
Lightweight Coordinated Sampling for Dynamic
Flows under Budget Constraints

Mingming Chen, Thomas La Porta
Computer Science and Engineering Department

Penn State University, University Park
University Park, PA, 16802 emails: {mzc796,tfl12}@psu.edu

Trent Jaeger, Srikanth Krishnamurthy
Computer Science and Engineering Department

Unversity of California, Riverside
Riverside, CA, 92521 emails:trentj@ucr.edu,krish@cs.ucr.edu

Abstract—As cyber-attacks on networks become more stealthy,
monitoring techniques relying on low-rate packet sampling may
prove insufficient to detect attacks. While various sampling
methods have been proposed to address capacity limitations and
enhance detection rates, achieving sampling at line speed at a sin-
gle point remains challenging due to limited CPU or bandwidth
capacity at sampling points. In this paper, we propose harnessing
coordinating sampling across switches to create a unified system
that can dynamically activate sampling points to meet sampling
rate needs. We introduce and implement a coordinated sampling
algorithm on multiple P4-programmable switches and show that
the algorithm ensures coordination among multiple sampling
points for each flow, preventing duplicate samples, with negligible
network overhead and real-time configurability. We formulate
sampling point placement as budgeted maximum multi-coverage
problems, solving them optimally in pseudo-polynomial time.
We show our system far outperforms those based on greedy
algorithms along many key dimensions.

Index Terms—P4-programmable switch, coordinated sampling,
budgeted maximum multi-coverage, balanced matrix

I. INTRODUCTION

Traffic sampling is an important technique used for net-
work monitoring for both network management and security
purposes. Due to limitations in processing capacity and band-
width, switches cannot typically forward every packet to a
monitor. As a result, sampling is implemented, where specific
packets are selected and forwarded to a monitor for analysis.
People strive to maximize the monitoring gain within limited
sampling capacity [15], [30].

Regardless of the techniques used to sample at switches,
sampling flows at line rate under heavy traffic load may not
be achievable with a single sampling point. When either entire
packets or portions of packets are sent from the sampling point
to the monitor, port capacity on switches may be violated [11]
even if programmable ASICS are used to sample the packets.

However, lowering sampling rates to accommodate switch
limitations introduces the risk of allowing low and slow attacks

This research was sponsored by the U.S. Army Combat Capabilities
Development Command Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory of the U.S. government. The U.S.
government is authorized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation here on.

Fig. 1: Testbed Topology
to go undetected. For example, a low-and-slow attack initiated
by Slowloris running on a single VM can cause a 24% increase
on the Web server’s memory with less than a 40kbps increase
on the network traffic [29]. The unpredictable dynamics of
network flows require the sampling points, sampling rate, and
sampling strategy to change with it. Our system provides
coordinated sampling, smart sampling point placement, and
dynamic sampling point configuration to meet this need.

Unlike existing works which focus on single point sampling
optimization [15], [30], we develop and implement an efficient
algorithm to achieve high-rate line-speed flow-based sampling
using multiple P4-programmable switches along the paths that
are coordinated to extract samples. P4 is a domain-specific lan-
guage for programming packet processing pipelines in network
devices [9]. We chose P4-programmable switches because the
sampling can be programmed on the P4-programmable ASIC
without CPU constraints and the programs can be installed
in real-time. Consequently, the functionality of sampling and
forwarding samples can be tuned in real-time.

Given the substantial cost difference between P4-
programmable switches and OpenFlow switches (a factor of
up to 10 [1]), an objective of our work is to strategically place
a budgeted number of programmable switches as potential
sampling points in a network. The goal is to maximize the
average number of flows that can be sampled at a sufficient
rate, perhaps by activating multiple sampling points to share
the load. To address the placement problem, we formulate bud-
geted maximum (multi-) coverage problems. We show these
NP-complete Integer Linear Programming (ILP) problems are
optimally solvable in pseudo-polynomial time by leveraging
the balanced matrix property.

A. System Overview
A high-level view of our system is shown in Fig. 1. Hosts

are connected through a network containing at least some P4-
programmable switches, which can sample packets on a per-
flow basis and send them to one of many monitors for analysis.

Fig. 2: Coordinated Sampling Workflow on TNA Pipeline
If the SDN controller detects that a sampling point becomes
overloaded and can only sample some flows with a fraction
of the desired rate, it reallocates sampling responsibilities,
perhaps splitting sampling among multiple sampling points.
Our coordinated sampling algorithm executes on the sampling
points and guarantees there are no duplicate samples.

We aim to strategically deploy a budgeted number of P4-
programmable switches to maximize the number of flows that
can be sampled at the required rate considering that some flows
may be sampled at multiple points. This requires solving three
problems: (1) coordinating per-flow sampling when multiple
points are sampling the same flow, (2) placing the budgeted
number of programmable switches to maximize the number of
flows that have sufficient coverage to handle sampling load,
and (3) dynamically assigning flows to sampling points.

We operate under the assumption that we have knowledge
of potential flow paths due to traffic history, and paths can
be enumerated using standard routing policies and realistic
network topologies. This assumption holds true for enterprise
networks and SD-WANs [20], especially when employing
popular routing protocols that result in path stability [10].

In this paper, we make the following contributions:

• We introduce and implement ”coord sampling” to effi-
ciently coordinate flow-based sampling at multiple net-
work points without communication overhead. We show
it incurs negligible performance overhead and can be
activated within 0.05 seconds.

• We formulate a budgeted maximum (multi-)coverage
problems for sampling point placement, and show that
the optimal solutions for this NP-complete problem can
be achieved in pseudo-polynomial time in our scenario
using balanced matrix properties on real topologies. The
optimal solution outperforms the greedy method by up to
90% with a comparable runtime of 10−1 to 10−2 seconds
on realistic topologies.

• We show that the set of sampling points placed in our
evaluated networks using our budgeted optimal algorithm
provide the capacity to sufficiently sample flows under
heavy loads by coordinating sampling whereas the sam-
pling points placed by the greedy algorithm under the
same budget does not.

II. DESIGN OF THE COORDINATED SAMPLING

The goal of the coordinated sampling algorithm is to dis-
tribute the sampling load for individual flows across multiple
sampling points, so sampling can be done at the required rate.
The coordinated sampling system aims to (1) prevent dupli-
cated samples from the same flow across different sampling
points and (2) ensure that samples from the same flow across
different sampling points can be collected and sorted by the
monitor. We introduce a method for achieving coordinated
sampling among sampling points with minimal overhead. We
begin with an overview of our coordinated sampling algorithm
and the underlying switch architecture. Subsequently, we delve
into the algorithm’s details and implementation.

A. Coordinated Sampling Overview

Our coordinated sampling algorithm operates on the Tofino
Native Architecture (TNA) shown in Fig. 2. TNA consists of
two programmable sections: the Ingress and Egress Pipelines,
each comprising a parser, match-action pipeline, and deparser.
The parser stage dissects packets into distinct fields. In the
match-action pipeline, packets are matched and actions are
executed as per the algorithm. This pipeline houses the primary
components of the coordinated sampling algorithm. Parsed
packets are reconstructed at the deparser stage. In the Ingress
deparser, packets proceed to the Egress pipeline for further
handling. In the Egress deparser, packets are either forwarded
to the next hop or discarded based on configured actions.

Our design incorporates four Match-Action tables: the Sam-
pling Table determines whether a packet should be sampled.
The Forwarding Table forwards flows’ packets normally. The
Mirroring Table determines the samples’ output port to the
monitor. The Untagging Table removes the tag from sampled
packets at the network edge.

B. Coordinated Sampling Algorithm

The coord sampling algorithm (Algorithm 1) is imple-
mented on the TNA architecture in Fig. 2. The P4 code
is available on GitHub [2]. Upon entering the pipeline, the
Sampling Table tables evaluates the packet first. If there is no
match in tables, it proceeds to the Forwarding Table tablef for
standard forwarding processing. Conversely, if a match occurs,
the packet is directed to the coord sampling algorithm.

Algorithm 1 Coord Sampling on P4-programmable Switches

Input: pkti: Recent packet of flow fi;
tables: Ingress flow table for sampling some flows;
counteri: Stateful counter of flow fi, initial value is 0;
intervali: Sampling interval for flow fi;
idrdi : Stateful round id number, initial value is 0;
mi: Mirroring session id of flow fi.

Output: is out, idrdi .
Function coord sampling:

(idsai , pktparsedi) = parse(pkti);
(is hit, intervali, counteri,mi) = read(pktparsedi , tables);
if is hit then

if idsai is NULL then
counteri = counteri + 1;
if counteri mod intervali==1 then

tag sampled(pkti, idrd);
idrdi = idrdi + 1;
pktmirrored

i =mirror(pkti,mi);
output(pktmirrored

i , portmonitor);
end

else
counteri = 0;
idrdi = idsai ;

end
end

To achieve Goal (1), our algorithm relies on two parameters:
counteri tracks packets of flow fi, while intervali stores the
dynamically configured sampling interval value (the reciprocal
of the sampling fraction) of flow fi. In a traditional flow-
based single-point sampling setup, a switch samples a packet
when condition (A) (counteri mod intervali == 1) is met.
However, this condition alone is insufficient for coordinating
sampling across multiple points to avoid duplication, espe-
cially considering packet dropping or swapping. To address
this, we tag sampled packets to inform downstream switches
not to sample them. Thus, a P4-programmable switch samples
a packet only when conditions (A) and (B) (the packet is not
tagged) are both met. If condition (B) is not met, we reset
counteri to prevent potential overlapped sampling.

To achieve Goal (2), switches track the number of rounds
of sampling, idsai , and report that to the monitors by putting
the idsai value in sampled packet headers, where a round
is completed when a sampling switch has seen an interval
number of packets on the flow. As shown in Algorithm 1, each
switch tracks the number of rounds performed in the variable
idrdi for flow fi. When a switch finds that it should sample
a packet pkt, it samples pkt and tags pkt’s “Options” header
field with idsai = idrdi . idrdi is then incremented on switch to
prepare for its next round. Monitors that know topology (i.e.,
the order of sampling switches for a flow) can order packets
from sampling switches in each round for each flow.

To maintain the correct round order across switches when
packet dropping/swapping happens between sampling points,
we adjust counteri and idrdi whenever a sampled packet pktsa

is seen. Specifically, the switch’s counteri is reset, and flow

fi’s round id idrdi is synchronized with upstream switch by
setting idrdi = idsai where idsai is the sampled id of pktsa.

The monitor arranges sampled packets of fi from multiple
switches by gathering packets in ascending order with the
same idsai tag along the path of fi, moving from upstream to
downstream points. The detailed steps of Algorithm 1 focus
on switch sw’s sampling decisions and tagging. When packet
pkti hits a match in tables, we verify the existence of idsai :

• If it does not exist, sw increases counteri and checks the
indicator value of counteri mod intervali:
– If equals 1, sw tags pkti’s idsai with its current idrdi ,

increases its idrdi , mirrors pkti, sends pktmirrored
i to

the monitor, and forwards pkti normally;
– Otherwise, sw forwards pkti normally.

• Otherwise (pkti has been sampled with a tag idsai), sw
resets counteri and synchronizes its round id idrdi with
the upstream switch’s round id by setting its value as
pkti’s value idsai , and forwards pkti normally.

Our coord sampling algorithm is computationally efficient
with a complexity of O(k) (where k is a constant) within
an if-else pipeline. Moreover, the mirroring process incurs no
CPU cost on the programmable ASIC but only entails memory
costs for configuration. The algorithm is also memory-efficient
for the following reasons: Each flow fi requires variables
counteri, intervali, idrdi , and mi to configure its sampling
task, akin to a flow entry. The bit length of mi increases
sublinearly with the number of sampled flows. 1-byte idrdi is
enough to avoid round id confusion caused by idrdi overflow
1. The bit length of intervali is inherently short to facilitate
frequent sampling. Notably, the value of counteri does not
continually increase to track the absolute number of packets;
instead, it is reset whenever counter == interval or meets a
tagged packet, keeping its bit length as short as intervali’s.

Our design is robust, with minimal communication and time
costs. It ensures sampling coordination and prevents misorder
propagation even with packet dropping or sequence swap-
ping during transmission. Importantly, it eliminates the need
for extra communications among P4-programmable switches
or between the SDN controller and switches. Additionally,
our design allows real-time, configurable, and manageable
flow-based sampling. Experimental results in Section VI re-
veal low overhead in network performance and swift activa-
tion/deactivation of sampling points.

Coordination among sampling points for the same flow is
crucial. Equally significant is strategically placing a budgeted
number of P4-programmable switches to maximize the number
of dynamic flows sampled at their required rates. We further
explore problem formulations for sampling point placement.

III. PROBLEM FORMULATION

The budgeted sampling point placement problems are
framed as Integer Linear Programming (ILP) problems con-
sidering multi-coverage. When a set of flows requires a

1No same round id in < 72 seconds even under an extreme case assuming
bandwidth is 10 Gbps, packet size is 84 bytes, and the sampling fraction is 1

higher sampling rate than a single point can provide, multiple
sampling points are necessary. With a budgeted number of P4-
programmable switches supporting coordinated sampling, the
ultimate objective is to maximize the number of flows in a
topology that can be sampled at their required rate possibly
using multiple sampling points. We define a flow as k-covered
if at least k points are chosen as sampling points on its path.

The Budgeted Maximum k-Coverage (BMkC) problem
aims to maximize the number of k-covered flows while
ensuring all flows are at least (k−1)-covered, given a budgeted
number of sampling points. When k = 1, this becomes the
Budgeted Maximum Coverage (BMC) problem [19].

Universal problem setting: Given a set of flows F =
{f1, ..., fm} on topology G(V,E), V is the set of switch
positions and E is the set of links. A flow fi ∈ F is denoted
by the switch positions it traverses as fi : vk → ... → vl. For
every vj ∈ V , if vj is part of fi, fi ∈ xj where xj is a set of
flows such that they all traverse vj . We call xj the position
set and vj is its position. X is the collection of all position
sets xj , i.e. X =

⋃n
j=1 xj . We define path matrix: Let AP

denote the path matrix AP = [ai,j], where ai,j ∈ {0, 1}. If
flow fi ∈ xj , ai,j = 1; otherwise, ai,j = 0. The formulation
notations are summarized in Table I.

A. Budgeted Maximum Coverage (BMC)

Given the universal problem setting, find a sub-collection
of X such that the number of 1-covered flows is maximized
within a budgeted number of P4-programmable switches B.

BMC Formulation:

argmax

m∑
i=1

gi (1)

Subject to :
g −APx ≤ 0 (2)

n∑
j=1

xj ≤ B (3)

xj ∈ {0, 1} (4)

gi ∈ {0, 1} (5)

The BMC problem is NP-hard [19]. The objective (1) is to
maximize the number of 1-covered flows gi such that gi = 1
if there is a sampling point on flow fi. This is achieved by
(2) combined with (5): For each flow fi, if APix = 0 which
means the chosen sampling points cannot cover it, then gi ≤ 0
and (5) results in gi = 0. If APix > 0 which means fi can be
covered, we have gi = 0 or gi = 1. Because (1) maximizes the
sum of gi, gi = 1 will be enforced. As a result, these ensure
that if a flow fi is covered, gi = 1. Otherwise, gi = 0. (3) is
the constraint on the budgeted number of sampling points. (4)
are the binary decision variables.

Although existing works adopt a polynomial time greedy al-
gorithm to solve this problem with a (1− 1

e)-approximate result
[19], we achieve the optimal solution in pseudo-polynomial
time by using the MILP solver with proof in Section IV and
experiments in Section VI.

TABLE I: Parameters in the Formulations

Parameter Definition

AP m× n path matrix
APi

ith row of m× n path matrix, i ∈ {1, 2, ...,m}
xj Decision variable for switch position j, j ∈ {1, 2, ..., n}
x n× 1 binary vector of each switch position, x = {xj}T
k Times of sufficient coverage of flow fi, i ∈ {1, 2, ...,m}
gi Gain of flow i, i ∈ {1, 2, ...,m}.
g m× 1 0-1 gain vector of gi,g = {g1, ..., gi, ..., gm}T
B Budgeted number of P4-programmable switches

B. Budgeted Maximum k-Coverage (BMkC)

Given the universal problem setting, find a sub-collection
of X such that the number of k-covered flows is maximized
while all flows are (k− 1)-covered within a budgeted number
of P4-programmable switches B.

The BMkC problem is the general version of BMC problem.
BMkC Formulation:

argmax

m∑
i=1

gi (6)

Subject to:

∀i ∈ {1, ...,m}, gi −
1

k
APi

x ≤ 0 (7)

∀i ∈ {1, ...,m}, −APix ≤ −(k − 1) (8)
n∑

j=1

xj ≤ B (9)

xj ∈ {0, 1} (10)

gi ∈ {0, 1} (11)

Constraints (6)(9)(10)(11) map to (1)(3)(4)(5). The dif-
ference between BMC and BMkC arises from (7) and (8).
Because each flow fi needs to be covered at least k times to
achieve a gain gi = 1, the 1

k coefficient is added to the i-th
row of APx based on (2). The role of (8) is to guarantee all
flows are (k-1)-covered. The gi will be 0 if the fi cannot be
k-covered within the budget. In BMC, gi = 1 when fi can
be covered at least once within the budget. In BMkC, gi = 1
when fi can be k-covered within the budget.

IV. THE SAMPLING POINT PLACEMENT PROBLEMS
HARDNESS WALK-THROUGH

Even though the budgeted sampling point placement prob-
lems are NP-complete, it is possible to obtain optimal solutions
in polynomial time for useful realistic cases. We develop the
discussion of budgeted sampling point placement problems
from the minimum cost sampling point placement problems
(i.e., set multi-covering problems). In detail, we look at the
structure of the path matrices and show under what structures
problems can be solved optimally in polynomial time.

In section IV-A, we show that when a path matrix is bal-
anced, the set multi-covering problem can be solved optimally
using an LP. From this, we show that the left-hand-side matrix
of the BMC constraints forms a (0,±1) balanced matrix if
the path matrix of its corresponding minimum cost sampling
point placement problem is a (0, 1) balanced matrix. Under the

conditions that the left-hand-side matrix is (0,±1) balanced,
we prove a theorem guaranteeing BMC an optimal solution by
LP. Finally, we discuss the runtime of the unbalanced cases
in which a pseudo-polynomial optimal solution is achieved by
LP and branch and bound.

A. Linear Programming Optimum-Balanced Matrix
1) Minimum Cost Sampling Point Placement: Intuitively,

the Set k-Covering problem minimizes the number of sam-
pling points to cover all flows k times. The formulation is:
min{x|x ∈ {0, 1};APx ≥ k}.

Theorem 1. If A is a (0, 1) balanced matrix, b and c are
integral vectors and one of them is an all-one vector, then
min{cx|x ≥ 0;Ax ≥ b} and max{cx|x ≥ 0;Ax ≤ b} have
integral optimum solutions (if the optima are finite) [25].

By Theorem 1, we conclude that if the path matrix AP is
balanced, the polynomial running time LP produces an optimal
integral solution for the set k-covering problem.

Because a (0,1) matrix is balanced if and only if it does
not contain a submatrix that is an incidence matrix of any odd
cycle [25], the structure composed by all paths is sufficient
to show the balanced property of its path matrix. Roughly
speaking, the path matrix is balanced if the structure composed
of all paths does not have an odd-cycle. Thus, it is the structure
composed of all the target paths that results in the hardness
of the min-cost objective sampling point placement problem.

2) Budgeted Sampling Point Placement: Here we prove that
when the path matrix AP is balanced, the corresponding BMC
problem also achieves optimal integral solutions by LP. We
show that the left-hand-side matrix of the constraints of the
BMC formulation forms a (0,±1) balanced matrix if its path
matrix AP is a (0, 1) balanced matrix.

We organize the constraints of BMC in the matrix form
as in Theorem 1. First, the variable vector is extended to
be {g1, ..., gm, x1, ..., xn}T . Then, the matrix form of BMC

constraints (2) and (3) is:
[
I −AP

0 1

] [
g
x

]
≤

[
0
B

]
. We call

AE =

[
Im×m −APm×n

0 1

]
extended path matrix.

Theorem 2. If the path matrix AP is a (0, 1) balanced
matrix, its corresponding extended path matrix AE is a (0,±1)
balanced matrix.

Proof. A (0,±1) matrix is balanced if no submatrix of it is
an odd hole matrix [8]. A hole matrix is a (0,±1) matrix that
contains two nonzero entries per row and per column, and no
proper submatrix of it has this property [8].
(1) Because AP is (0, 1) balanced, it only has even-cycle
incidence matrices which are hole submatrices. The sum of
the entries in the hole submatrices of −APm×n

can only
be −2c, c = 2, 4, 6, ... which is always a multiple of 4. So
−APm×n

does not voilate (0,±1) balanced property for AE .

(2)
[
−APm×n

1

]
is also balanced because the only case such

that 1 is involved into a hole matrix is
[
−1 −1
1 1

]
and the

sum of all entries is 0 which is a multiple of 4.

(3) As a result,
[
Im×m −APm×n

0 1

]
is balanced because

involving
[
I
0

]
does not make any other hole matrix.

Next, we prove an extended version of Theorem 1 to
support that when AE is (0,±1) balanced, the LP produces
integral/optimal solutions for BMC also.

Theorem 3. If A is a (0,±1) balanced matrix, then
min{x|x ≥ 0;Ax ≥ b−n(A)} and max{x|x ≥ 0;Ax ≤ b−
n(A)} has integral optimum solutions, where b is an integral
vector, n(A) is the column vector whose ith components ni(A)
is the number of ’−1’s in the ith row of matrix A.

Proof. The strategy follows [12]. We transform (0,±1) bal-
anced matrix Am×n into a (0, 1) balanced matrix Bm×2n.
Given A is (0,±1) balanced, we have B is (0, 1) balanced
because (1) The corresponding elements in B transformed
from a hole matrix of A, which is an even hole matrix, either
still compose an even hole matrix, or cannot be a hole matrix;
(2) The other elements transformed from a non-hole matrix of
A cannot compose any hole matrix. So, no sub-matrix of B
is an incidence matrix of an odd cycle.

A vector x satisfies max{x|x ≥ 0;Ax ≤ b− n(A)} if and
only if there is a vector y = [yp, yN]T = [x, 1 − x]T that sat-
isfies max{y|y ≥ 0;By ≤ b} where B = [BP , BN] and y =
{yP1 , ..., yPn , yN1 , ..., yNn }T , because: By = [BP , BN][x, 1 −
x]T = BPx−BNx+BN = Ax+ n(A) ≤ b, which implies
Ax ≤ b−n(A). Based on Theorem 1, max{y|y ≥ 0;By ≤ b}
has integral optimum solutions where B is (0, 1) balanced
and b is an integral vector. This transformation maps integral
vectors y into integral vectors x. The proof of min{x|x ≥
0;Ax ≥ b− n(A)} case is the same.

By Theorem 2 and 3, we directly conclude that if the
path matrix is balanced, the BMC problem can be solved
in polynomial time by LP because (1) AE is (0,±1) bal-

anced; (2)
[
0
B

]
is an integral vector (It is worth noting that

”b − n(A)” is no different than ”b” when the requirement
of ”b” is just to be any integral vector); (3) the solution of
objective max

∑m
i=1 gi is the same as the solution of objective

max(
∑m

i=1 gi +
∑n

j=1 xj).
However, these are not enough to deal with BMkC case be-

cause its left-hand-side matrix is not a (0,±1) matrix. We next
show how the branch and bound technique achieves pseudo-
polynomial optimal solutions in realistic network scenarios.

B. Branch and Bound Enabled Pseudo-Polynomial Optimum
While the path matrix may not always be balanced, ILP

solvers using LP-based branch and bound algorithms [6]
quickly find optimal solutions for both BMC and BMkC.
Because the practical network topology tends to be planar
and the odd cycle length is constant, we show that the branch
and bound technique returns the optimal solution in pseudo-
polynomial time in such cases. We consistently achieve opti-
mal solutions for budgeted sampling point placement problems

Algorithm 2 Greedily Allocating Flows to Sampling Points

Input: {p}: Set of sampling points; {f}: Dynamic flows;
{c}: Sampling capacity on points {p}; {fs}: Sampled flows;
lj : Sampling load on point pj ;

Output: {fu}: Unsampled flows.
Function greedy alloc:
check = 1; {fu} = {f}; {fs} = ∅
while {fu}! = ∅ do
{f} = {f} − {fs}
{p} = {p} − {pj | cj = 0}
(pj , lj , {fj}) = select max({f}, {p})
if lj > cj then

{fj} = sort({fj})
{fu} = update unsampled({fj}, lj , cj)
{fs} = sample({fj} − {fu})
cj = 0

else
{fs} = sample({fj})
cj = cj − lj

end
end

using the Gurobi solver [3] in reasonable runtimes across
20,000 experiments on real topologies in Section VI-C.

The branch and bound technique systematically explores
all possible integral solutions for optimal selection [13]. De-
spite its exhaustive nature, the running time is not always
exponential since only non-integral decision variables need
consideration. Some variables remain integral (0 or 1) even
under LP due to certain properties (e.g., balanced). The
conditions in Theorem 1 and Theorem 3 are sufficient, though
not necessary, for this conclusion. As the LP is solvable in
polynomial time L [18], the running time of BMC is mainly
influenced by the number K of branch and bound nodes for all
odd-cycles. The running time O(LK) is pseudo-polynomial,
treating K as a constant (independent of input size) [16], and
can be further reduced using parallel branch and bound [5].

Fortunately, our problem is constrained, as practical topolo-
gies typically have a limited number of nodes, forming planar
graphs. A planar graph with a constant length of odd cycles
has a polynomial number of odd cycles [17, Theorem 4],
aligning with our real topology cases. Additionally, flows on
a topology do not create more odd cycles than those present
in the topology. Thus, the pseudo-polynomial optimum case
represents the general scenario of the BMC problem, reflecting
its weak NP-complete property [16].

V. SAMPLING TASKS ALLOCATION

We provide a concise overview of the algorithm (Algorithm
2) which allocates flows to sampling points to maximize
the number of flows sampled at their required rate. This
allocation continuously runs on the controller unless all flows
are sampled at a desired rate or all points are fully utilized.

Each sampling point pj has a traffic load lj which it attempts
to sample at the required rate, and a residual sampling capacity
cj which is the capacity it has left to sample more flows.

Sampling points that are not currently overloaded from a
sampling perspective are in the serving pool. The controller
greedily selects the sampling point pj from the serving pool
with the maximum current traffic load lj . If lj > cj , indicating
the switch is susceptible to sampling overload, some flows or
fractions of flows may not be sufficiently sampled at pj .

To decide which (fractional) flows are sampled at pj and
which must be removed from sampling at pj and placed in a
sampling request pool, we prioritize sampling tasks based on
two criteria: (1) flows uniquely covered at pj take precedence
over multi-covered flows, and (2) mice flows take precedence
over elephant flows. Consequently, an elephant flow with
multiple available sampling points is more likely to have its
sampling rate reduced at pj and potentially be sampled at a
second sampling point. The controller removes flows from
being sampled at this point until the sampling point is not
overloaded and places them in the sampling request pool.
The controller assigns flows in the request pool to a sampling
point on their path if one exists that has a sampling capacity.
This process recurs until all flows are sampled or all sampling
points are fully loaded.

The controller continuously monitors dynamic flows. When
new flows arrive, it routes them and allocates sampling tasks
based on the sampling points they traverse and their residual
capacity. When flows depart, sampling capacity is regained.

VI. EVALUATION

In this section, we quantify the overhead and performance
of the coord sampling algorithm on actual P4-programmable
switches. We then evaluate the effectiveness of the placement
algorithms in terms of how many flows they can cover k-
times within a given budget, their computation time, and their
effectiveness at providing sufficient sampling capacity to meet
sampling demand using real network flows.

A. Coordinated Sampling Overhead Evaluation

We assess the coordinated sampling algorithm’s impact
by comparing round-trip time (RTT) and throughput across
multiple coordinated sampling settings including port-based
sampling using sFlow [23]. sFlow is an industry-standard
technology for sampling packets at layer 2.

The testbed topology aligns with Fig. 1, utilizing Arista
7170-32CD switches for P4 SW 1 and P4 SW 2. Host 1,
Host 2, and Monitor are Intel NUC 10 mini PCs. We present
RTT and throughput evaluation results for 6 sampling fraction
(sf) settings below on P4 SW 1 and P4 SW 2.

• s1:sf1 = 0, sf2 = 0
• s2:sf1 = 0, sf2 = 0.25
• s3:sf1 = 0, sf2 = 0.5

• s4:sf1 = 0, sf2 = 1
• s5:sf1 = 0.5, sf2 = 0.5
• s6: sF low.sf2 = 1

To eliminate factors like switch queuing, we conduct RTT
and throughput tests without introducing background traffic.
The results are presented in Fig. 3. RTT evaluation in-
volves generating 10,000 pings between Host 1 and Host 2
under the six different sampling settings. Notably, the co-
ord sampling program has negligible influence on the RTT
compared to both no sampling and sFlow.

Fig. 3: Algorithm Performance Evaluation on Real Testbed

Fig. 4: (De)activation La-
tency on Arista 7170-32CD

Fig. 5: Real World Topolo-
gies

The throughput evaluation utilizes the secure copy protocol
(scp) to transfer three different-sized files under the six sam-
pling settings. Each file is transferred 1,000 times, with sizes
of 7.5MB, 4.2MB, and 214KB for File 1, File 2, and File 3,
respectively. Across all six settings, throughput remains nearly
identical to no sampling, exhibiting minimal fluctuations.

B. Coordinated Sampling (De-)activating Latency Evaluation

We evaluate the latency of activating and deactivating co-
ord sampling algorithm on the real P4-programmable switches
in Fig. 1. We use “tcpreplay” to send 100,000 sequenced ICMP
packets from Host 1 to Host 2 at a rate of 1,000 packets per
second to test the activation and deactivation time 1000 times.

The procedure is as follows: We activate the coord sampling
of P4 SW 1 from the Monitor. The activation time ta is
therefore captured on Monitor. At the same time, Monitor
keeps listening for any incoming ICMP packets, and the time
tf of the first arrival packet is recorded. We use the value
of tf − ta as the activation time. We then deactivate the
coord sampling of P4 SW 1 on Monitor remotely. The
deactivation time td, the time tl of the last captured ICMP
packet, and the last interval time k between two received
ICMP packets are captured on Monitor. We use the value
of td + k − tl as the deactivation time. Notably, the actual
(de)activation time is less than the experimental result because
there is a round trip time from the Monitor to the P4 SW 1.

The activation and deactivation latencies are around 0.05
and 0.01 seconds shown in Fig. 4. Combined with the through-
put and RTT results, this indicates our implementation is
suitable for scaleable dynamic coordinated sampling. Next,
we show the coverage and runtime of the optimal budgeted
placement algorithm and its advantage to sample sufficiently
in realistic settings.

C. Budgeted Placement Calculation Evaluation

We evaluate the sampling point placement solutions of
BMK and BMkC produced by: (1) the ILP solver Gurobi [3]

Fig. 6: Coverage Percentage Comparision of BMC

Fig. 7: Runtime Comparision of BMC
denoted as optimal algorithm; (2) a greedy algorithm that
greedily selects the placement points using the maximum
number of uncovered flows in each iteration until the number
of chosen points reaches the budget. We also evaluate the
runtime of the two algorithms. We run our experiments based
on two real-world topologies [4], [22] shown in Fig 5.

On the US carrier topology, we select nodes with degrees
of 2 to construct a pool from which we randomly select the
sources and destinations. On the Germany topology, all nodes
are eligible to be selected as a source or destination. Based on
the Germany and US Carrier topologies, we randomly select
1,000 and 1,500 different pairs of sources and destinations 100
times. We show the max, min, and average of the result based
on the 100 experiments for each setting on each case.

1) BMC: Given a budgeted number of sampling points, the
goal is to determine the sampling point placement to maximize
the number of 1-covered flows.

In 4800 experiments on two real topologies, the result
of the optimal algorithm is a little better than the greedy
algorithm, as shown in Figs. 6 and 7. Over 90% of the flows
are covered with only half the number of the sampling points
required to cover all flows which reflects the necessity to find
a balance between the path coverage and cost. The runtime of
the optimal algorithm is comparable with the greedy algorithm
in 10−2 ∼ 10−1 seconds.

2) BMkC: Given k = 2 and a budgeted number of sampling
points, the goal is to determine the sampling point locations
that maximize the number of 2-covered flows while ensuring
all flows are 1-covered.

In 4,500 experiments, shown in Fig. 8 and 9, the opti-
mal algorithm consistently outperforms the greedy algorithm
and its runtime is comparable with the greedy algorithm in
10−2 ∼ 10−1 second level. Notably, when the budgeted
number of sampling points is at or slightly above the min-
imum required to cover all flows once, the optimal algorithm
achieves a significantly higher number of 2-covered flows
than the greedy algorithm. For example, with a budget of
26 for the Germany topology, the optimal algorithm achieves

Fig. 8: Coverage Percentage Comparision of BMkC

Fig. 9: Runtime Comparision of BMkC
around 90% 2-covered flows in 68 out of 100 randomized
flow set instances (60.43% 2-coverage on average), while
the greedy algorithm fails to achieve any 2-covering in 98
out of 100 instances (1.76% 2-coverage on average). This
highlights the potential risk of substantial sampling loss when
using the greedy algorithm in such scenarios, which becomes
critical when required sampling rates are high and multiple
sampling points are needed to sample flows at sufficient rates,
as evaluated in the next subsection.

D. Budgeted Placement Effectiveness on Dynamic Flows

To evaluate the budgeted placement effectiveness of the
optimal and greedy methods for the coordinated sampling
in practice, we use the Germany topology with a real-world
dataset [22] of flows on that topology.

In detail, we use both methods to produce the budgeted sam-
pling point placement of BMkC with k = 2 on the Germany
topology, feed 24-hour dynamic flows to the network, and
allocate dynamic flow sampling tasks to the placed sampling
points for best-effort sufficient sampling introduced in Section
V. We capture the number of unsampled/insufficientlysampled
flows for both placement results to quantify the budgeted
placement effectiveness.

The dynamic flows on the Germany Topology, illustrated in
Fig. 10, are recorded every 5 minutes, providing information
on (src, dst) pairs and corresponding demand values, l, which
we use as the flow sampling load. Each sampling point pi
is set with a maximum demand capacity of c = 50. When
a sampling point pi is selected, and the total demand value
of flows on pi exceeds 50, only a subset or fractional flows
are sampled. Consequently, unsampled or fractional sampled
flows await the next opportunity for sufficient sampling.

1) Optimal vs Greedy Placement with Input of All Flows:
Here we consider all 1225 possible paths on the Germany
topology as input paths for budgeted placement calculation.
To maximize cost savings, we set the budget to 28 sampling
points, which under the optimal algorithm is enough to cover
all flows at least once. The optimal placement achieves 1117

Fig. 10: Dynamic Flows on
Germany Topo

Fig. 11: Placement Effective-
ness Comparision

Fig. 12: No. of 2-coverage by
Optimal and Greedy with Dif-
ferent Budget and Input Flows

Fig. 13: Placement Effective-
ness Comparison with Differ-
ent Input Flows

2-covered flows, while the greedy placement does not yield
any 2-covered flows. In this case, if a sampling point becomes
overloaded, with the greedy placement, there is no alternative
sampling point and thus flows are un- or under-sampled.

We greedily allocate 24-hour flows on the sampling points
calculated by optimal and greedy placement algorithms. The
results are shown in Fig. 11. The optimal placement takes
advantage of the multiple sampling points on many of the
paths and enables on average 5 more flows to be sufficiently
sampled per minute than with greedy placement, showcasing
its robustness and superiority for coordinated sampling.

2) Optimal vs Greedy Placement with Input of Different
Flows: To illustrate the impact of input flows on optimal
and greedy placement strategies, we execute the placement
algorithms using flows from different times (x-axis) of the
day as input, with a budget that allows for the lowest cost
solution to cover at least 90% of the flows twice using optimal
placement, the required budgets range mostly between 24-26
switches shown in Fig. 12. Note with these budgets, the greedy
algorithm is incapable of achieving any 2-covered flows.

Within a budget range of approximately 25, the optimal
algorithm achieves 1,000-1,500 2-covered flows, while the
greedy algorithm does not achieve 2-coverage but only 1-
coverage. Employing these sampling point placement settings,
we introduce 24-hour flows to the network and employ the
greedy allocation algorithm for sufficient sampling. The results
are shown in Fig.13. The optimal placement surpasses the
greedy placement when the input flows are from 6:00:00 to
18:00:00 and is especially stable from 8:00:00 to 11:00:00.

As shown in Fig. 10, the number of flows is high from
8:00:00 to 18:00:00. We conclude that an increase in the
number of input paths for optimal placement calculation is
associated with a decrease in the average number of unsampled
flows in dynamic scenarios. However, this phenomenon is
not obvious for the greedy placement algorithm because the

greedy algorithm tends to select nodes with high betweenness
centrality regardless of the total number of flows.

VII. RELATED WORK

Recent works on network monitoring adopt external moni-
tors building on an SDN architecture to avoid degrading switch
performance, as do we. Those based on OpenFlow [7] forward
entire packets to the monitor, wasting network bandwidth if
only portions of a packet are required. Among P4-enabled
monitor systems, Ding, et al. [14] focus on a greedy incre-
mental P4-programmable switch deployment strategy, while
Jonatas, et al. [21] select locations for in-band telemetry (INT)
to append statistics without degrading performance. These are
different from our problem setting and purpose.

Among the works that consider sampling scalability, So-
gand, et al [24] separate sampling decisions on short and
long flows to enhance sampling efficiency. Du, et al [15]
adapts sampling rate for different flows with non-duplicate
sampling [28]. Reuven, et al [11] aim at a best-effort single
point per-flow sampling allocation regardless of sampling
rate demand. Conversely, we study and coordinate flow-based
sampling at multiple points. Another coordinated sampling
work [26] uses a hash-based method to guarantee each flow
is only sampled at one router to avoid duplicated sampled
packets. Therefore, it does not support sampling flows at
multiple points, as we do.

Furthermore, existing sampling point placement meth-
ods [27], [30] typically use heuristic greedy algorithms without
examining the characteristics of practical network flows on the
ability to obtain optimal solutions, as we do.

VIII. CONCLUSION

Our coordinated sampling solution enhances the scalability
of flow sampling across networks. The placement algorithm
maximizes the number of multi-covered flows within a budget,
enabling an increased count of sufficiently sampled flows.
These lightweight and fast algorithms are well-suited for
dynamic sampling activation.

REFERENCES

[1] Arista price list 2024. https://itprice.com/arista-price-list/7170.html.
Accessed on 2024-03-11.

[2] Coordinated sampling on p4-programmable switches. https://github.com/
mzc796/coord sampling. Accessed on 2023-11-10.

[3] Gurobi mixed-integer programming (mip) – a primer on the basics. https:
//www.gurobi.com/resource/mip-basics/. Accessed on 2023-11-10.

[4] Topology zoo. http://www.topology-zoo.org/dataset.html, 2012. Ac-
cessed on 2023-10-31.

[5] David A Bader, William E Hart, and Cynthia A Phillips. Paral-
lel algorithm design for branch and bound. Tutorials on Emerging
Methodologies and Applications in Operations Research: Presented at
INFORMS 2004, Denver, CO, pages 5–1, 2005.

[6] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges,
Gerard Ribière, and Olivier Vincent. Experiments in mixed-integer linear
programming. Mathematical Programming, 1:76–94, 1971.

[7] Samaresh Bera, Sudip Misra, and Abbas Jamalipour. Flowstat: Adaptive
flow-rule placement for per-flow statistics in sdn. IEEE Journal on
Selected Areas in Communications, 37(3):530–539, 2019.

[8] Claude Berge. Balanced matrices. Mathematical Programming, 2:19–
31, 1972.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[10] Kevin Butler, Patrick McDaniel, and William Aiello. Optimizing bgp
security by exploiting path stability. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 298–310,
2006.

[11] Reuven Cohen and Evgeny Moroshko. Sampling-on-demand in sdn.
IEEE/ACM Transactions on Networking, 26(6):2612–2622, 2018.

[12] Michele Conforti, Gérard Cornuéjols, and Kristina Vušković. Balanced
matrices. Discrete Mathematics, 306(19-20):2411–2437, 2006.

[13] Koen MJ De Bontridder, BJ Lageweg, Jan K Lenstra, James B Orlin, and
Leen Stougie. Branch-and-bound algorithms for the test cover problem.
In Algorithms—ESA 2002: 10th Annual European Symposium Rome,
Italy, September 17–21, 2002 Proceedings 10, pages 223–233. Springer,
2002.

[14] Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa.
An incrementally-deployable p4-enabled architecture for network-wide
heavy-hitter detection. IEEE Transactions on Network and Service
Management, 17(1):75–88, 2020.

[15] Yang Du, He Huang, Yu-E Sun, Shigang Chen, and Guoju Gao. Self-
adaptive sampling for network traffic measurement. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications, pages 1–10.
IEEE, 2021.

[16] Michael R Garey and David S Johnson. Computers and intractability.
A Guide to the, 1979.

[17] Seifollah Louis Hakimi and Edward F Schmeichel. On the number of
cycles of length k in a maximal planar graph. Journal of Graph Theory,
3(1):69–86, 1979.

[18] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 302–311, 1984.

[19] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted
maximum coverage problem. Information processing letters, 70(1):39–
45, 1999.

[20] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 101–114, 2016.

[21] Jonatas Adilson Marques, Marcelo Caggiani Luizelli, Roberto Irajá
Tavares da Costa Filho, and Luciano Paschoal Gaspary. An optimization-
based approach for efficient network monitoring using in-band network
telemetry. Journal of Internet Services and Applications, 10:1–20, 2019.

[22] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur
Tomaszewski. Sndlib 1.0—survivable network design library. Networks:
An International Journal, 55(3):276–286, 2010.

[23] Peter Phaal. sflow version 5. https://sflow.org/sflow version 5.txt.
Accessed on 2023-11-10.

[24] Sogand Sadrhaghighi, Mahdi Dolati, Majid Ghaderi, and Ahmad Khon-
sari. Flowshark: Sampling for high flow visibility in sdns. In IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications, pages
160–169. IEEE, 2022.

[25] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, 1998.

[26] Vyas Sekar, Michael K Reiter, Walter Willinger, Hui Zhang, Ra-
mana Rao Kompella, and David G Andersen. csamp: A system for
network-wide flow monitoring. 2008.

[27] Kyoungwon Suh, Yang Guo, Jim Kurose, and Don Towsley. Locating
network monitors: complexity, heuristics, and coverage. Computer
Communications, 29(10):1564–1577, 2006.

[28] Yu-E Sun, He Huang, Chaoyi Ma, Shigang Chen, Yang Du, and Qingjun
Xiao. Online spread estimation with non-duplicate sampling. In
IEEE INFOCOM 2020-IEEE Conference on Computer Communications,
pages 2440–2448. IEEE, 2020.

[29] Oksana Yevsieieva and Seyed Milad Helalat. Analysis of the impact
of the slow http dos and ddos attacks on the cloud environment.
In 2017 4th International Scientific-Practical Conference Problems of
Infocommunications. Science and Technology (PIC S&T), pages 519–
523. IEEE, 2017.

[30] Seunghyun Yoon, Taejin Ha, Sunghwan Kim, and Hyuk Lim. Scalable
traffic sampling using centrality measure on software-defined networks.
IEEE Communications Magazine, 55(7):43–49, 2017.

