
© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012

1

CS/EE 217
 GPU Architecture and Parallel Programming

Lecture 14 Atomic Operations and

Histogramming (part 1)

2

Objective
•  To understand atomic operations

–  Read-modify-write in parallel computation
–  Use of atomic operations in CUDA
–  Why atomic operations reduce memory system throughput
–  How to avoid atomic operations in some parallel algorithms

•  Histogramming as an example application of atomic
operations
–  Basic histogram algorithm
–  Privatization

A Common Collaboration Pattern

•  Multiple bank tellers count the total amount of cash in
the safe

•  Each grab a pile and count
•  Have a central display of the running total
•  Whenever someone finishes counting a pile, add the

subtotal of the pile to the running total
•  A bad outcome

–  Some of the piles were not accounted for

3

A Common Parallel Coordination
Pattern

•  Multiple customer service agents serving customers
•  Each customer gets a number
•  A central display shows the number of the next

customer who will be served
•  When an agent becomes available, he/she calls the

number and he/she adds 1 to the display
•  Bad outcomes

–  Multiple customers get the same number
–  Multiple agents serve the same number

4

A Common Arbitration Pattern

•  Multiple customers booking air tickets
•  Each

–  Brings up a flight seat map
–  Decides on a seat
–  Update the the seat map, mark the seat as taken

•  A bad outcome
–  Multiple passengers ended up booking the same seat

5

6

Atomic Operations

 If Mem[x] was initially 0, what would the value of
Mem[x] be after threads 1 and 2 have completed?

– What does each thread get in their Old variable?

 The answer may vary due to data races. To avoid
data races, you should use atomic operations

thread1: thread2:Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Timing Scenario #1
Time Thread 1 Thread 2

1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (1) Mem[x] ß New
4 (1) Old ß Mem[x]
5 (2) New ß Old + 1
6 (2) Mem[x] ß New

•  Thread 1 Old = 0
•  Thread 2 Old = 1
•  Mem[x] = 2 after the sequence

7

Timing Scenario #2
Time Thread 1 Thread 2

1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (1) Mem[x] ß New

4 (1) Old ß Mem[x]
5 (2) New ß Old + 1
6 (2) Mem[x] ß New

•  Thread 1 Old = 1
•  Thread 2 Old = 0
•  Mem[x] = 2 after the sequence

8

Timing Scenario #3
Time Thread 1 Thread 2

1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

•  Thread 1 Old = 0
•  Thread 2 Old = 0
•  Mem[x] = 1 after the sequence

9

Timing Scenario #4
Time Thread 1 Thread 2

1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

•  Thread 1 Old = 0
•  Thread 2 Old = 0
•  Mem[x] = 1 after the sequence

10

11

Atomic Operations –
To Ensure Good Outcomes

thread1:

thread2:Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

thread1:

thread2:Old ß Mem[x]
New ß Old + 1
Mem[x] ß NewOld ß Mem[x]

New ß Old + 1
Mem[x] ß New

Or

12

Without Atomic Operations

thread1:
thread2: Old ß Mem[x]

New ß Old + 1

Mem[x] ß New

Old ß Mem[x]

New ß Old + 1

Mem[x] ß New

•  Both threads receive 0
•  Mem[x] becomes 1

Mem[x] initialized to 0

Atomic Operations in General

•  Performed by a single ISA instruction on a memory
location address
–  Read the old value, calculate a new value, and write the new

value to the location

•  The hardware ensures that no other threads can access
the location until the atomic operation is complete
–  Any other threads that access the location will typically be

held in a queue until its turn
–  All threads perform the atomic operation serially

13

Atomic Operations in CUDA

•  Function calls that are translated into single
instructions (a.k.a. intrinsics)
–  Atomic add, sub, inc, dec, min, max, exch (exchange), CAS

(compare and swap)
–  Read CUDA C programming Guide 4.0 for details

•  Atomic Add

 int atomicAdd(int* address, int val);
reads the 32-bit word old pointed to by address in global or
shared memory, computes (old + val), and stores the result
back to memory at the same address. The function returns old.

14

More Atomic Adds in CUDA

•  Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address, unsigned int val);

•  Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long int*
address, unsigned long long int val);

•  Single-precision floating-point atomic add (capability >
2.0)
–  float atomicAdd(float* address, float val);

15

Histogramming

•  A method for extracting notable features and patterns
from large data sets
–  Feature extraction for object recognition in images
–  Fraud detection in credit card transactions
–  Correlating heavenly object movements in astrophysics
–  …

•  Basic histograms - for each element in the data set,
use the value to identify a “bin” to increment

16

A Histogram Example

•  In sentence “Programming Massively Parallel
Processors” build a histogram of frequencies of each
letter

•  A(4), C(1), E(1), G(1), …

17

•  How do you do this in parallel?

Iteration #1 – 1st letter in each section

18

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E
1

F G H I J K L M
2

N O P
1

Q R S T U V

Iteration #2 – 2nd letter in each section

19

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G H I J K L
1

M
3

N O P
1

Q R
1

S T U V

Iteration #3

20

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G H I
1

J K L
1

M
3

N O
1

P
1

Q R
1

S
1

T U V

Iteration #4

21

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G
1

H I
1

J K L
1

M
3

N
1

O
1

P
1

Q R
1

S
2

T U V

Iteration #5

22

P R O G R A M M I N G M A VI S S YL E P

Thread 0 Thread 1 Thread 2 Thread 3

A
1

B C D E
1

F G
1

H I
1

J K L
1

M
3

N
1

O
1

P
2

Q R
2

S
2

T U V

What is wrong with the algorithm?

23

ANY MORE QUESTIONS

© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012

24

