
CS/ECE 217

GPU Architecture and Parallel
Programming

Lecture 16:
GPU within a computing system

Objective
•  To understand the major factors that dictate

performance when using GPU as an compute
co-processor for the CPU
– The speeds and feeds of the traditional CPU world
– The speeds and feeds when employing a GPU
– To form a solid knowledge base for performance

programming in modern GPU’s

•  Global variables declaration
•  Function prototypes

–  __global__ void kernelOne(…)
•  Main ()

–  allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
–  transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)
–  execution configuration setup
–  kernel call – kernelOne<<<execution configuration>>>(args…);
–  transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)
–  optional: compare against golden (host computed) solution

•  Kernel – void kernelOne(type args,…)
–  variables declaration - __local__, __shared__

•  automatic variables transparently assigned to registers or local memory
–  syncthreads()…

Review- Typical Structure of a CUDA
Program

repeat
as
needed

Bandwidth –
Gravity of Modern Computer Systems
•  The Bandwidth between key components

ultimately dictates system performance
– Especially true for massively parallel systems

processing massive amount of data
– Tricks like buffering, reordering, caching can

temporarily defy the rules in some cases
– Ultimately, the performance falls back to what the

“speeds and feeds” dictate

Classic PC architecture
•  Northbridge connects 3

components that must be
communicate at high speed
–  CPU, DRAM, video
–  Video also needs to have 1st-

class access to DRAM
–  Previous NVIDIA cards are

connected to AGP, up to 2
GB/s transfers

•  Southbridge serves as a
concentrator for slower I/O
devices

CPU

Core Logic Chipset

(Original) PCI Bus Specification
•  Connected to the southBridge

–  Originally 33 MHz, 32-bit wide, 132 MB/second peak transfer rate
–  More recently 66 MHz, 64-bit, 528 MB/second peak
–  Upstream bandwidth remain slow for device (~256MB/s peak)
–  Shared bus with arbitration

•  Winner of arbitration becomes bus master and can connect to CPU or
DRAM through the southbridge and northbridge

PCI as Memory Mapped I/O
•  PCI device registers

are mapped into the
CPU’s physical
address space
–  Accessed through

loads/ stores (kernel
mode)

•  Addresses are assigned
to the PCI devices at
boot time
–  All devices listen for

their addresses

PCI Express (PCIe)
•  Switched, point-to-point

connection
–  Each card has a dedicated

“link” to the central switch,
no bus arbitration.

–  Packet switches messages
form virtual channel

–  Prioritized packets for QoS
•  E.g., real-time video

streaming

PCIe 2 Links and Lanes
•  Each link consists of one or

more lanes
–  Each lane is 1-bit wide (4 wires,

each 2-wire pair can transmit
2.5Gb/s in one direction)

•  Upstream and downstream now
simultaneous and symmetric

–  Each Link can combine 1, 2, 4,
8, 12, 16 lanes- x1, x2, etc.

–  Each byte data is 8b/10b
encoded into 10 bits with equal
number of 1’s and 0’s; net data
rate 2 Gb/s per lane each way.

–  Thus, the net data rates are 250
MB/s (x1) 500 MB/s (x2), 1GB/
s (x4), 2 GB/s (x8), 4 GB/s
(x16), each way

8/10 bit encoding
•  Goal is to maintain DC

balance while have
sufficient state transition
for clock recovery

•  The difference of 1s and
0s in a 20-bit stream
should be ≤ 2

•  There should be no
more than 5 consecutive
1s or 0s in any stream

•  00000000, 00000111,
11000001 bad

•  01010101, 11001100
good

•  Find 256 good patterns
among 1024 total
patterns of 10 bits to
encode an 8-bit data

•  A 25% overhead

PCIe PC Architecture
•  PCIe forms the

interconnect backbone
–  Northbridge/Southbridge are

both PCIe switches
–  Some Southbridge designs

have built-in PCI-PCIe
bridge to allow old PCI
cards

–  Some PCIe I/O cards are
PCI cards with a PCI-PCIe
bridge

•  Source: Jon Stokes, PCI
Express: An Overview
–  http://arstechnica.com/

articles/paedia/hardware/
pcie.ars

GeForce 7800 GTX
Board Details

256MB/256-bit DDR3
600 MHz
8 pieces of 8Mx32 16x PCI-Express

SLI Connector

DVI x 2

sVideo
TV Out

Single slot cooling

HyperTransport™ Feeds and Speeds
•  Primarily a low latency

direct chip-to-chip
interconnect, supports
mapping to board-to-board
interconnect such as PCIe

•  HyperTransport ™ 1.0
Specification
–  800 MHz max, 12.8 GB/s

aggregate bandwidth (6.4
GB/s each way)

•  HyperTransport ™ 2.0
Specification
–  Added PCIe mapping
–  1.0 - 1.4 GHz Clock, 22.4

GB/s aggregate bandwidth
(11.2 GB/s each way)

•  HyperTransport ™ 3.0
Specification
–  1.8 - 2.6 GHz Clock, 41.6 GB/s

aggregate bandwidth (20.8 GB/s
each way)

–  Added AC coupling to extend
HyperTransport ™ to long
distance to system-to-system
interconnect

Courtesy HyperTransport ™ Consortium
Source: “White Paper: AMD HyperTransport
Technology-Based System Architecture

PCIe 3
•  A total of 8 Giga Transfers per second in each

direction
•  No more 8/10 encoding but uses a polynomial

transformation at the transmitter and its
inverse at the receiver to achieve the same
effect

•  So the effective bandwidth is double of PCIe
2

PCIe Data Transfer using DMA
•  DMA (Direct Memory

Access) is used to fully
utilize the bandwidth of
an I/O bus
–  DMA uses physical

address for source and
destination

–  Transfers a number of
bytes requested by OS

–  Needs pinned memory

Main Memory (DRAM)

GPU card
(or other I/O cards)

CPU

DMA Global
Memory

Pinned Memory
•  DMA uses physical

addresses
•  The OS could

accidentally page out the
data that is being read or
written by a DMA and
page in another virtual
page into the same
location

•  Pinned memory cannot
not be paged out

•  If a source or destination
of a cudaMemCpy() in
the host memory is not
pinned, it needs to be
first copied to a pinned
memory – extra
overhead

•  cudaMemcpy is much
faster with pinned host
memory source or
destination

Allocate/Free Pinned Memory
(a.k.a. Page Locked Memory)

•  cudaHostAlloc()
– Three parameters
– Address of pointer to the allocated memory
– Size of the allocated memory in bytes
– Option – use cudaHostAllocDefault for now

•  cudaFreeHost()
– One parameter
– Pointer to the memory to be freed

Using Pinned Memory
•  Use the allocated memory and its pointer the

same way those returned by malloc();
•  The only difference is that the allocated

memory cannot be paged by the OS
•  The cudaMemcpy function should be about 2X

faster with pinned memory
•  Pinned memory is a limited resource whose

over-subscription can have serious
consequences

Important Trends
•  Knowing yesterday, today, and tomorrow

– The PC world is becoming flatter
– CPU and GPU are being fused together
– Outsourcing of computation is becoming easier…

ANY MORE QUESTIONS?

