Asymptotic Notation

The need for asymptotic notation

Definition of asymptotic notations O, QQ, ©

Asymptotic relations between common functions

Analyzing running time and other applications

CS 111, Review of Prerequisite Topcs !




Motivations

Consider this piece of code. What it's running time?

for (inti=0;i<n;i++){

for (int j =0+ '
=y +i";
Al = 771 + 3*x;
cout << A[i][j];

i n? iterations

Running time = 72 x (time to execute these instructions)

The time to execute these instructions is a constant, independent of n, but dependent on the
computing environment (processor, compiler, system load, ...)

So we can only say that running time = ¢'n2 , for some unknown constant ¢
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Motivations

How about this piece of code?

for (inti=0;i<n;i++){

for (int j =0+ i
=y +i;
Al = 771 + 3*x;
cout << A[i][j];

}

}
for (inti=0;i<n;i++) X =X+ i"i; ©

Running time = ¢'n?2 +dn
T not informative and gets messy quickly

We need some concept of “running time” that would be
* independent of the computing environment
* independent of time units
* informative — provide useful information about performance

University of California, Riverside



Motivations

Consider running time function 2-x2 + 9-x

Forx <10
300f 2:x2 +9x
250!
200? 2:x2
1500
1oo;

50f
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Motivations

Consider running time function 2-x2 + 9-x

Now zoom out : for x <50

_ 2:x2+9x
5000} 22
4ooo;
3000?
2000?
1000?
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Motivations

Consider running time function 2-x2 + 9-x

And zoom out even more: for x <500
2:x2 +9-x

500000
L 2 ¢x2

400000}
300000}
200000

100000

As x grows, the term 9-x becomes negligible compared to the value of the function
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Motivations

We need some concept of “running time” that would be
* independent of the computing environment
 independent of time units
* informative — provide useful information about performance

Key word: scaling. Instead of capturing the absolute performance, we want
to know how does the performance scale as the input size n increases?

To capture this, we use asymptotic notations:

T(n) = O(g(n)) T(n) grows not faster than proportionally with g(7)
T(n) = Q(g(n)) T(n) grows not slower than proportionally with g(7)

T(n) = ©(g(n)) T(n) grows proportionally with g(n)
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Big-Oh Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of

order (at most) g(n), denoted f(n) =0(g(n)), iff there are constants ¢ and no
such that |f(n)| < c-g(n) for all n > no.
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Big-Oh Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of
order (at most) g(n), denoted f(n) =0(g(n)), iff there are constants ¢ and no
such that |f(n)| < c-g(n) for all n > no.

Example: Prove, directly from the definition, that 10n+5 =0(n).

To prove it, all we need to do is to observe that 10n+5 <11nfor n>>5.

\C: ll\no=5

Example: Prove, directly from the definition, that 2n3+6n2+2 =0(n3).

We can estimate 2n3+6n2+2 <2n3+6m3+2n3=10n3 for n>1.

N S

c =10 no =
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Big-Oh Notation — Definition

» Comments:

* Definition also applies to functions R — R.

* In this class we mostly care about functions N — N (running time cannot be negative). In
this case the absolute value in the definition is not needed.

» The choice of ¢ and no is not unique. For example, to show that 10n+5 =0(n) we can
estimate 10n+5<11ln for n>5

10n+5<15n for n>1

* In particular, if g(n) is strictly positive, then we can always take n, = 0, by taking c large
enough.
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Big-Oh Notation — Definition

» Comments:

« The goal is to express a possibly complex f(n) in terms of a simple function g(n) . So
while it is true that

n3 = 0Q2n3+6n2+2)
this estimate is not useful.

» We can write 2n3+6n2+2 = O(n3) , but it makes no sense to write

O(n3) = 2n3 +6‘M This equation symbol does not represent

Why? equality. It represents € relation. Some people
' write it as 2n3+6n2+2 € O(n3) .

 Important: the big-Oh notation is only an upper bound. So
2n3+6n2+2 = O(n3) , but it is also true that _ _
But typically we look for the best possible

2n3+6n2+2 = 0(n*) , or “— upper bound, which is O(73). This will be
later captured using the © notation.
2n3+6n2+2 = O(nd) , etc. g °

University of California, Riverside



Big-Oh Notation — Definition

Example: Let’s derive a big-Oh estimate for harmonic numbers:

Hy, =30 15 =1+g5+5+..+5

Theorem: Forn>1 we have i(logn—1) < H, < logn+1. |

From this theorem, for n > 2 we get : \ We'll prove this theorem

/’ H. < logn i1 later if time suffices
no = 2 < logn + logn
= 2logn
c=2—

So we can conclude that H,, = O(logn)
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Big-Oh Notation — Definition

Example: Let’'s derive some big-Oh estimate for the sequence defined az = 19
recursively: ag = 46
ar=3, a1=8,and ayn=2-an1+an2 forn>2. ay = 111

Claim: an, <3(2.75)" for n > 0.

Proof: The base case involves values n = 0,1. For n = 0 we have ap =3 < 3(2.75)%, and for n = 1
we have a1 = 8 <3(2.75)L.
Inductive step: assume that the claim holds for all values smaller than some n, where n > 2. Then

a, = 2an—1 + a, -

< 2-3(2.75)"! +3(2.75)""* «—— applying inductive
assumption

= 3(2.72)"%(2-2.75+ 1)

< 3(2.75)7%(2.75)?

< 3(2.75)"

This completes the inductive step, and the proof of the claim.
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Big-Oh Notation — Definition

Example: Let’'s derive some big-Oh estimate for the sequence defined az = 19
recursively: ag = 46
ar=3, a1=8,and ayn=2-an1+an2 forn>2. ay = 111

Claim: a, <3(2.75)" for n > 0.

From this claim, we obtain that a, = O((2.75)").
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Big-Oh Notation — Common functions

» Common functions used in asymptotic bounds:
» constant 1

e logarithmic logn

* polynomial n® where b > 0

 exponential c" where ¢ > 1

Most of the asymptotic bounds used in the
analysis of algorithms can be expressed as
combinations of these “reference functions”

We focus on properties of these functions...
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Big-Oh Notation — Common functions

Question: Which function grows faster as n — 00 ?
)
° 1.57

1.57
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Big-Oh Notation — Common functions

Question: Which function grows faster as n — o0 ?
) _

1000 -

Answer: 1.5"
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Big-Oh Notation — Combining Asymptotic Bounds

First, we show some general rules for combining asymptotic bounds:

Theorem: Suppose that fi(n) = O(gi(n)) and f2(n) = O(g2(n)).
Then:

(@) fi(n) + fo(n) = O(gi(n) + g2(n) )

(b) fi(n) + fo(n) = O(max (gi(n) , g2(n) ) )

(c) fi(n) - fa(n) = O(g1(n) - g2(n) )

Proof:
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Big-Oh Notation — Properties of Common Functions

» Logarithmic functions.
In this class we use notations
logx = log,

Inx = log,x <«—— natural logarithm

this is a constant

Fact: Letr, p > 1, x > 0. Then (ifdependent of x)

1 = = -1
0g, T logy 08, T

So all logarithmic functions have the same asymptotic behavior: for all bases
v, p > 1 we have

log,.xz = O(log, x)

University of California, Riverside



Big-Oh Notation — Properties of Common Functions

» Polynomial functions. Example:
f(z) = 22° +32° +1
Fact: Let f(z) = Zf:o a;x’. Then f(x) = O(z®). flz) = 247

f(ac) _ 5:6121 —|—£U37

Proof: Let A = max |a;|. For x > 1 we can then estimate f(x) as follows:

fz)

aka:k + ak_laﬁk’_l + ...+ a1x+ ap
A(zb 2 4 2+ 1)
A(xP 4+ 2% + . 2t 2
A(k + 1)z"

IA A

This gives us that f(x) <c=xk forc =A(k+1) and x>1. W
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Big-Oh Notation — Properties of Common Functions

Theorem: For all a,b >0, ¢ >1, we have
(@) 1=0(log )
(b) logfn =O(nb)
(c) nb=0(c")

Proof: We prove (c). Take d = c?and 4 = 1/(d—1)°. Since ¢ > 1and b > 0, we have d > 1.
Then, for n > 1 we can estimate »n? as follows

n = 1+14...+1)°
< (Q+d+d*+...+dh
— (d;——ll)b
< (gZg)° @) = A (@) = A"

This gives us that n® <A4-c" forn>1. W
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for f(n) = n*log”n -4@

We can estimate it as follows: \

suspect for the
dominating term

f(n) =n’log’n +n’
this is actually
the € relation

because log’n = O(n),

) 3 <
=n"0n) +n by previous slide

= 0(n°) +n’
this is actually —

the C relaton — = 0(713)

So f(n) = O(n).
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for f(n) = 13n%3 logg n+ 11\/% log’n @

We can estimate it as follows: /

suspect for the
f) = 13n*3log2n + 11y/nlog’ n + n’ dominating term

= 13n*20(n"") + 11n*20(n*>) + n’
= 0(n’) + O(n°) + n’
= O(n)

So f(n) = O(n?).
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Big-Oh Notation — Examples

suspect for the

Example: Determine the best big-Oh estimate for f(n) = Tn°2" “’@Hdominating term

We can estimate f(n) as follows:

f(n) n°2" + 3"

= 2" . (7n® +1.5")

= 2" (O(1.5™) +1.5™) because n° = O(1.5")
= 2". O(1.5")

= 0(3")

So fin)=0(3").
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the running time of this algorithm:

Algorithm WhatsMyRuntime (n: integer)
for i+1 to 6n do z+«2z—1
for i <1 to 2n2do
for j«1 to ntl do z+«z2—-z

Number of iterations of the first “for” loop = 6n

Number of iterations of the second (double) “for” loop = 2n?(n + 1)

Each iterations takes O(1) time, so the total running time is

6n +2n%(n+1) = 2n° +2n% +6n = O(n?)
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Big-Oh Notation — Examples

Example: Determine the best big-Oh estimate for the number of “hello”s printed by this algorithm:

Algorithm HowManyHellos (n: 1nteger)
for i1 to 6n do print (“hello”) «——— 6n*hello’s
for i <1 to 2nt+ldo
for j«1 to *+2 do print (“hello”)
Analysis of double “for” loop:

* For each i, the internal loop makes i+2 iterations
» So the total number of iterations of the double “for” loop is

ZZTL—I—l( _|_ 2) _ ZZ'I’L—I—l + ZZn—I—l
T@2n+1)2n+2)+2(2n+1)
= 2n* +Tn+3

Therefore the total number of “hello’s is 2n* + 13n +3 = O(n?)
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Big-Q Notation — Definition

Definition: Let fin) and g(n) : Z — Z be two functions. We say that f(n) is of lower bound, as

_ - <«—— opposed to big-Oh,
order at least g(n), denoted f(n) =Q(g(n)), iff there are constants ¢ and no that is an upper bound
such that |f(n)| > c-g(n) for all n > ny.
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Big-Q Notation — Definition

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of
order at least g(n), denoted f(n) =Q(g(n)), iff there are constants ¢ and no
such that |f(n)| > c-g(n) for all n > ny.

Example: Prove, directly from the definition, that 10n+5 =Q(n). /c =10 no =20

This is straightforward when all terms are non-negative: 10n+5 > 10n for n > 0.

Example: Prove, directly from the definition, that 2n3—6n2+2 =Q(n3).

We can estimate

2nc —6n%+2 > 2n’ —6n?
= n’+n’(n—6)
> n forn>6 «—— ;=6

\021
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O®-Notation

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of order g(n), denoted
f(n) =0O(g(n)), iff there are constants ci, c2 and no such that ci-g(n) < |[f(n)| < c2 -g(n) for all n > ny.

€8 (n)
Sf(n)

Cl'g(n)

\

University of California, Riverside



O®-Notation

Definition: Let f{n) and g(n) : Z — Z be two functions. We say that f{n) is of order g(n), denoted
f(n) =0O(g(n)), iff there are constants ci, c2 and no such that ci-g(n) < [(n)| < c2 ‘g(n) for all n > ny.

In other words, f(n) =0(g(n)) means that g(n) is a tight asymptotic
estimate for f(n) . This is capture by the following theorem:

Theorem: Let f{n) and g(n) : Z — Z be two functions. Then f(n) =0(g(n)) iff both f{rn) =0(g(n))
and f(n) =Q(g(n)).

Proof: Since (=) is trivial, so we will only prove (<). Since f(n) =0(g(n)) and f(n) =C(g(n)), there
are constants such that

c1:g(n) < [f(n)| < c2-g(n)
foran/ \fornzm

Taking no = max( n1 , n2) , both inequalities will hold forn >no. W
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©-Notation — Examples

Example: Determine the ©@-estimate for the harmonic sequence:

_ 1 1 _

Theorem: Forn>1 we have i(logn—1) < H, < logn+ 1.

We showed earlier that H, = O(log n). So we now need to show that H, = Q(log n).
From the theorem, for n > 4 we have:

'\ H, > i(logn—1)
no =4 > ilogn
So H; = Q(log n). c=1/4

Since Hy, = O(log n) and Hy = Q(log n), we obtain that H, = O(log n).

University of California, Riverside



®-Notation — Examples

Example 1: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

for i< 1 to 2n+1 do
x < x?
for j«1 to n+2do
for k<1 to n+1do

x <« x/k

Answer: O(n°).
Explanation: We have three nested independent loops, each of range ®(n).
Operations x < xZ and x < x/k take time ®(1).

University of California, Riverside



®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

I« 1
while i<n do
X — x2

[ — 2.1

Question: How many iterations will this loop make forn = 125 ?

* none of the above
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®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

[« 1
while i<n do

x<—x2

[ — 2.1

Question: How many iterations will this loop make forn = 125 ?

* none of the above

Answer: 7. Values of i for which the loop willexecute:1 2 4 8 16 32 64
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®-Notation — Examples

Example 2: Give the ®-estimate for the running time of this code, as a function of 7 (no proofs).

I« 1
while i<n do
X — x2

[ — 2.1

Answer: ©(log n).
Explanation: i will double exactly [logn] times, and [logn]| = ®(logn) .
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®-Notation — Examples

Challenge questions: Give the ®-estimate, as a function of n, for the running time of these
three pieces of code.

[« 1 I« 1
while i<n do while i<n do
for j=i to n do for j=1 to i do
X« x2 X« x2
[ «—2-1 <21
<2
while i<n do
X« x2
i« i°
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