Asymptotic Notation

The need for asymptotic notation

Definition of asymptotic notations O, QQ, ©

Asymptotic relations between common functions

Analyzing running time and other applications

CS 111, Review of Prerequisite Topcs !

Motivations

Consider this piece of code. What it's running time?

for (inti=0;i<n;i++){

for (int j =0+ '
=y +i";
Al = 771 + 3*x;
cout << A[i][j];

i n? iterations

Running time = 72 x (time to execute these instructions)

The time to execute these instructions is a constant, independent of n, but dependent on the
computing environment (processor, compiler, system load, ...)

So we can only say that running time = ¢'n2 , for some unknown constant ¢

University of California, Riverside

Motivations

How about this piece of code?

for (inti=0;i<n;i++){

for (int j =0+ i
=y +i;
Al = 771 + 3*x;
cout << A[i][j];

}

}
for (inti=0;i<n;i++) X =X+ i"i; ©

Running time = ¢'n?2 +dn
T not informative and gets messy quickly

We need some concept of “running time” that would be
* independent of the computing environment
* independent of time units
* informative — provide useful information about performance

University of California, Riverside

Motivations

Consider running time function 2-x2 + 9-x

Forx <10
300f 2:x2 +9x
250!
200? 2:x2
1500
1oo;

50f

University of California, Riverside

Motivations

Consider running time function 2-x2 + 9-x

Now zoom out : for x <50

_ 2:x2+9x
5000} 22
4ooo;
3000?
2000?
1000?

University of California, Riverside

Motivations

Consider running time function 2-x2 + 9-x

And zoom out even more: for x <500
2:x2 +9-x

500000
L 2 ¢x2

400000}
300000}
200000

100000

As x grows, the term 9-x becomes negligible compared to the value of the function

University of California, Riverside

Motivations

We need some concept of “running time” that would be
* independent of the computing environment
 independent of time units
* informative — provide useful information about performance

Key word: scaling. Instead of capturing the absolute performance, we want
to know how does the performance scale as the input size n increases?

To capture this, we use asymptotic notations:

T(n) = O(g(n)) T(n) grows not faster than proportionally with g(7)
T(n) = Q(g(n)) T(n) grows not slower than proportionally with g(7)

T(n) = ©(g(n)) T(n) grows proportionally with g(n)

University of California, Riverside

Big-Oh Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of

order (at most) g(n), denoted f(n) =0(g(n)), iff there are constants ¢ and no
such that |f(n)| < c-g(n) for all n > no.

R cg(n)

-oe
P
e=="
-
-
-
-
-
-
-
-
-
-
-
-®
-

\/

.
AJ —_——— ——
I e i
.

University of California, Riverside

Big-Oh Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of
order (at most) g(n), denoted f(n) =0(g(n)), iff there are constants ¢ and no
such that |f(n)| < c-g(n) for all n > no.

Example: Prove, directly from the definition, that 10n+5 =0(n).

To prove it, all we need to do is to observe that 10n+5 <11nfor n>>5.

\C: ll\no=5

Example: Prove, directly from the definition, that 2n3+6n2+2 =0(n3).

We can estimate 2n3+6n2+2 <2n3+6m3+2n3=10n3 for n>1.

N S

c =10 no =

University of California, Riverside

Big-Oh Notation — Definition

» Comments:

* Definition also applies to functions R — R.

* In this class we mostly care about functions N — N (running time cannot be negative). In
this case the absolute value in the definition is not needed.

» The choice of ¢ and no is not unique. For example, to show that 10n+5 =0(n) we can
estimate 10n+5<11ln for n>5

10n+5<15n for n>1

* In particular, if g(n) is strictly positive, then we can always take n, = 0, by taking c large
enough.

University of California, Riverside

Big-Oh Notation — Definition

» Comments:

« The goal is to express a possibly complex f(n) in terms of a simple function g(n) . So
while it is true that

n3 = 0Q2n3+6n2+2)
this estimate is not useful.

» We can write 2n3+6n2+2 = O(n3) , but it makes no sense to write

O(n3) = 2n3 +6‘M This equation symbol does not represent

Why? equality. It represents € relation. Some people
' write it as 2n3+6n2+2 € O(n3) .

 Important: the big-Oh notation is only an upper bound. So
2n3+6n2+2 = O(n3) , but it is also true that _ _
But typically we look for the best possible

2n3+6n2+2 = 0(n*) , or “— upper bound, which is O(73). This will be
later captured using the © notation.
2n3+6n2+2 = O(nd) , etc. g °

University of California, Riverside

Big-Oh Notation — Definition

Example: Let’s derive a big-Oh estimate for harmonic numbers:

Hy, =30 15 =1+g5+5+..+5

Theorem: Forn>1 we have i(logn—1) < H, < logn+1. |

From this theorem, for n > 2 we get : \ We'll prove this theorem

/’ H. < logn i1 later if time suffices
no = 2 < logn + logn
= 2logn
c=2—

So we can conclude that H,, = O(logn)

University of California, Riverside

Big-Oh Notation — Definition

Example: Let’'s derive some big-Oh estimate for the sequence defined az = 19
recursively: ag = 46
ar=3, a1=8,and ayn=2-an1+an2 forn>2. ay = 111

Claim: an, <3(2.75)" for n > 0.

Proof: The base case involves values n = 0,1. For n = 0 we have ap =3 < 3(2.75)%, and for n = 1
we have a1 = 8 <3(2.75)L.
Inductive step: assume that the claim holds for all values smaller than some n, where n > 2. Then

a, = 2an—1 + a, -

< 2-3(2.75)"! +3(2.75)""* «—— applying inductive
assumption

= 3(2.72)"%(2-2.75+ 1)

< 3(2.75)7%(2.75)?

< 3(2.75)"

This completes the inductive step, and the proof of the claim.

University of California, Riverside

Big-Oh Notation — Definition

Example: Let’'s derive some big-Oh estimate for the sequence defined az = 19
recursively: ag = 46
ar=3, a1=8,and ayn=2-an1+an2 forn>2. ay = 111

Claim: a, <3(2.75)" for n > 0.

From this claim, we obtain that a, = O((2.75)").

University of California, Riverside

Big-Oh Notation — Common functions

» Common functions used in asymptotic bounds:
» constant 1

e logarithmic logn

* polynomial n® where b > 0

 exponential c" where ¢ > 1

Most of the asymptotic bounds used in the
analysis of algorithms can be expressed as
combinations of these “reference functions”

We focus on properties of these functions...

University of California, Riverside

Big-Oh Notation — Common functions

Question: Which function grows faster as n — 00 ?
)
° 1.57

1.57

University of California, Riverside

Big-Oh Notation — Common functions

Question: Which function grows faster as n — o0 ?
) _

1000 -

Answer: 1.5"

University of California, Riverside 17

Big-Oh Notation — Combining Asymptotic Bounds

First, we show some general rules for combining asymptotic bounds:

Theorem: Suppose that fi(n) = O(gi(n)) and f2(n) = O(g2(n)).
Then:

(@) fi(n) + fo(n) = O(gi(n) + g2(n))

(b) fi(n) + fo(n) = O(max (gi(n) , g2(n)))

(c) fi(n) - fa(n) = O(g1(n) - g2(n))

Proof:

University of California, Riverside

Big-Oh Notation — Properties of Common Functions

» Logarithmic functions.
In this class we use notations
logx = log,

Inx = log,x <«—— natural logarithm

this is a constant

Fact: Letr, p > 1, x > 0. Then (ifdependent of x)

1 = = -1
0g, T logy 08, T

So all logarithmic functions have the same asymptotic behavior: for all bases
v, p > 1 we have

log,.xz = O(log, x)

University of California, Riverside

Big-Oh Notation — Properties of Common Functions

» Polynomial functions. Example:
f(z) = 22° +32° +1
Fact: Let f(z) = Zf:o a;x’. Then f(x) = O(z®). flz) = 247

f(ac) _ 5:6121 —|—£U37

Proof: Let A = max |a;|. For x > 1 we can then estimate f(x) as follows:

fz)

aka:k + ak_laﬁk’_l + ...+ a1x+ ap
A(zb 2 4 2+ 1)
A(xP 4+ 2% + . 2t 2
A(k + 1)z"

IA A

This gives us that f(x) <c=xk forc =A(k+1) and x>1. W

University of California, Riverside

Big-Oh Notation — Properties of Common Functions

Theorem: For all a,b >0, ¢ >1, we have
(@) 1=0(log)
(b) logfn =O(nb)
(c) nb=0(c")

Proof: We prove (c). Take d = c?and 4 = 1/(d—1)°. Since ¢ > 1and b > 0, we have d > 1.
Then, for n > 1 we can estimate »n? as follows

n = 1+14...+1)°
< (Q+d+d*+...+dh
— (d;——ll)b
< (gZg)° @) = A (@) = A"

This gives us that n® <A4-c" forn>1. W

University of California, Riverside

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for f(n) = n*log”n -4@

We can estimate it as follows: \

suspect for the
dominating term

f(n) =n’log’n +n’
this is actually
the € relation

because log’n = O(n),

) 3 <
=n"0n) +n by previous slide

= 0(n°) +n’
this is actually —

the C relaton — = 0(713)

So f(n) = O(n).

University of California, Riverside

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for f(n) = 13n%3 logg n+ 11\/% log’n @

We can estimate it as follows: /

suspect for the
f) = 13n*3log2n + 11y/nlog’ n + n’ dominating term

= 13n*20(n"") + 11n*20(n*>) + n’
= 0(n’) + O(n°) + n’
= O(n)

So f(n) = O(n?).

University of California, Riverside

Big-Oh Notation — Examples

suspect for the

Example: Determine the best big-Oh estimate for f(n) = Tn°2" “’@Hdominating term

We can estimate f(n) as follows:

f(n) n°2" + 3"

= 2" . (7n® +1.5")

= 2" (O(1.5™) +1.5™) because n° = O(1.5")
= 2". O(1.5")

= 0(3")

So fin)=0(3").

University of California, Riverside

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the running time of this algorithm:

Algorithm WhatsMyRuntime (n: integer)
for i+1 to 6n do z+«2z—1
for i <1 to 2n2do
for j«1 to ntl do z+«z2—-z

Number of iterations of the first “for” loop = 6n

Number of iterations of the second (double) “for” loop = 2n?(n + 1)

Each iterations takes O(1) time, so the total running time is

6n +2n%(n+1) = 2n° +2n% +6n = O(n?)

University of California, Riverside

Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the number of “hello”s printed by this algorithm:

Algorithm HowManyHellos (n: 1nteger)
for i1 to 6n do print (“hello”) «——— 6n*hello’s
for i <1 to 2nt+ldo
for j«1 to *+2 do print (“hello”)
Analysis of double “for” loop:

* For each i, the internal loop makes i+2 iterations
» So the total number of iterations of the double “for” loop is

ZZTL—I—l(_|_ 2) _ ZZ'I’L—I—l + ZZn—I—l
T@2n+1)2n+2)+2(2n+1)
= 2n* +Tn+3

Therefore the total number of “hello’s is 2n* + 13n +3 = O(n?)

University of California, Riverside

Big-Q Notation — Definition

Definition: Let fin) and g(n) : Z — Z be two functions. We say that f(n) is of lower bound, as

_ - <«—— opposed to big-Oh,
order at least g(n), denoted f(n) =Q(g(n)), iff there are constants ¢ and no that is an upper bound
such that |f(n)| > c-g(n) for all n > ny.

A

-

-
ce"
-
-
P
-
-
-
-
-
P
-

University of California, Riverside

Big-Q Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of
order at least g(n), denoted f(n) =Q(g(n)), iff there are constants ¢ and no
such that |f(n)| > c-g(n) for all n > ny.

Example: Prove, directly from the definition, that 10n+5 =Q(n). /c =10 no =20

This is straightforward when all terms are non-negative: 10n+5 > 10n for n > 0.

Example: Prove, directly from the definition, that 2n3—6n2+2 =Q(n3).

We can estimate

2nc —6n%+2 > 2n’ —6n?
= n’+n’(n—6)
> n forn>6 «—— ;=6

\021

University of California, Riverside

O®-Notation

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of order g(n), denoted
f(n) =0O(g(n)), iff there are constants ci, c2 and no such that ci-g(n) < |[f(n)| < c2 -g(n) for all n > ny.

€8 (n)
Sf(n)

Cl'g(n)

\

University of California, Riverside

O®-Notation

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of order g(n), denoted
f(n) =0O(g(n)), iff there are constants ci, c2 and no such that ci-g(n) < [(n)| < c2 ‘g(n) for all n > ny.

In other words, f(n) =0(g(n)) means that g(n) is a tight asymptotic
estimate for f(n) . This is capture by the following theorem:

Theorem: Let f{n) and g(n) : Z — Z be two functions. Then f(n) =0(g(n)) iff both f{rn) =0(g(n))
and f(n) =Q(g(n)).

Proof: Since (=) is trivial, so we will only prove (<). Since f(n) =0(g(n)) and f(n) =C(g(n)), there
are constants such that

c1:g(n) < [f(n)| < c2-g(n)
foran/ \fornzm

Taking no = max(n1 , n2) , both inequalities will hold forn >no. W

University of California, Riverside

©-Notation — Examples

Example: Determine the ©@-estimate for the harmonic sequence:

_ 1 1 _

Theorem: Forn>1 we have i(logn—1) < H, < logn+ 1.

We showed earlier that H, = O(log n). So we now need to show that H, = Q(log n).
From the theorem, for n > 4 we have:

'\ H, > i(logn—1)
no =4 > ilogn
So H; = Q(log n). c=1/4

Since Hy, = O(log n) and Hy = Q(log n), we obtain that H, = O(log n).

University of California, Riverside

®-Notation — Examples

Example 1: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

for i< 1 to 2n+1 do
x < x?
for j«1 to n+2do
for k<1 to n+1do

x <« x/k

Answer: O(n°).
Explanation: We have three nested independent loops, each of range ®(n).
Operations x < xZ and x < x/k take time ®(1).

University of California, Riverside

®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

I« 1
while i<n do
X — x2

[— 2.1

Question: How many iterations will this loop make forn = 125 ?

* none of the above

University of California, Riverside

®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

[« 1
while i<n do

x<—x2

[— 2.1

Question: How many iterations will this loop make forn = 125 ?

* none of the above

Answer: 7. Values of i for which the loop willexecute:1 2 4 8 16 32 64

University of California, Riverside

®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

I« 1
while i<n do
X — x2

[— 2.1

Answer: ©(log n).
Explanation: i will double exactly [logn] times, and [logn]| = ®(logn) .

University of California, Riverside

®-Notation — Examples

Challenge questions: Give the ®-estimate, as a function of n, for the running time of these
three pieces of code.

[« 1 I« 1
while i<n do while i<n do
for j=i to n do for j=1 to i do
X« x2 X« x2
[«—2-1 <21
<2
while i<n do
X« x2
i« i°

University of California, Riverside

