
CS	111,	Review	of	Prerequisite	Topcs	 1

Review of Prerequisite Topics

• Logic 
• Sets, sequences, relations 
• Basic combinatorics: counting, summation formulas  
• Elementary number theory 
• Algebra 
• Proofs, proof techniques (mathematical induction)
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Logic: propositional and predicate calculus

Propositional calculus:  
• Deals with propositions, which are statements that can be assigned a boolean value of true or 

false (1 or 0) 
• Establishes rules for: 

- combining propositions into more complex propositions using boolean operations 
- reasoning about validity of propositions

Example: 
“if sun is yellow and cats bark then today is Monday”
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⎩p q r

p ∧ q  ⇒ r

p , q , r  are boolean variables   (atomic propositions)
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Analyzing compound propositions using truth tables:

p ⇒ q p q p ⇒ q
0 0 1
0 1 1
1 0 0
1 1 1

¬p∨q p q ¬p∨q
0 0 1
0 1 1
1 0 0
1 1 1

Tautology: proposition that is true for all combination of values of its variables

p q p ∧ q  p ∨ q  (p ∧ q) ⇒ (p ∨ q)
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

(p ∧ q) ⇒ (p ∨ q)

These propositions are equivalent!

p ) q ⌘ ¬p _ q

Logic: propositional and predicate calculus
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Basic laws

de Morgan laws: ¬(p _ q) ⌘ ¬p ^ ¬q
¬(p ^ q) ⌘ ¬p _ ¬q

distributive laws: r _ (p ^ q) ⌘ (r _ p) ^ (r _ q)

r ^ (p _ q) ⌘ (r ^ p) _ (r ^ q)

double negation: ¬(¬p) ⌘ p

… 

Logic: propositional and predicate calculus
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Predicate calculus:  
• Extension of propositional calculus, where propositions can involve predicates, which are 

properties of elements of some domain that we want to reason about 
• We can form propositions from predicates by using quantifiers ∃ and ∀

Example: 
“every bird flies”

Use predicates: 
                       B(x) = “x is a bird”         F(x) = “x flies”  

Then “every bird flies” can be written as  

                       ∀x  B(x) ⇒ F(x) 

Logic: propositional and predicate calculus
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Logic: propositional and predicate calculus

de Morgan laws extend to predicate calculus:

¬ 8xP (x) ⌘ 9x¬P (x)

¬ 9xP (x) ⌘ 8x¬P (x)

Question: Is the following “distributive law” true?

8x(P (x) _Q(x) ) ⌘ 8xP (x) _ 8xQ(x)

No, only one implication is true

8xP (x) _ 8xQ(x) �! 8x(P (x) _Q(x) )
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Logic: propositional and predicate calculus

Puzzle (zoom poll): 

Which of the statements below is a negation of statement  
“For each X, if X moos then  X is a cow” ? 

(a) “There is no X that does not moo and is not a cow” 

(b) “For each X, X does not moo and X is not a cow” 

(c) “For each X, if X does not moo then X is not a cow” 

(d) “There exists an X that moos and is not a cow” 

(e) None of the above
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Logic: propositional and predicate calculus

Puzzle (zoom poll): 

So the answer is (d)

Solution: 
¬8x [M(x) ) C(x)] ⌘ ¬8x [¬M(x) _ C(x) ]

⌘ 9x¬[¬M(x) _ C(x) ]

⌘ 9xM(x) ^ ¬C(x)

Which of the statements below is a negation of statement  
“For each X, if X moos then  X is a cow” ? 

(a) “There is no X that does not moo and is not a cow” 

(b) “For each X, X does not moo and X is not a cow” 

(c) “For each X, if X does not moo then X is not a cow” 

(d) “There exists an X that moos and is not a cow” 

(e) None of the above
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Sets: set notation, operations on sets 

Question: which of the following relations are true?

1∈{0,{1,2,3,4}}

{1,2,3,4}∈{0,{1,2,3,4}}

{1,2,3,4}⊆ {0,{1,2,3,4}}

{{1,2,3,4}}⊆ {0,{1,2,3,4}}

False

False

True

True

• Defining sets

A = {a, b, c}
B = {1, 2, ..., 10}
C = {x 2 R : x3 � x2 + x = 1}
D = {p+ q : p, q 2 N and p, q are prime}

• Relations involving sets
a 2 {a, b, c, d, e}

{a, b} ✓ {a, b, c, d, e}
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Sets: set notation, operations on sets 

• Basic operations on sets
X [ Y X \ Y Y

• Power set of a set X : set of all subsets of X
X = {a, b, c}

P(X) = { ;, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }

It is an open problem in 
number theory whether 
this set is finite

• Cartesian product of sets X and Y: set of all ordered pairs, one from X and one from Y
X = {a, b} Y = {1, 2, 3}

X ⇥ Y = { (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }

• Cardinality of X : number of elements of X

X = {a, b, c, d} Y = {x 2 N : x2 + 1 is prime}
|X| = 4 |Y | = ?
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Relations 

‣ Let A be a set. Any subset  R ⊆ A×A is called a relation.

Example: Some relations for  A = ℤ (integers)

R = {(1, 3), (7, 59), (2, 17), (0, 10)}
Q = {(a, b) : b = a2}
S = {(a, b) : 3|a� b}

Types of relations: 
• Functions 
• Equivalence relations 
• Partial orders 
• …

Notations for a and b being related in R :

(a, b) 2 R aRb R(a, b)

in general, relations could 
be between different sets
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Relations 

‣ An equivalence relation is a relation R ⊆ A×A that satisfies the following properties: 
- Reflexive:  aRa   ∀a ∈ A 
- Symmetric: aRb  ⇒ bRa    ∀a,b ∈ A 
- Transitive: aRb ∧ bRc  ⇒ aRc    ∀a,b,c ∈ A 

Examples: 
• Isometry (in geometry) 
• S = {(x,y) ∈ ℝ×ℝ : |x| = |y| } 
• Congruence relation for integers:  a ≡ b (mod 5) iff  5 | a − b  
• Parallel vectors: 

D = {((x, y), (u, v)) 2 R2 ⇥ R2 : xv = yu}
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Relations 

Equivalence classes: [a] ={b ∈ A : aRb} , set of all elements in A related to a.

Theorem: If R ⊆ A×A is an equivalence relation then its equivalence 
classes partition A  into disjoint subsets. 

Example: Congruence relation for integers:  a ≡ b (mod 5) iff  5 | a − b. 
Equivalence classes:

[0] = {...,�10,�5, 0, 5, 10, ...}
[1] = {...,�9,�4, 1, 6, 11, ...}
[2] = {...,�8,�3, 2, 7, 12, ...}
[3] = {...,�7,�2, 3, 8, 13, ...}
[4] = {...,�6,�1, 4, 9, 14, ...}
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Relations 

Sample Problem: You are given three relations P,Q,R ⊆ {a,b,c,d}× {a,b,c,d}

For each relation tell (write Y or N) whether it has the listed properties:

P a b c d
a Y N Y N
b N Y N Y
c Y N Y N
d N Y N Y

Q a b c d
a Y Y N Y
b N Y N Y
c N N Y Y
d N N N Y

R a b c d
a Y N N N
b N N N Y
c N N N Y
d N N Y N

reflexive transitive symmetric anti-symmetric equivalence
P
Q
R
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Combinatorics: counting and summation formulas

Counting basic combinatorial structures: 

• Functions (also sequences, tuples, vectors) 

• 1-1 Functions 

• k-Permutations 

• Permutations 

• Subsets 

• k-Subsets 

• ….
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Combinatorics: counting and summation formulas

Principle of independent choices 

• Simple form:  ｜X×Y｜=｜X｜·｜Y｜ 

• Generalized: If there are p choices to choose x, and 
for each x there are q choices to choose y, then there 
are pq choices of pairs (x, y) 

• Extends naturally to more sets (or steps)
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Combinatorics: counting and summation formulas

• Number of functions  

- ∣X∣﹦n , ∣Y∣﹦m 
- Compute number of functions f : X  → Y

Claim: There are  mn such functions

X Y

‣ Assign a value to each x ∈ X one by one 

‣ We have n independent steps 

‣ At each step there are m choices 

‣ So the number of functions is 

Proof: Use independence principle

m ·m · ... ·m| {z }
n times

= mn
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Combinatorics: counting and summation formulas

• Number of binary strings of length n 
• Number of subsets of  {1,2, … ,n}

So 

• there are 2n binary strings of length n 

• there are 2n subsets of {1,2, … ,n}

binary strings 
of length n

subsets of 
{1,2, … ,n}

functions from 
{1,2, … ,n} to {0,1}

1:1 1:1

x 1 2 3 4 5
f(x) 0 1 1 0 1

0 1 1 0 1

 {2,3,5}

Example:
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Combinatorics: counting and summation formulas

• Number of 1-1 functions  

- ∣X∣﹦n , ∣Y∣﹦m ≥ n 
- Compute number of 1-1 functions f : X  → Y

Claim: The number of such 1-1 functions is m!/(m - n)!

X
Y

step 1:

step 2:

step 3:

‣ Assign a value to each x ∈ X one by one 

‣ We have n steps 

‣ At each step j there are m − j + 1 choices (independently 
of previous choices) 

‣ So the number of 1-1 functions is 

Proof: Use independence principle

m · (m� 1) · ... · (m� n+ 1) = m!/(m� n)!
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Combinatorics: counting and summation formulas

Let X﹦ {1,2, … ,n} 
A permutation of X is an ordering of elements of X

Corollary: The number of permutations of X is n!

permutations of X 1-1 functions from X to X
1:1

A k-permutation of X is an ordered selection of k elements of X

 k-permutations of X 1-1 functions from {1,2, … ,k} to X
1:1

Corollary: The number of k-permutations of X is n!/(n - k)!

 X﹦{1,2,3,4,5}
Example:

60 3-permutations:
1, 2, 3

1, 2, 4

1, 2, 5

1, 3, 2

1, 3, 4

1, 3, 5

1, 4, 2

1, 4, 3

. . .
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Combinatorics: counting and summation formulas

Let X﹦ {1,2, … ,n} 
A k-subset of X is a subset of cardinality k

Claim: The number of k-subsets of X is
�n
k

�
= n!

k!(n�k)!

‣ The number of k-permutations is n!/(n - k)!

Proof:

 X﹦{1,2,3,4,5}Example:
60 3-permutations:
1, 2, 3

1, 2, 4

1, 2, 5

1, 3, 2

1, 3, 4

. . .

2, 1, 3

. . .

2, 3, 1

. . .

3, 1, 2

. . .

3, 2, 1

. . .

{1,2,3} appears 
6 times 

‣ Each k-subset is counted k! times in the list of k-permutations
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Combinatorics: counting and summation formulas

Puzzle (zoom poll): 

What is the number of binary strings of length 7 that have exactly 3 1’s? 

• 7 
• 210 
• 343 
• 35 
• none of the above 
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Combinatorics: counting and summation formulas

Puzzle (zoom poll): 

What is the number of binary strings of length 7 that have exactly 3 1’s? 

• 7 
• 210 
• 343 
• 35 
• none of the above 

Solution: This is the same as the number of 3-subsets of {1,2,3,4,5,6,7}. 

Answer:
✓
7

3

◆
=

7!

3! · 4! =
1 · 2 · 3 · 4 · 5 · 6 · 7

(1 · 2 · 3) · (1 · 2 · 3 · 4) = 35
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Combinatorics: counting and summation formulas

Let 1 ≤ k ≤ n−1. Prove the following “Pascal triangle” equality 
✓
n

k

◆
=

✓
n� 1

k

◆
+

✓
n� 1

k � 1

◆

Proof: Let X﹦ {1,2, … ,n}. 
The number of k-subsets of X  is

Fix any z ∈ X. Consider two types of k-subsets of X : 

‣ Those that do not contain z 

‣ Those that contain z (k−1)-subsets of X ∖{z}
1:1

k-subsets of X ∖{z}
1:1

z

X
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• Arithmetic sequence: ai = a+ b · i for i = 0, 1, 2, ...

3, 10, 17, 24, 31, 38, ...

Example:

25

Combinatorics: counting and summation formulas

1 2 3 .  .  .  . n-1 n
n n-1 n-2 .  .  .  . 2 1

n+1 n+1 n+1 .  .  .  . n+1 n+1 total = n(n+1)

We double-count, so we need to divide n(n+1) by 2

Proof 1:  Proof for sequence 0, 1, 2, … , n. We show that 
Pn

i=1 i =
1
2n(n+ 1).

Claim:
Pn

i=0 ai =
1
2 (n+ 1)(a0 + an)

notation for a0 + a1 + ...+ an
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Combinatorics: counting and summation formulas

Thus the claim holds for n=k+1. From the base case and the inductive step, the 
claim holds for all  n.

Base case. For n = 0, we have 
P0

i=1 i = 0 = 1
20(0 + 1)

Inductive step. Assume that the claim holds for  n=k , that is                                     .   
Pk

i=1 i = 1
2k(k + 1)

Then for n=k+1 , we have Pk+1
i=1 i =

Pk
i=1 i+ (k + 1)

= 1
2 · k(k + 1) + (k + 1)

= (k + 1)( 12 · k + 1)

= 1
2 (k + 1)(k + 2)

Proof 2:  Proof for sequence 0, 1, 2, … , n. We use induction to show that 
Pn

i=1 i =
1
2n(n+ 1).



University	of	California,	Riverside 27

Combinatorics: counting and summation formulas

Example:

2, 6, 18, 54, 162, ...

Claim:
Pn

i=0 a
i = an+1�1

a�1

4
2

8

2i

2i+1

 . . .

2n+1

 . . .

Proof: Proof for sequence 1, 2 , 4, … ,2n. We show that 
Pn

i=0 2
i = 2n+1 � 1

1 1 2 4 ... 2i�1 2i ... 2n

extra 1

• Geometric sequence:                                                      for a ≠ 1. ai = c · ai for i = 0, 1, 2, ...

for simplicity, assume c = 1
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Combinatorics: counting and summation formulas

Claim:
Pn

i=0 a
i = an+1�1

a�1

Proof 1: We can prove it by direct calculation:

(a� 1) ·
nX

i=0

ai = a ·
nX

i=0

ai �
nX

i=0

ai

=
nX

i=0

ai+1 �
nX

i=0

ai

=
n+1X

i=1

ai �
nX

i=0

ai

= an+1 � 1
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Combinatorics: counting and summation formulas

Proof 2: We now prove it using mathematical induction:

Claim:
Pn

i=0 a
i = an+1�1

a�1

Base case. For n=0, we have LHS =
P0

i=0 a
i
= a0 = 1 and RHS = 1

Inductive step. Assume that the claim holds for  n=k , that is
Pk

i=0 a
i = ak+1�1

a�1

Thus the claim holds for n=k+1. From the base case and the inductive step, the 
claim holds for all  n.

Then for n=k+1 , we have Pk+1
i=0 ai =

Pk
i=0 a

i + ak+1

= ak+1�1
a�1 + ak+1

= ak+1�1+(a�1)ak+1

a�1

= ak+2�1
a�1
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Elementary number theory 

• prime and composite numbers 

• factorization 

• greatest common divisor 

• basic modular arithmetic
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Elementary number theory 

Integer numbers ℤ = {…, -3, -2, -1, 0 , 1 , 2 , 3 , …} 
Natural numbers  ℕ = {0 , 1 , 2 , 3 , …}

A natural number p >1 is prime iff its only divisors are 1 and p. Otherwise it is called composite.

Fundamental Theorem of Arithmetic: Every positive natural number has a unique 
representation as a product of prime numbers.

Example:

16335 = 3 · 3 · 3 · 5 · 11 · 11 = 33 · 51 · 112
84 = 2 · 2 · 3 · 7 = 22 · 31 · 71

Example: first 15 primes 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ...

factorization of 84
prime factors of : 84 2,3,7
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Elementary number theory 

Theorem: There are infinitely many prime numbers.

Proof: We give an argument by contradiction. Suppose that there are only finitely many prime 
numbers, say p1, p2, …, pt . 

Consider q = p1 p2 ⋯ pt +1. We have that p1 p2 ⋯ pt  is a multiple of each pi and the next multiple 
of pi  is p1 p2 ⋯ pt + pi > q. So q is not a multiple of any  pi.  
This means that the prime factors of q are not not among  p1, p2, …, pt  — contradiction with the 
assumption that only p1, p2, …, pt are primes.

This proof was given by Euclid circa 300 BC !!
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Elementary number theory 

Example: 16335 = 33 · 51 · 70 · 112 and 693 = 32 · 50 · 71 · 111

So gcd(16335, 693) = 32 · 111 = 99

Numbers a, b ∈ ℕ  are called relatively prime (a.k.a. co-prime) iff gcd(a,b) = 1

Example: gcd(15, 22) = 1 gcd(128, 81) = 1

‣ Greatest common divisor gcd(a,b): Largest c ∈ ℕ such that c|a and c|b

Example: gcd(15, 27) = 3 gcd(16335, 693) = 99

Theorem: Let the factorizations of a and b be 

Then                                                                                     gcd(a, b) = pmin(↵1,�1)
1 pmin(↵2,�2)

2 ... pmin(↵t,�t)
t .                                                                                     

.                                                                                     a = p↵1
1 p↵2

2 ... p↵t
t and b = p�1

1 p�2
2 ... p�t

t



University	of	California,	Riverside 34

Puzzle (zoom poll): Are numbers 273 and 605 relatively prime? (True/False)

Elementary number theory 
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Puzzle (zoom poll): Are numbers 273 and 605 relatively prime? (True/False)

Answer: Yes

Solution: Factor these numbers: 253 = 3 · 7 · 13 605 = 5 · 11 · 11

Elementary number theory 



University	of	California,	Riverside 36

Elementary number theory 

‣ Modular arithmetic

Theorem: For any a, b ∈ ℤ there are q ∈ ℕ and r ∈ {0,1,…,q-1} such that a = b·q + r

Congruence relation:  a and b are congruent modulo m , denoted a ≡ b (mod m) ,  
iff  a rem m = b rem m (or, equivalently m | a − b ).

Example:
68 ⌘ 12 (mod 7)

57 6⌘ 23 (mod 11)

q = ba/bc

remainder of a/b , also 
denoted a mod b

r = a rem b

caution: different meaning of “mod”
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Elementary number theory 

Theorem: Assume that a ≡ b (mod m) and c ≡ d (mod m). Then 
      a+c ≡ b+d (mod m)     and   a·c ≡ b·d (mod m).

Theorem: For any fixed m, relation a ≡ b (mod m) is an equivalence relation on ℤ.

Proof: We just need to verify the conditions of equivalence relations:

For transitivity, if  m | a−b  and  m | b−c   then  m | (a−b) + (b−c). So m | a−c. 

• Reflexive: a ≡ a (mod m) 
• Symmetric: a ≡ b (mod m) implies b ≡ a (mod m) 
• Transitive: a ≡ b (mod m) and b ≡ c (mod m) implies a ≡ c (mod m)

✓
✓

✓
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Algebra

• Solving equations: linear, quadratic, polynomial 
• Systems of linear equations 
• Linear algebra (matrix multiplication)
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Algebra

Solve     x3 − 2x2 − 2x + 4 = 0

• If there is an integral root, must be a divisor of 4  

• Candidates:     

•  works 

• Factor: 

              

• So the roots are 

−4 , − 2 , − 1 , 1 , 2 , 4

x = 2

x3 − 2x2 − 2x + 4 = (x − 2)(x2 − 2) = 0

2 , 2 , − 2
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Algebra

Matrix multiplication

what is this value?

Question: What is  ?C11

[
3 −1 2
0 1 −2
1 0 2 ] × [

1 0 −1
2 0 3

−1 4 1 ] = [
? ? ?
? ? ?
? ? ? ]

																																 																															A B C
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Matrix multiplication

Question: What is  ?C11

[
3 −1 2
0 1 −2
1 0 2 ] × [

1 0 −1
2 0 3

−1 4 1 ] = [
−1 8 −4
4 −8 1

−1 8 1 ]
																																 																															A B C

Answer:  −1

Algebra
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Proofs

A proof is a rigorous argument justifying validity of a mathematical statement, showing that this 
statement logically follows from the assumptions. 

Earlier slides have proofs of 

• Formulas for the number of functions, 1-1 functions, permutations, subsets, …. 

• Summation formulas for arithmetic and geometric sequences (including two proofs 
using induction) 

• Pascal triangle equality 

• That there are infinitely many primes (proof by contradiction)
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Proofs

‣ Mathematical induction: technique for proving properties of integers

To prove that ∀n P(n)  holds, show the following:  
• Base case: P(0) 
• Inductive step: ∀k P(k)  ⇒P(k+1)

Variants: 

• Base case could be P(n0), for some n0. Then the proof shows that ∀n ≥ n0 P(n) . 

• In strong induction, the inductive step is:  ∀k [∀i ≤ k P(i) ] ⇒P(k+1) .

Intuition: boostraping property P(n) : 

0 1 2 3 k

base case

k+1
. .  . . .  .

n

inductive step

 ←   ( Note: ∀n is shorthand for∀n ∈ ℕ )
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Example:

73 � 23 = 343� 8

= 335

44

Proofs

Claim: ∀n  5|7n−2n

Proof: We apply mathematical induction.

Base case. For n = 0, we have  70−20  = 0 = 5·0.
Inductive step. Consider k ∈ ℕ. Assume that the claim holds for  n = k , that is  7k−2k   = 5·b for 
some b ∈ ℕ. 

here we use inductive 
assumption

So 7k+1−2k+1 is a multiple of 5, completing the inductive step.

Then for n = k+1 , we have
7k+1 � 2k+1 = 7 · 7k � 2 · 2k

= 5 · 7k + 2 · (7k � 2k)

= 5 · 7k + 2 · (5b)
= 5 · (7k + 2b)
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Game	of	NIM:	

- In	the	beginning	there	are	5	piles	of	matchsticks:		
- Players	alternate	moves	
- At	each	turn,	a	player	can	remove	any	number	of	sticks	from	one	pile	
- The	player	that	removes	the	last	stick	wins

45

Power of proofs: Game of NIM

at least one
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Power of proofs: Game of NIM

Play:
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Power of proofs: Game of NIM

Game	of	NIM:	

- In	the	beginning	there	are	5	piles	of	matchsticks:		
- Players	alternate	moves	
- At	each	turn,	a	player	can	remove	any	number	of	sticks	from	one	pile	
- The	player	that	removes	the	last	stick	wins

Theorem: The 2nd player has a winning strategy: If she follows this strategy, 
she is guaranteed to win, no matter how the 1st player moves.

We will prove the following theorem:
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Power of proofs: Game of NIM

Nimsum of numbers: bit-wise xor operation

To compute  do this: 
• Convert each  into binary 
• For each bit , xor the -th bits of all , 

the result is the -th bit of  
• Convert these bits into decimal representation of 

y = nimsum(x1, x2, . . . , xk)
x1, x2, . . . , xk

i i x1, x2, . . . , xk
i y

y

this won’t be important, we will only 
care whether nim-sum is 0 or not

parity of number of 1’s: 
0 if even, 1 if odd

in our version of NIM, k = 4
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Power of proofs: Game of NIM

Nimsum of numbers: bit-wise xor operation

To compute  do this: 
• Convert each  into binary 
• For each bit , xor the -th bits of all , 

the result is the -th bit of  
• Convert these bits into decimal representation of 

y = nimsum(x1, x2, . . . , xk)
x1, x2, . . . , xk

i i x1, x2, . . . , xk
i y

y

Example 1: nimsum(1,3,5,7)

1 = 0 0 0 1
3 = 0 0 1 1
5 = 0 1 0 1
7 = 0 1 1 1____________

nimsum = 0 0 0 0 = 0

11 = 1 0 1 1
13 = 1 1 0 1
7 = 0 1 1 1
5 = 0 1 0 1
6 = 0 1 1 0____________

nimsum = 0 0 1 0 = 2

Example 2: nimsum(11,13,7,5,6)
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Power of proofs: Game of NIM

Nimsum of numbers: bit-wise xor operation

To compute  do this: 
• Convert each  into binary 
• For each bit , xor the -th bits of all , 

the result is the -th bit of  
• Convert these bits into decimal representation of 

y = nimsum(x1, x2, . . . , xk)
x1, x2, . . . , xk

i i x1, x2, . . . , xk
i y

y

Puzzle 

Zoom poll: what is  ?  
• 3 
• 7 
• 0 
• 6 
• 2

nimsum(1,3,9,13)
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Power of proofs: Game of NIM

Nimsum of numbers: bit-wise xor operation

To compute  do this: 
• Convert each  into binary 
• For each bit , xor the -th bits of all , 

the result is the -th bit of  
• Convert these bits into decimal representation of 

y = nimsum(x1, x2, . . . , xk)
x1, x2, . . . , xk

i i x1, x2, . . . , xk
i y

y

Puzzle 

Zoom poll: what is  ?  
• 3 
• 7 
• 0 
• 6 
• 2 

Answer: 6

nimsum(1,3,9,13)

1 = 0 0 0 1
3 = 0 0 1 1
9 = 1 0 0 1

13 = 1 1 0 1____________
nimsum = 0 1 1 0 = 6
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Lemma 1: If  then all moves 
from  go to non-0 minsum configurations.

nimsum(x) = 0
x

Lemma 2: If  then some move 
from  goes to a 0-nimsum configuration.

nimsum(x) ≠ 0
x

52

Power of proofs: Game of NIM

Let  be a configuration.x = (x1, x2, . . . , xk)

Quantifiers are important !!!

∀ moves ∃ move



University	of	California,	Riverside 53

Power of proofs: Game of NIM

Let  be a configuration.x = (x1, x2, . . . , xk)

0 nimsum 
configurations

non-0 nimsum 
configurations

Lem
m

a 1 Le
m

m
a 

2

Lemma 1: If  then all moves 
from  go to non-0 nimsum configurations.

nimsum(x) = 0
x

Lemma 2: If  then some move 
from  goes to a 0-nimsum configuration.

nimsum(x) ≠ 0
x
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Power of proofs: Game of NIM

Example: x = (1,1,3,3)

Lemma 1: If  then all moves 
from  go to non-0 nimsum configurations.

nimsum(x) = 0
x

0 = 0 0
1 = 0 1
3 = 1 1
3 = 1 1_______

nimsum = 0 1

1 = 0 1
1 = 0 1
3 = 1 1
3 = 1 1_______

nimsum = 0 0

x

1 = 0 1
1 = 0 1
2 = 1 0
3 = 1 1_______

nimsum = 0 1

1 = 0 1
1 = 0 1
1 = 0 1
3 = 1 1_______

nimsum = 1 0

1 = 0 1
1 = 0 1
0 = 0 0
3 = 1 1_______

nimsum = 1 1

1 → 0

3 → 2 3 → 1

3 → 0
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Power of proofs: Game of NIM

Lemma 2: If  then some move 
from  goes to a 0-nimsum configuration.

nimsum(x) ≠ 0
x

Example: x = (2,3,3)

2 = 1 0
3 = 1 1
3 = 1 1_______

nimsum = 1 0

1 = 0 1
3 = 1 1
3 = 1 1_______

nimsum = 0 1

0 = 0 0
3 = 1 1
3 = 1 1_______

nimsum = 0 0

2 = 1 0
2 = 1 0
3 = 1 1_______

nimsum = 1 1

2 = 1 0
1 = 0 1
3 = 1 1_______

nimsum = 0 0

2 = 1 0
0 = 0 0
3 = 1 1_______

nimsum = 0 1

x

2 → 1 3 → 0

3 → 2

2 → 0
3 → 1
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Power of proofs: Game of NIM

Lemma 1: If  then all moves 
from  go to non-0nimsum configurations.

nimsum(x) = 0
x

Lemma 2: If  then some move 
from  goes to a 0-nimsum configuration.

nimsum(x) ≠ 0
x

Proof of Theorem: Lemmas 1,2 give the following strategy of Player 2: At each step move 
to a configuration with non-0 minsum.

Then Player 1 will be always in a 0-nimsum configuration and Player 2 will be always 
in a non-0 nimsum configuration, because: 

• Player 1 starts in a 0-nimsum configuration  
• If Player 1 is in a 0-nimsum configuration, shen can only go to a non-0 nimsum 

configuration (by Lemma 1) 
• If Player 2 is in a non-0 nimsum configuration, she can move to a 0-nimsum  

configuration (by Lemma 2)

(1,3,5,7)

At each step at least one  decreases. So the game must end up in , which is a 
configuration of Player 1 because its nimsum is 0. Thus Player 2 wins !!

xi (0,0,0,0)
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Power of proofs: Game of NIM

Lemma 1: If  then all moves from  go to non-0 nimsum configurations.nimsum(x) = 0 x

Proof:   Let . If we change some  then at least one bit of  flips. Then the 
same bit of  flips, making  non-zero.

y = nimsum(x) xi xi
y y

x1 = 0 1 1 1 0 0 1 1 0 0
x2 = 1 1 1 1 0 0 0 0 1 0

. . .
xi = 0 0 1 0 0 1 1 0 0 1

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 0 0 0 0 0 0 0 0

x1 = 0 1 1 1 0 0 1 1 0 0
x2 = 1 1 1 1 0 0 0 0 1 0

. . .
xi = 0 0 0 0 0 1 1 1 0 1

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 1 0 0 0 0 1 0 0
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Power of proofs: Game of NIM

Lemma 2: If  then some move from  goes to a 0-nimsum configuration.nimsum(x) ≠ 0 x

Proof:   Let . Which  to change and how? 
First attemp: Choose any  and flip its bits which are 1 in . This will change  to :

y = nimsum(x) xi
xi y y 0

x1 = 1 0 1 1 0 0 1 1 0 1
x2 = 0 1 0 1 1 0 0 0 1 1

. . .
xi = 1 0 1 0 0 1 1 0 0 0

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 0 0 0 0 0 0 0 0

x1 = 1 0 1 1 0 0 1 1 0 1
x2 = 0 1 0 1 1 0 0 0 1 1

. . .
xi = 1 0 0 0 1 1 1 0 1 0

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 1 0 1 0 0 0 1 0

Problem: If the first bit in  we flipped was , this increases the value of  !xi 0 xi
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Power of proofs: Game of NIM

Lemma 2: If  then some move from  goes to a 0-nimsum configuration.nimsum(x) ≠ 0 x

Proof:   Let . Which  to change and how? 
Strategy: Choose  that has a  on the highest position of  in . (Such  must exist 
because there are odd number of ’s in this position.) Then flip the bits of this .

y = nimsum(x) xi
xi 1 1 y xi

1 xi

x1 = 1 0 1 1 0 0 1 1 0 1
x2 = 0 1 0 1 1 0 0 0 1 1

. . .
xi = 1 0 0 0 1 1 1 0 1 1

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 0 0 0 0 0 0 0 0

x1 = 1 0 1 1 0 0 1 1 0 1
x2 = 0 1 0 1 1 0 0 0 1 1

. . .
xi = 1 0 1 0 0 1 1 0 0 1

. . .
xk = 1 1 0 1 1 1 0 1 0 1

_______________________
y = 0 0 1 0 1 0 0 0 1 0

Then  becomes  and  decreases.y 0 xi
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Power of proofs: Game of NIM

Winning Strategy of Player 2: Choose  that has a  on the highest position of  in 
. Then reduce  by fliping its bits which are 1 in .

xi 1 1
y = nimsum(x1, x2, . . . , xk) xi y

Puzzle (zoom poll): If the current configuration is , which of the 
following moves is a winning move: 

•  
•  
•  
•  
•  
•  
•  
•  
•

(1,3,5,5)

1 → 0
3 → 2
3 → 1
3 → 0
5 → 4
5 → 3
5 → 2
5 → 1
5 → 0
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Since these sets overlap, all horses in H also have the same color, completing the 
inductive step.

61

Proofs

Proof: We apply mathematical induction.

Claim: ∀n ≥ 1, if H is a set of n horses, then all horses in H have the same color.

We will now prove that all horses have the same color! Formally:

Base case. For n = 1, H has just one horse, so the claim is trivially true.
Inductive step. Consider k ∈ ℕ. Assume that the claim holds for any set of  n = k horses.  
Let H be a set of k+1 horses, say H = { h1, h2, …, hk+1}.

By the inductive assumption, all horses in these two sets: 
                      { h1, h2, …, hk}      { h2, …, hk+1}.  
have the same color. 

Question: Where is the flaw??? These sets do not overlap when k = 1.
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Proofs

Claim: ∀n
Pn

i=1 i
2 = 1

6 (2n+ 1)(n+ 1)n

Proof: Class exercise.
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Proofs

Pythagorean Theorem: Let a, b, and c be the width, height, and 
hypotenuse of a right triangle. Then  a2 + b2 = c2. a

b c

Proof 1: We use simple geometry and some calculation. 
Consider a c×c square A1A2A3A4 with four copies of our 
right triangle attached along its edges, as in the picture. 
   The angles at each Ai add up to 180 degrees each angle Bi 
is 90 degrees. So B1B2B3B4  is an (a+b)×(a+b) square. 
    Adding the area of four triangles and square A1A2A3A4   
we have an equation

c

c

ba

A1 A2

A3A4

B1

B2

B3

B4
4 · 1

2ab+ c2 = (a+ b)2

This yields
2ab+ c2 = a2 + 2ab+ b2

Therefore
c2 = a2 + b2
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Proofs

Pythagorean Theorem: Let a, b, and c be the width, height, and 
hypotenuse of a right triangle. Then  a2 + b2 = c2. a

b c
a

b c

Intuition: The value c2 represents the area of a c×c square. So there should be a 
way to slice a c×c square into pieces that can be then reassembled to form a  a×a 
square and a b×b square.
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Proofs

Pythagorean Theorem: Let a, b, and c be the width, height, and 
hypotenuse of a right triangle. Then  a2 + b2 = c2. a

b c
a

b c

Proof 2:

ba

c

c

Draw a c×c square with one edge being 
the c edge of our triangle (in yellow).
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Proofs

Pythagorean Theorem: Let a, b, and c be the width, height, and 
hypotenuse of a right triangle. Then  a2 + b2 = c2. a

b c

ba

c

c

b

a
b

Draw a c×c square with one edge being 
the c edge of our triangle (in yellow).

Proof 2:

Draw an a×a square (pink) and a b×b 
square (blue) as in the picture.
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Proofs

Pythagorean Theorem: Let a, b, and c be the width, height, and 
hypotenuse of a right triangle. Then  a2 + b2 = c2. a

b c

ba

c

c

b

a
b

equal 
triangles

Proof 2:

Draw a c×c square with one edge being 
the c edge of our triangle (in yellow).

Draw an a×a square (pink) and a b×b 
square (blue) as in the picture.

This creates three pairs of identical 
triangles that can be rearranged following 
the arrows, convering the yellow square 
into the pink and the blue squares.


