CS/EE 217

GPU Architecture and Parallel Programming

Lecture 15: Atomic Operations and
Histogramming - Part 2

© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012

Objective

e To learn practical histogram programming techniques
— Basic histogram algorithm using atomic operations

— Privatization

Review: A Histogram Example

* In phrase “Programming Massively Parallel
Processors” build a histogram of frequencies of each
letter

. A(4), C(1), E(1), G(1), ...

 How do you do this in parallel?
— Have each thread to take a section of the input

— For each input letter, use atomic operations to build the
histogram

Iteration #1 — 13t letter 1n each section

A

Thread 0

Thread 1

Thread 2

Thread 3

1

2

1

ABCDEFGHIJKLMNOPQRSTUYV

[teration #2 — 2™ letter in each section

mwﬁnntﬂn@n:*%m

Thread 0

Thread 1

1

1

Thread 2

Thread 3

113

1

1

ABCDEFGHIJKLMNOPQRSTUYV

[teration #3

AR

Thread 0 Thread 1 Thread 2 Thread 3

1 1 1 1{3 1 {1 1]1
ABCDEFGHIJKLMNOPQRSTUYV

[teration #4

g

Thread 0 Thread 1 Thread 2 Thread 3

1 1 1 1 1{3]1]1]1 1]2
ABCDEFGHIJKLMNOPQRSTUYV

Iteration #5

T

Thread 0 Thread 1 Thread 2 Thread 3

1 1 1 1 1{3]1]1]2 212
ABCDEFGHIJKLMNOPQRSTUYV

What 1s wrong with the algorithm?

* Reads from the input array are not coalesced
— Assign mputs to each thread in a strided pattern

Erocess adi' acent inEut letters

— Adjacent threads

A

Thread O

Thread 1

Thread 2

1

1 {1

Thread 3

1

ABCDEFGHIJKLMNOPQRSTUYV

[teration 2

« All threads move to the next section of imnput

R A NG MASSITVELY P

Thread O Thread 1 Thread 2 Thread 3

1 1 2 1 {1 2

10

ABCDEFGHIJKLMNOPQRSTUYV

A Histogram Kernel

* The kernel receives a pointer to the input buffer
« Each thread process the input 1n a strided pattern

__global void histo kernel(unsigned char *buffer,
long size, unsigned int *histo)

int 1 = threadldx.x + blockldx.x * blockDim.x;

// stride 1s total number of threads
int stride = blockDim.x * gridDim.x;

11

More on the Histogram Kernel

//" All threads handle blockDim.x * gridDim.x
// consecutive elements
while (1 <size) {

atomicAdd(&(histo[buffer[1]]), 1);

1 += stride;

12

Atomic Operations on DRAM

DRAM - DRAM Intra-channel Burst Byte
Bank Channel Offset

A[21:20] A[19:14] A[13:11] A[10:6] A[5:2] A[1:0]

...... SM#29
i
v
DRAM DRAM (=
Ctir3 | - Ctrir 7

32 Interleaved ports per
DRAM controller, selected

by A[10:6]

4 Banks per interleaved
port, selected by A[21:20]

Bank Selection

* An atomic operation

starts with a read, with a
latency of a few hundred
cycles

13

Atomic Operations on DRAM

DRAM - DRAM
Bank Channel

A[21:20] A[19:14] A[13:11]

|

Intra-channel Burst Byte

Offset
A[10:6] A[5:2] A[1:0]

L

Bank Selection

SM#1 | ... SM#29
A i
v
DRAM | DRAM DRAM «—
Ctrr2 | Ctrir3 | - Ctrir 7
32 Interleaved ports per
X 32 DRAM controller, selected

by A[10:6]

4 Banks per interleaved
port, selected by A[21:20]

* An atomic operation

starts with a read, with a
latency of a few hundred
cycles

The atomic operation
ends with a write, with a
latency of a few hundred
cycles

During this whole time,
no one else can access

the location y

Atomic Operations on DRAM

« Each Load-Modify-Store has two full memory access
delays

— All atomic operations on the same variable (RAM location)
are serialized

time

>

mte nal r mte nal r

DRAM delay DRAM delay DRAM delay

atomic operation N+1
15

atomic operation N

Latency determines throughput of
atomic operations

* Throughput of an atomic operation is the rate at which
the application can execute an atomic operation on a
particular location.

* The rate 1s limited by the total latency of the read-
modify-write sequence, typically more than 1000
cycles for global memory (DRAM) locations.

e This means that 1f many threads attempt to do atomic
operation on the same location (contention), the
memory bandwidth 1s reduced to < 1/1000!

16

You may have a similar experience in
supermarket checkout

* Some customers realize that they missed an item after
they started to check out

* They run to the 1sle and get the item while the line
waits

— The rate of check 1s reduced due to the long latency of
running to the isle and back.

* Imagine a store where every customer starts the check
out before they even fetch any of the items

— The rate of the checkout will be 1 / (entire shopping time of
cach customer)

17

Hardware Improvements (cont.)

* Atomic operations on Fermi L2 cache

— medium latency, but still serialized
— Global to all blocks
— “Free improvement” on Global Memory atomics

time

>

internal routing

Ju

atomic operation N atomic operation N+1

18

Hardware Improvements

« Atomic operations on Shared Memory
— Very short latency, but still serialized
— Private to each thread block
— Need algorithm work by programmers (more later)

time

>

internal routing

g

atomic operation N atomic operation N+1

19

Atomics 1n Shared Memory Requires
Privatization

* Create private copies of the histo[] array for each
thread block

_ global void histo kernel(unsigned char *buffer,
long size, unsigned int *histo)
{
__shared unsigned int histo private[256];
if (threadldx.x < 256) histo private[threadidx.x] = 0;
__syncthreads();

20

Build Private Histogram

int 1 = threadldx.x + blockldx.x * blockDim.x;
// stride 1s total number of threads
int stride = blockDim.x * gridDim.x;
while (1 <size) {
atomicAdd(&(histo private[buffer[1]), 1);

1 += stride;

21

Build Final Histogram

// wait for all other threads in the block to finish
__syncthreads();

if (threadldx.x <256)

atomicAdd(&(histo[threadldx.x]),
histo_private[threadldx.x]);

22

More on Privatization

Privatization 1s a powerful and frequently used
techniques for parallelizing applications

The operation needs to be associative and
commutative

— Histogram add operation 1s associative and commutative

The histogram size needs to be small
— Fits into shared memory

What if the histogram 1s too large to privatize?
23

Other Atomic operations

« atomicCAS (int *p, int cmp, int val)
— CAS = compare and swap

//atomically perform the following
int old = *p;

if(cmp ==old) *p =v;
return old;

 AtomicExch — unconditional version of CAS
int old = *p;

P=V;
return old

 What are these used for?

24

Locking causes control divergence in
GPUs

Every thread
tries to lock

But only one
succeeds

Locking thread Non-locked
continues threads idle

until unlock

Divergence deadlock if locking thread idles

25

Alternatives to locking?

* Lock-free algorithms/data structures
— Update a private copy

— Try to atomically update a global data structure using
compare and swap or similar

— Retry 1f failed
— Need data structures that support this kind of operation

* Wait-free algorithms/data structures

— Similar to histogramming — don’t wait, but atomic update
— But applies only to some algorithms

26

Lock free vs. locking

7

—{ Try taking lock

\,

o
~ >
. P

g

(=3

Read
Modify

\ 4

Unlock

Locking

.\.‘

J

_{

Generate new
value based on
current data

A 4

|

current -> new

Compare & Swap]

Done

Lock-Free

Example from Nvidia presentation at GTC 2013

X

$3517 payulT S3st1 payur]
1ljeseq lollesed g

=
oF
s
av!
>
[
~=—
L
—]
o
L
—_
5
—]
o
=
—
av!
al

1. Read
Old Link

xi+1 Xi+2 _| xl+4

3. Link In
New Data

(7]
_Z
Q5
o
& £

a

2 Connec{
) Old Link)

29

Read, Modify,
Write Operation

1. Read
Old Link

3. Link In
New Data

\
1
I
I
I

/

/

30

1. Read
Old Link

|
| |
’Xi+1 Ki+2 : L5 ’Xi+4

. - I 2. Connect
3. Link In Old_l_mk
New Data

Parallel
Linked Lists

.) void insert(ListNode mine, ListNode prev)
<1> Compare&Swap {
current > new ListNode old, link = prev->next;
do {

Swap old = link;
success? mine->next = old;
s link = atomicCAS(&prev->next, link, mine)

} while(link = old);
Done }

ANY MORE QUESTIONS?

32

