and L. Zhang. A roadmap of tandemly arrayed genes in the genomes of human, mouse, and rat.
Molecular Biology and Evolution, 23(11):2134–2141, 2006.

[26] R. L. Tatusov, D. A. Natale, et al. The COG database: new developments in phylogenetic classification of
proteins from complete genomes. Nucleic Acids Research, 29(1):22–28, 2001.

[27] A. Vashist, C. A. Kulikowski, and I. Muchnik. Ortholog clustering on a multipartite graph. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 4(1):17–27, 2007.

[28] A. J. Vilella, J. Severin, et al. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees
in vertebrates. Genome Research, 19(2):327–335, 2009.

[29] D. L. Wheeler, T. Barrett, et al. Database resources of the National Center for Biotechnology Information.
Nucleic Acids Research, 34(suppl-1):D173–180, 2006.

12



Appendix

Prediction Accuracy of MultiMSOAR 2.0 on Gene Births, Losses and Duplications
on Simulated Data

Table 3: Prediction accuracy when the parameter S (the number of species) is varied.
S 3 5 7 9 11
GeneBirth Sensitivity 100.0% 97.50% 94.44% 97.50% 88.00%
GeneBirth Specificity 64.19% 77.41% 84.00% 86.81% 90.56%
GeneDuplication Sensitivity 76.25% 76.25% 75.69% 77.19% 62.38%
GeneDuplication Specificity 82.40% 84.36% 80.28% 80.01% 78.28%
GeneLoss Sensitivity 50.00% 63.21% 64.77% 71.08% 82.09%
GeneLoss Specificity 67.33% 72.81% 73.02% 86.03% 45.97%

Table 4: Prediction accuracy when the parameter E (the number of evolutionary events) is varied.
E 5 10 15 20
GeneBirth Sensitivity 100.0% 97.50% 98.75% 96.88%
GeneBirth Specificity 79.25% 77.41% 79.88% 75.00%
GeneDuplication Sensitivity 80.00% 76.25% 69.58% 65.31%
GeneDuplication Specificity 87.51% 84.36% 77.19% 76.58%
GeneLoss Sensitivity 76.67% 63.21% 53.21% 55.20%
GeneLoss Specificity 79.00% 72.81% 56.94% 73.00%

Table 5: Prediction accuracy when the parameter µ (gene mutation rate) is varied.
µ 0.2% 0.5% 1% 1.5% 3%
GeneBirth Sensitivity 95.00% 97.50% 100.0% 97.50% 97.92%
GeneBirth Specificity 75.71% 77.41% 79.43% 63.97% 51.05%
GeneDuplication Sensitivity 69.69% 76.25% 78.75% 75.31% 77.60%
GeneDuplication Specificity 81.48% 84.36% 85.47% 83.27% 90.78%
GeneLoss Sensitivity 65.00% 63.21% 63.75% 62.68% 54.76%
GeneLoss Specificity 73.59% 72.81% 75.40% 70.12% 85.12%

Table 6: Prediction accuracy when the parameter α (the ratio of duplication events) is varied.
α 20% 30% 40% 50% 60%
GeneBirth Sensitivity 98.75% 98.44% 97.50% 100.0% 100.0%
GeneBirth Specificity 78.43% 79.02% 77.41% 81.94% 78.26%
GeneDuplication Sensitivity 71.25% 78.13% 76.25% 75.75% 70.00%
GeneDuplication Specificity 78.18% 83.00% 84.36% 82.32% 80.36%
GeneLoss Sensitivity 68.39% 63.61% 63.21% 60.71% 56.07%
GeneLoss Specificity 84.88% 85.45% 72.81% 69.02% 62.32%

13


