CS/ECE 217

GPU Architecture and Parallel
Programming

Lecture 16:
GPU within a computing system

Objective

* To understand the major factors that dictate
performance when using GPU as an compute
co-processor for the CPU

— The speeds and feeds of the traditional CPU world

— The speeds and feeds when employing a GPU

— To form a solid knowledge base for performance
programming in modern GPU’s

Review- Typical Structure of a CUDA
Program

» Global variables declaration
« Function prototypes
— __global__ void kernelOne(...)
« Main ()
— allocate memory space on the device — cudaMalloc(&d_GlblVarPtr, bytes)
— transfer data from host to device — cudaMemCpy(d_GlblVarPtr, h_Gl...)
— execution configuration setup
— kernel call — kernelOne<<<execution configuration>>>(args...);

— transfer results from device to host - Cudal\/lemey(h_GIbIVarPtr,...)f:;peat

— optional: compare against golden (host computed) solution needed
« Kernel — void kernelOne(type args,...)

— variables declaration - _ _local__, _ shared__

« automatic variables transparently assigned to registers or local memory
— syncthreads()...

Bandwidth —
Gravity of Modern Computer Systems

* The Bandwidth between key components
ultimately dictates system performance

— Especially true for massively parallel systems
processing massive amount of data

— Tricks like buffering, reordering, caching can
temporarily defy the rules in some cases

— Ultimately, the performance falls back to what the
“speeds and feeds” dictate

Classic PC architecture

* Northbridge connects 3
components that must be
communicate at high speed

— CPU, DRAM, video

— Video also needs to have 15t-
class access to DRAM

— Previous NVIDIA cards are
connected to AGP, up to 2
GB/s transfers
« Southbridge serves as a
concentrator for slower I/O
devices

Core Logic Chipset

(Original) PCI Bus Specification

e Connected to the southBridge
— Originally 33 MHz, 32-bit wide, 132 MB/second peak transfer rate
— More recently 66 MHz, 64-bit, 528 MB/second peak
— Upstream bandwidth remain slow for device (~256MB/s peak)

— Shared bus with arbitration

 Winner of arbitration becomes bus master and can connect to CPU or
DRAM through the southbridge and northbridge

PCI as Memory Mapped 1/0

* PCI device registers
are mapped 1nto the
CPU’s physical
address space

— Accessed through
loads/ stores (kernel
mode)

* Addresses are assigned
to the PCI devices at
boot time

— All devices listen for
their addresses

Dev 1

Dev 2

Dev 3

PCI Device
Memory Space

Main Memory
Space

PCI Express (PCle)

« Switched, point-to-point
connection
— Each card has a dedicated

“link” to the central switch,
no bus arbitration.

— Packet switches messages
form virtual channel

— Prioritized packets for QoS

* E.g., real-time video
streaming

PCle 2 Links and Lanes

Each link consists of one or
m()(i’e lanes

— Each lane 1s 1-bit wide (4 wires,
each 2-wire pair can transmit
2.5Gb/s 1n one direction)

» Upstream and downstream now
simultaneous and symmetric

— Each Link can combine 1, 2, 4,

8, 12, 16 lanes- x1, x2, etc.
— Each byte data is 8b/10b
encoded into 10 bits with equal
number of 1’s and 0’s; net data
rate 2 Gb/s per lane each way.
I : H :

— Thus, the net data rates are 250
MB/s (x1) 500 MB/s (x2), 1GB/
s (x4), 2 GB/s (x8), 4 GB/s
(x16), each way

8/10 bit encoding

 (Goal 1s to maintain DC
balance while have
sufficient state transition .
for clock recovery

 The difference of 1s and .

Os 1n a 20-bit stream
should be <2

e There should be no
more than 5 consecutive
Is or Os 1n any stream

00000000, 00000111,
11000001 bad

01010101, 11001100
good

Find 256 good patterns
among 1024 total
patterns of 10 bits to
encode an 8-bit data

A 25% overhead

PCle PC Architecture

 PCle forms the
interconnect backbone

— Northbridge/Southbridge are
both PCle switches

— Some Southbridge designs
have built-in PCI-PCle
bridge to allow old PCI

cards

— Some PCle I/O cards are
PCI cards with a PCI-PCle
bridge

* Source: Jon Stokes, PCI
Express: An Overview
— http://arstechnica.com/

articles/paedia/hardware/
pcie.ars

GeForce 7800 GTX
Board Details

SLI Connector Single slot cooling

..........

RS LSS

2l e e
4%+ 10000
i1 oo
an i el
x
xr

&
== g
- -l»—

. 5
=
==
ﬁl
.
&
-

a2

=
B
b |

..........

LIS 8 &
R e b= L - I
{! it G -
\ = = 1.
: ‘ ‘.I ‘ ‘ A " |
k3 e .3
J j @ 5 g 3

— :
)

“‘-.‘w. - {
u"-._\ —
= 1

]
=
e

e ewieml:

LY

o
|

llu“_llul lmll" AAAAALLULUULLLUUUAL LU

‘ T 256MB/256-bit DDR3
' 600 MHz

8 pieces of 8Mx32

16x PCIl-Express

HyperTransport™ Feeds and Speeds

* Primarily a low latency
direct chip-to-chip
interconnect, supports
mapping to board-to-board
interconnect such as PCle

* HyperTransport ™ 1.0
Specification

— 800 MHz max, 12.8 GB/s
aggregate bandwidth (6.4
GB/s each way)
* HyperTransport ™ 2.0
Specification
— Added PCle mapping

— 1.0- 1.4 GHz Clock, 22.4
GB/s aggregate bandwidth
(11.2 GB/s each way)

* HyperTransport ™ 3.0
Specification
— 1.8 -2.6 GHz Clock, 41.6 GB/s

aggregate bandwidth (20.8 GB/s
cach way)

Added AC coupling to extend
HyperTransport ™ to long
distance to system-to-system
interconnect

Extends HyperTransport Usability Latitude

Inside the Box

Chip-to-chip Board-to-board System-to-System

‘ HyperTransport Technology diniBand
SPI-4

FibreChannel
Ethernet

Qutside the Box

PCl Express

Serial RapidiO ASI

Parallel RapidiO

Lowest Latency Highest Latency

Courtesy HyPerTrans ort ™ Consortium
¢

Source: “White Paper: AMD HyperTransport
Technology-Based System Architecture

PCle 3

* A total of 8 Giga Transfers per second 1n each
direction

* No more 8/10 encoding but uses a polynomial
transformation at the transmaitter and 1ts
inverse at the receiver to achieve the same
effect

* So the effective bandwidth 1s double of PCle
2

PCle Data Transfer using DMA

« DMA (Direct Memory
Access) 1s used to fully
utilize the bandwidth of

an I/0 bus
i%részst“isr I;gl};:ézaalmd CPU <:>
destination
— Transfers a number of ~~
bytes requested by OS -<:>-
— Needs pinned memory GPU card
(or other I/O cards)

Pinned Memory

« DMA uses physical
addresses

The OS could
accidentally page out the
data that 1s being read or
written by a DMA and
page 1n another virtual
page 1nto the same
location

Pinned memory cannot
not be paged out

e If a source or destination

of a cudaMemCpy() 1n
the host memory is not
pinned, 1t needs to be
first copied to a pinned
memory — extra
overhead

cudaMemcpy 1s much
faster with pinned host
memory source or
destination

Allocate/Free Pinned Memory

(a.k.a. Page Locked Memory)
» cudaHostAlloc()

— Three parameters
— Address of pointer to the allocated memory
— Size of the allocated memory 1n bytes

— Option — use cudaHostAllocDefault for now

» cudaFreeHost()

— One parameter
— Pointer to the memory to be freed

Using Pinned Memory

Use the allocated memory and its pointer the
same way those returned by malloc();

The only difference 1s that the allocated
memory cannot be paged by the OS

The cudaMemcpy function should be about 2X
faster with pinned memory

Pinned memory 1s a limited resource whose
over-subscription can have serious
consequences

Important Trends

* Knowing yesterday, today, and tomorrow

— The PC world 1s becoming flatter
— CPU and GPU are being fused together

— Outsourcing of computation 1s becoming easier...

ANY MORE QUESTIONS?

