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Objective

e To learn practical histogram programming techniques
— Basic histogram algorithm using atomic operations

— Privatization



Review: A Histogram Example

* In phrase “Programming Massively Parallel
Processors” build a histogram of frequencies of each
letter

. A(4), C(1), E(1), G(1), ...

 How do you do this in parallel?
— Have each thread to take a section of the input

— For each input letter, use atomic operations to build the
histogram
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[teration #2 — 2™ letter in each section
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[teration #3
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Iteration #5
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What 1s wrong with the algorithm?

* Reads from the input array are not coalesced
— Assign mputs to each thread in a strided pattern

Erocess adi' acent inEut letters

— Adjacent threads
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[teration 2

« All threads move to the next section of imnput
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A Histogram Kernel

* The kernel receives a pointer to the input buffer
« Each thread process the input 1n a strided pattern

__global  void histo kernel(unsigned char *buffer,
long size, unsigned int *histo)

int 1 = threadldx.x + blockldx.x * blockDim.x;

// stride 1s total number of threads
int stride = blockDim.x * gridDim.x;
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More on the Histogram Kernel

//" All threads handle blockDim.x * gridDim.x
// consecutive elements
while (1 <size) {

atomicAdd( &(histo[buffer[1]]), 1);

1 += stride;
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Atomic Operations on DRAM

DRAM - DRAM Intra-channel Burst Byte
Bank Channel Offset

A[21:20] A[19:14] A[13:11] A[10:6] A[5:2] A[1:0]

...... SM#29
i
v
DRAM DRAM (=
Ctir3 | - Ctrir 7

32 Interleaved ports per
DRAM controller, selected

by A[10:6]

4 Banks per interleaved
port, selected by A[21:20]

Bank Selection

* An atomic operation

starts with a read, with a
latency of a few hundred
cycles
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Atomic Operations on DRAM

DRAM - DRAM
Bank Channel

A[21:20] A[19:14] A[13:11]

|

Intra-channel Burst Byte

Offset
A[10:6] A[5:2] A[1:0]

L

Bank Selection

SM#1 | ... SM#29
A i
v
DRAM | DRAM DRAM «—
Ctrr2 | Ctrir3 | - Ctrir 7
32 Interleaved ports per
X 32 DRAM controller, selected

by A[10:6]

4 Banks per interleaved
port, selected by A[21:20]

* An atomic operation

starts with a read, with a
latency of a few hundred
cycles

The atomic operation
ends with a write, with a
latency of a few hundred
cycles

During this whole time,
no one else can access

the location y



Atomic Operations on DRAM

« Each Load-Modify-Store has two full memory access
delays

— All atomic operations on the same variable (RAM location)
are serialized

time

>

mte nal r mte nal r

DRAM delay DRAM delay  DRAM delay

atomic operation N+1
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Latency determines throughput of
atomic operations

* Throughput of an atomic operation is the rate at which
the application can execute an atomic operation on a
particular location.

* The rate 1s limited by the total latency of the read-
modify-write sequence, typically more than 1000
cycles for global memory (DRAM) locations.

e This means that 1f many threads attempt to do atomic
operation on the same location (contention), the
memory bandwidth 1s reduced to < 1/1000!
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You may have a similar experience in
supermarket checkout

* Some customers realize that they missed an item after
they started to check out

* They run to the 1sle and get the item while the line
waits

— The rate of check 1s reduced due to the long latency of
running to the isle and back.

* Imagine a store where every customer starts the check
out before they even fetch any of the items

— The rate of the checkout will be 1 / (entire shopping time of
cach customer)
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Hardware Improvements (cont.)

* Atomic operations on Fermi L2 cache

— medium latency, but still serialized
— Global to all blocks
— “Free improvement” on Global Memory atomics

time

>

internal routing

Ju

atomic operation N atomic operation N+1
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Hardware Improvements

« Atomic operations on Shared Memory
— Very short latency, but still serialized
— Private to each thread block
— Need algorithm work by programmers (more later)

time

>

internal routing

g

atomic operation N atomic operation N+1
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Atomics 1n Shared Memory Requires
Privatization

* Create private copies of the histo[ ] array for each
thread block

_ global  void histo kernel(unsigned char *buffer,
long size, unsigned int *histo)
{
__shared  unsigned int histo private[256];
if (threadldx.x < 256) histo private[threadidx.x] = 0;
__syncthreads();
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Build Private Histogram

int 1 = threadldx.x + blockldx.x * blockDim.x;
// stride 1s total number of threads
int stride = blockDim.x * gridDim.x;
while (1 <size) {
atomicAdd( &(histo private[buffer[1]), 1);

1 += stride;
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Build Final Histogram

// wait for all other threads in the block to finish
__syncthreads();

if (threadldx.x <256)

atomicAdd( &(histo[threadldx.x]),
histo_private[threadldx.x] );
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More on Privatization

Privatization 1s a powerful and frequently used
techniques for parallelizing applications

The operation needs to be associative and
commutative

— Histogram add operation 1s associative and commutative

The histogram size needs to be small
— Fits into shared memory

What if the histogram 1s too large to privatize?
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Other Atomic operations

« atomicCAS (int *p, int cmp, int val)
— CAS = compare and swap

//atomically perform the following
int old = *p;

if(cmp ==old) *p =v;
return old;

 AtomicExch — unconditional version of CAS
int old = *p;

P=V;
return old

 What are these used for?
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Locking causes control divergence in
GPUs

Every thread
tries to lock

But only one
succeeds

Locking thread Non-locked
continues threads idle

until unlock

Divergence deadlock if locking thread idles
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Alternatives to locking?

* Lock-free algorithms/data structures
— Update a private copy

— Try to atomically update a global data structure using
compare and swap or similar

— Retry 1f failed
— Need data structures that support this kind of operation

* Wait-free algorithms/data structures

— Similar to histogramming — don’t wait, but atomic update
— But applies only to some algorithms
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Lock free vs. locking

7

—{ Try taking lock
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current -> new

Compare & Swap]

Done

Lock-Free

Example from Nvidia presentation at GTC 2013
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Read, Modify,
Write Operation

1. Read
Old Link

3. Link In
New Data
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1. Read
Old Link

|
| |
’Xi+1 Ki+2 : L5 ’Xi+4

. - I 2. Connect
3. Link In Old_l_mk
New Data

Parallel
Linked Lists

. ) void insert(ListNode mine, ListNode prev)
<1> Compare&Swap {
current > new ListNode old, link = prev->next;
do {

Swap old = link;
success? mine->next = old;
s link = atomicCAS(&prev->next, link, mine)

} while(link = old);
Done }




ANY MORE QUESTIONS?
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