

Part 3: Research Directions

Decreasing cost per unit computation

System Capability (log)

E"

2012: Goog‘le‘atacenter

——
i —\}
» <

iy
1981: IBM 5150

Il

"~

A

Single Core 000 Superscalar CPU

2 5 Better

(how to get here?)

Brawny (OoQ) Multicore

- Wimpy (In-order) Multicore

Ease of
Programming

Hardware Efficiency

Start by using right tool for each job...

Ease of
Programming

Hardware Efficiency

Amdahl’s Law Limits this Approach

Hard to accelerate Easy to accelerate

1

overall — 1 - Fraction
Fraction, , + e

Improvement

Improvement

easy

Question: Can dividing line be moved?

easy to accelerate (Acc. Arch1l)
< easy to accelerate (Acc. Arch2)

o

Forward-Looking GPU Software

* Still Massively Parallel
* Less Structured

* Memory access and control flow patterns are less
predictable

Less efficient on
today’s GPU

Molecular
Dynamics

Raytracing

Execute efficiently
on a GPU today

Object
Classification

Graphics
Shaders

Matrix
Multiply

[Tim Rogers]

Two Routes to “Better”

Better

Ease of
Programming

Energy Efficiency

Research Direction 1:
Mitigating SIMT Control Divergence

Recall: SIMT Hardware Stack

Stack
A/1111 Reconv. PC Next PC Active Mask
TOS —* - E 1111
TOS —> E D 0110
B/1111 TOS —* E E 1001

A

C/1001| |D/0110] |F

\/ Thread Warp Common PC

E/1111 Thread | Thread | Thread | Thread
1 2 3 4

G/1111

B C D E G
Py >l —> i —q —{ —1
e Ly i — 1 1 —> 1 —> |

| > Time

Potential for significant loss of throughput when control flow diverged!

Performance vs. Warp Size
* 165 Applications

1.8

—Warp Size 4 {

.

M

IPC normalized to warp

© o o 9o

Convergent
Applications

Application

Warp-Size Insensitive
Applications

Rogers et al., A Variable Warp-Size Architecture, ISCA 2015

Divergent
Applications

12

Dynamic Warp Formation

(Fung MICRO’07)

Warp 0

awiL

= o I Reissue/Memory
___________________________ A >678 Latency
___________________________ Al9101112| v
B 1234
B 5678

Bl 9101112 SIMD Efficiency 2> 88%

C 12---- Pack C 1278
5--78 —> | C| 5--1112
C| ----1112

How to pick threads to pack into warps?
Ip| 910--- |

E

1234

5678

9101112

13

Dynamic Warp Formation:
Hardware Implementation

Th readdScheduIer — _
Warp Update Register T B loo1ol 2 . ks
(5X2)3X8)o110] B —+®—> ~T1101] 1 :JE
Warp Update Register NT ® ' > 03.
X n@)[1001 c—+®—> - > o
A Y A Y 7 \llocator Z‘ ;
el Aut|H reiERERIEY (B
= ,
1o I - (2 o e o o
K@ Q) ol €) s © M ©)

IT|D, Reg#) |

No Lane Conflict

DWEF Pathologies: Starvation

B: if (K > 10)

C: K = 10;
* Majority Scheduling else
D: K= 0;

* Best Performing

., E: B = C[tid.x] + K;
* Prioritize largest group of threads with [tid.x]

same PC T 137

e Starvation c| 5-1112

* LOWER SIMD Efficiency! E 1278

Y E| 5-1112

100 s%‘,' !eslz 25

* Other Warp Scheduler? g 9 1503 4
* Tricky: Variable Memory Latency = 963a g

E| --10--

DWF Pathologies:
Extra Uncoalesced Accesses

* Coalesced Memory Access = Memory SIMD

e 15t Order CUDA Programmer Optimization
* Not preserved by DWF

E: B =C[tid.x] + K; #Acc = 3
No DWF E 1234 —> 0x100
E 5678 —> 0x140
E| 9101112 |—m/> 0x180
#Acc=9
With DWF | g 12712 0x100
E 96 38 0x140
E 510114 0x180

Wilson Fung, Tor Aamodt

Thread Block Compaction

L1 Cache Absorbs
Redundant
Memory Traffic

L1S Port Conflict

16

DWEF Pathologies: Implicit Warp Sync.

* Some CUDA applications depend on the lockstep execution of “static
warps”

Warp 0 Thread 0...31
Warp 1 Thread 32 ... 63

. Warp 2 Thread 64 ... 95
e E.g. Task Queue in Ray Tracing

int wid = tid.x / 32;
if (tid.x % 32 == 0) {
sharedTaskID[wid] = atomicAdd (g TaskID, 32);

Implicit }
Warp my TaskID = sharedTaskiD|[wid] + tid.x % 32,
Sync. ProcessTask (my TaskID) ;

Wilson Fung, Tor Aamodt Thread Block Compaction

Observation

* Compute kernels usually contain

. . Static
divergent and non-divergent CEnErErs W
(coherent) code segments Divergence

* Coalesced memory access usually in
coherent code segments ey

Warp
e DWF no benefit there

Recvg
Pt.

Reset Warps

Static
Warp

Coales. LD/ST
Coherent

Thread Block Compaction

* Run a thread block like a warp
* Whole block move between coherent/divergent code
* Block-wide stack to track exec. paths reconvg.

* Barrier @ Branch/reconverge pt. o . Implicit
e All avail. threads arrive at branch Warp Sync.
* Insensitive to warp scheduling
, Starration
* Warp compaction
* Regrouping with all avail. threads

* If no divergence, gives static warp arrangemextta Unc
ory Access

Wilson Fung, Tor Aamodt Thread Block Compaction

19

Thread Block Compaction

PC RPC Active Threads A 1234 A 1234
E| -|1|2|3|4|5|6|7|8|9|10/11]|12 Al 5678 Al 5678
D el Bl el el el Bl Bl el el el B A| 9101112 A| 9101112
C e | e | e | e | = | e | e | e | = | e | e | == [J [J
[J [J
[J [J
[J [J
A: K = A[tid.x]; C| 1278 ¢, 12--
cC| 5--1112 C| 5--78
B: if (K > 10
() bl 963a c| ----1112
C: K = 10; D| --10---- D| ----34
else E| 1234 D| ~-6-—--
D: K =0; El 5678 o
_ E| 9101112 E 1278
E: B = C[tid.x] + K; E| 5678
E| 9101112
Time

Wilson Fung, Tor Aamodt

Thread Block Compaction

20

Thread Compactor

e Convert activemask from block-wide stack to thread

IDs in warp buffer

* Array of Priority-Encoder

C

E

2

-7

8 |--|--

1

1

5 |--

11

=

2
P-

5

5

11

1

112
-7 -81|12
| P-Enc | | | P-Enc | |
2

Warp Buffer

C

1278

C

5--1112

Experimental Results

e 2 Benchmark Groups:
* COHE = Non-Divergent CUDA applications
* DIVG = Divergent CUDA applications

Serious Slowdown from

pathologies
No Penalty for COHE

22% Speedup on DIVG

o6 07 08 0.9 1 11 1.2 13

IPC Relative to Baseline
Per-Warp Stack

Wilson Fung, Tor Aamodt Thread Block Compaction 22

Recent work on warp divergence

Intel [MICRO 2011]: Thread Frontiers — early reconvergence for unstructured
control flow.

UT-Austin/NVIDIA [MICRO 2011]: Large Warps — similar to TBC except decouple size
of thread stack from thread block size.

NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving. Enable SIMD to
execute two paths at once.

Intel [ISCA 2013]: Intra-warp compaction — extends Xeon Phi uarch to enable
compaction.

NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and in more detail in
CGO 2013 paper]

NVIDIA }ISCA 2015]: Variable Warp-Size Architecture — merge small warps (4
threads) into “gangs”.

23

Thread Frontiers
[Diamos et al., MICRO 2011

a {Active Threads}, {Thread Frontier} T0O T1 T2 T3 To 1 T2 T3

Entry|Entry|Entry|Entry Entry|Entry|EntryEntry

{70, T1, T2, T3}, {}

881 . 1 |BB1|BB1|BB1|BB1| PushB3onTO 1 |BB1|BB1|BB1|BB1
Al BB1 Push Exiton T1
i T0}, {} 2 BB2[BB2[BB2| PUs" EX!ton
if({ {T1, T2, T3}, {BB3} 2 | IBB2|BB2|BB2
BB2 i
(cond1() || cond2()) | |bra condzo)| e?:;]l:t[e-.—(;,t#;e / \ Push B5 on T2 thread-frontier
s 2 3 BB3|BB3 3 |BB3 BB3|BB3| reconvergence
(cond3() || cond4()) BB3 BB3 | (11}, 3| BB2 i BBa| Push Exiton T3 — ofT0
) bra cond3() i ! {T2, T3}, {Exit} 4 (BB4 BB4
{ ~~'BB4 exe[‘ti'ltl)ij::c[l;;]"ce l \ ::I': ::‘a;:-l; thread-frontier
bra condd() 5 BB5 5 |BB5 BB5 reconvergence
} BEd Bhe Po?t sr:a:ckss T2 il
switch to on
executed twice l {T2}, {EX‘iV w}’ {BB5, Exit} 8 Pop stack Exit | Exit |Exit | Exit | Post dominator
[TO], [T2] Exit on T1 reconvergence
BB5 BB5 BB4 7 Pop stack of T1and T3
l switch to B3 on TO
; 8
post dominator
et | ext [l | ext | eomirgonce
a) compound conditionals b) unstructured control flow ¢) dynamic code expansion d) immediate post-dominator re-convergence e) re-convergence at thread frontiers

Figure 1: An example of an application with unstructured control flow leading to dynamic code expansion.

Temporal SIMT

Spatial SIMT (current GPUs) - Pure Temporal SIMT

32-wide datapath 1-wide

< o
< »

bﬂZ:) Y Yy Yy Y YYYYYYYYYYYYYYYYYYYwyw pﬂ:b w

thread thread
v O 31 o (threads)
time| 34 ;tlme >4 0
- ' - 1
2
3
4
v . v g
"1 warp instruction = 32 threads 7
8
9
10

[slide courtesy of Bill Dally]

Temporal SIMT Optimizations
Control divergence — hybrid MIMD/SIMT

32-wide 4-wide 1-wide

0 HEEEEEEEEEEEEEEEE RN EEEEEEEEEEE 0 OD
(41%) (65/))|:EED (1006)':I
EEEN O

EEEN] O

EREN O

O

O

O

O

g

Scalarization 0

O

Factor common instructions from multiple threads
Execute once — place results in common registers
[See: SIMT Affine Value Structure (ISCA 2013)]

[slide courtesy of Bill Dally]

Scalar Instructions in SIMT Lanes

Scalar register
visible to all

[slide courtesy of Bill Dally]

Scalar
instruction

spanning warp

thread

thread

registers

scalar

register

Temporal

execution of

Warp

threads

WLS W2.5
WIT3R| | [W2T3R] | eee
WLTLR| | [W2.TLR
WLTOR| | [W2.TOR

=
B
—
g
=
=
[
—
=
=

W31.5

W31.T3.R

W31.T2.R

W31.T1.R

W31.T0.R

N~

Multiple
lanes/warps

Variable Warp-Size Architecture

* Most recent work by NVIDIA [ISCA 2015]

e Split the SM datapath into narrow slices.
* Extensively studied 4-thread slices

* Gang slice execution to gain efficiencies of wider warp.

Slices share an L1
I-Cache and Memory Unit

Frontend execute
L1 I-Cache independently

Slice

Slice

Slice Datapath

Tim Rogers A Variable Warp-Size Architecture

Slice Datapath

28

Divergent Application Perf

Tim Rogers

c 1

IPC norngliéeg,tgw
ON MO ®

BWS 32 0OWS4 0OI-VWS JE-VWS

Lighting GamePhysics ObjClassifier Raytracing HMEAN-DIV

Divergent Applications

A Variable Warp-Size Architecture

29

E-VWS: Break +
Reform

Convergent Application Perform

BWS 32 0OWS4 0dI-VWS GSE-VWS

- N

o (o]
|

o N

Game 1 MatrixMultiply Game 2 FeatureDetect Radix Sort HMEAN-CON

IPC normaﬁze_d,to gyarp,size 32,
N

Convergent Applications

Warp-Size Insensitive
Applications Unaffected

Tim Rogers A Variable Warp-Size Architecture

Research Direction 2:
Mitigating High GPGPU Memory
Bandwidth Demands

Reducing Off-Chip Access / Divergence

* Re-writing software to use “shared memory” and avoid uncoalesced
global accesses is bane of GPU programmer existence.

* Recent GPUs introduce caches, but large number of warps/
wavefronts lead to thrashing.

* NVIDIA: Register file cache (ISCA 2011, MICRO)

» Register file burns significant energy
* Many values read once soon after written

* Small register file cache captures locality and saves energy
but does not help performance

 Recent follow on work from academia

* Prefetching (Kim, MICRO 2010)
* Interconnect (Bakhoda, MICRO 2010)
e Lee & Kim (HPCA 2012) CPU/GPU cache sharing

Thread Scheduling Analogy

[MICRO 2012]

* Human Multitasking
 Humans have limited attention capacity

>

o

Productivity
Q
©

Tasks at Once
* GPUs have limited cache capacity

GPU Core

Q
Q
c &
£ Qﬁmﬁ:@
€ o
Processor Cache (o)
- O
| -
()]
Q.

Threads Actively Scheduled

Use Memory System Feedback

IMICRO 2012]

r = Cache Misses

9

_*

o Performance
Seeoo0o000

I_____ ___-.

L_______

Threads Actively Scheduled

GPU Core

UGl é Processor ﬁ Cache

Scheduler

Sources of Locality

Intra-wavefront locality Inter-wavefront locality

Wave, Wave,
Wave,

LD Sline (X) LD Sline (X)

LD Sline (X)

e

Data Cache

LD Sline (X)

Data Cache

(Hits/Miss) PKI

120

100

(0]
o

(o]
o

H
o

N
o

o

Misses PKI

Inter-Wavefront Hits PKI

AVG-Highly Cache Sensitive

Intra-Wavefront Hits PKI

37

Scheduler affects access pattern

Round Robin Scheduler

Wave,

Id A,B,C,D...

Id A,B,C,D

Wave,
Wavefront
dzyxw | | Scheduler
W
X
Id Z,Y,X,W v
VA
D
C
B
A
Memory

System

Greedy then Oldest Scheduler

Wave, Wave,

Id A,B,C,D... ‘]

|d A,B,C,D...

Wavefront
Scheduler

> OO0 >WOU'

Memory
System

38

Use scheduler to shape access pattern

Greedy then Oldest Scheduler

Wave,

Id A,B,C,D

&S

Id A,B,C,D

Wave,

ld Z,Y,X,W

Wavefront
Scheduler

> ™ OO0 N-<><§

Memory
System

Cache-Conscious Wavefront Scheduling
[MICRO 2012 best paper runner up,
Top Picks 2013, CACM Research Highlight]

Wave,

|d A,B,C,D...

Wave,

Id Z,Y,X,W...

Wavefront
Scheduler

Memory
System

39

40

"""" BMIRR OGTO BOCCWS

HMEAN-Highly Cache-Sensitive

41

Static Wavefront Limiting
[Rogers et al., MICRO 2012]

* Profiling an application we can find an optimal number of wavefronts
to execute

e Does a little better than CCWS.

 Limitations: Requires profiling, input dependent, does not exploit
phase behavior.

Improve upon CCWS?

 CCWS detects bad scheduling decisions and avoids them in future.

* Would be better if we could “think ahead” / “be proactive” instead of
“being reactive”

Programmability case study [MICRO 2013]

Sparse Vector-Matrix Multiply

GPU-Optimized Version
SHOC Benchmark Suite L
(Oakridge National Labs)

Example 2 GPU-Optimized SPMV-Vector Kernel

Simple Version J

__global__ wvoid Example 1 Highly Divergent SPMV-Scalar Kernel
spmv__csr_vector_kernel (const floats wval,
const ints« cols,

const int* rowDelimiters,

__global___ wvoid
I spmv_csr_scalar_kernel (const floatx val,

const int dim, const intx cols,

float »~ out) const intx rowDelimiters,
{ const int dim,
int £t = threadIdx.x; float* out)
int id = t & (warpSize-1);
int warpsPerBlock = blockDim.x / warpSize;

int myRow = blockIdx.x * bl
+ threadIdx.x;
texReader vecTexReader;

Explicit Scratchpad Use Divergence

__shared volatile
float partialSums [BLOCK SIZE];

if (myRow < dim)

{

D d t W . . fi:aZtZr: g-lcf)i:JDel‘m‘ =Ts [myRow] ;

int d = Delidg Ro 11;

pEeEn Gl Added Complication erné‘zsgge_i?siaicy ey
J = start; 3

Size ters[myRow+1];

for (int j = warpStart + id;
J < warpEnd; Jj 4= warpSize)

{ S
#hispapcotriy Each thread has
t += wval[j] * vecTe

} locality

out [myRow] = t;

{
int col = cols[j];
mySum += wval[j] * vecTexReade
}
partialSums[t] = mySum;

// Reduce partial sums
if (id < 16)
partialSums[t] += partialSums[t+16];
if (id < 8)
partialSums[t] += partialSums[t+ 8];
if (id < 4)
partialSums[t] += partialSums[t+ 4];

e mtswmeres 21, Parallel Reduction
tialsums(ts 11; Using DAWS scheduling

within 4% of optimized with no
programmer input

ums[t];

JORGE CUAM © 2014

44

Observations
[Rogers et al., MICRO 2013]

« Memory divergence in static instructions is predictable

Main Memory

/

Divergence

Both Used To

Create Cache

- Data touched by divergent loads dependent on active mask [il
. Prediction

Main Memory

MainMemory

| ~ -
[War]
| EHER

Y

P
— = =) accesses

Divergence

45

Footprint Prediction

1. Detect loops with locality
p e .~ ~
\Some loops have locality Some don’t

~———_—’

Limit multithreading

here

2. Classify loads in the loop ~ Loop with locality

Diverged

Not Diverged

3. Compute footprint from active mask
- = [\Loop with locality]

Wa rp{O L[]
N

-—_

Diverged 4 accesses

- +
Not Diverged 1 access

Warp 0’s

Footprint
=5 cache lines

46

DAWS Operatlon Example

Cache Example Compressed Sparse Row Kernel
A[0] int C[]={0,64,96,128,160,160,192,224,256};
A[64] void sum_row_csr(float* A, ...) {

float sum = 0;
int i =C[tid];

A[96]
A[128]

———————————] < _F'-_--_--m-_--_-'_

Divergent Branch

| while(i < C[tid+1]) {

arps profile
for later

Warp 0 has branch divergence

Both warps capture PS
I together _ 4y

Footprint decreased

— \

Sparse MM Case Study Results

* Performance (normalized to optimized version)

Within 4% of optimized
with no programmer input

N

=
(0]

[

o
o

Divergent Code
Execution time

Other Schedulers CCWS DAWS

48

Memory Request Prioritization Buffer
[Jia et al., HPCA 2014]

Reorder requests by warp ID

Bypass accesses to hot set

* Reorder requests by sorting by Warp ID.
* Bypass when too many accesses to same cache set.

Priority-Based Cache Allocation in Throughput
Processors [Li et al., HPCA 2015]

e CCWS leaves L2 and DRAM underutilized.

* Allow some additional warps to execute but do not allow them
to allocate space in cache:

Schedule and allocate in L1

Normal Warps Warp 1 ————
. Warp 2
\ljvzr;-PSO”UUng Warp 3 Schedule and bypass L1
P Warp 4
Warp 5
Throttled Warps Not scheduled

50

Coordinated criticality-Aware Warp Acceleration
(CAWA) [Lee et al., ISCA 2015]

* Some warps execute longer than others due to lack of
uniformity in underlying workload.

* Give these warps more space in cache and more
scheduling slots.

e Estimate critical path by observing amount of branch
divergence and memory stalls.

* Also, predict if line inserted in line will be used by a
warp that is critical using modified version of SHiP
cache replacement algorithm.

Other Memory System Performance Considerations

* TLB Design for GPUs.

e Current GPUs have translation look aside buffers (makes managing multiple
graphics application surfaces easier; does not support paging)

 How does large number of threads impact TLB design?

* E.g., Power et al., Supporting x86-64 Address Translation for 100s of GPU
Lanes, HPCA 2014. Importance of multithreaded page table walker + page

walk cache.

Research Direction 3:
Coherent Memory for Accelerators

Why GPU Coding Difficult?

* Manual data movement CPU <~ GPU
* Lack of generic /O, system support on GPU

* Need for performance tuning to reduce
 off-chip accesses
* memory divergence
e control divergence

* For complex algorithms, synchronization
* Non-deterministic behavior for buggy code
* Lack of good performance analysis tools

Manual CPU <& GPU Data Movement

* Problem #1: Programmer needs to identify data
needed in a kernel and insert calls to move it to GPU

* Problem #2: Pointer on CPU does not work on GPU
since different address spaces

* Problem #3: Bandwidth connecting CPU and GPU is
order of magnitude smaller than GPU off-chip

* Problem #4: Latency to transfer data from CPU to
GPU is order of magnitude higher than GPU off-chip

* Problem #5: Size of GPU DRAM memory much
smaller than size of CPU main memory

l[dentifying data to move CPU <~ GPU

 CUDA/OpenCL: Job of programmer ®
* C++AMP passes job to compiler.

* OpenACC uses pragmas to indicate loops that should be offloaded to
GPU.

Memory Model

Rapid change (making programming easier)
e Late 1990’s: fixed function graphics only

e 2003: programmable graphics shaders

* 2006: + global/local/shared (GeForce 8)

e 2009: + caching of global/local

e 2011: + unified virtual addressing

e 2014: + unified memory / coherence

Caching

e Scratchpad uses explicit data movement. Extra work. Beneficial when
reuse pattern statically predictable.

 NVIDIA Fermi / AMD Southern Island add caches for accesses to
global memory space.

CPU memory vs. GPU global memory

* Prior to CUDA: input data is texture map.

* CUDA 1.0 introduces cudaMemcpy
* Allows copy of data between CPU memory space to global memory on GPU

e Still has problems:
* #1: Programmer still has to think about it!
e #2: Communicate only at kernel grid boundaries

» #3: Different virtual address space

e pointer on CPU not a pointer on GPU => cannot easily share complex data structures
between CPU and GPU

Fusion / Integrated GPUs

* Why integrate?
* One chip versus two (cf. Moore’s Law, VLSI)

e Latency and bandwidth of communication: shared physical address space,
even if off-chip, eliminates copy: AMD Fusion. 15t iteration 2011. Same DRAM
e Shared virtual address space? (AMD Kavari 2014)

* Reduce latency to spawn kernel means kernel needs to do less to justify cost
of launching

CPU Pointer not a GPU Pointer

* NVIDIA Unified Virtual Memory partially solves the problem but in a
bad way:

* GPU kernel reads from CPU memory space

* NVIDIA Uniform Memory (CUDA 6) improves by enabling automatic
migration of data

e Limited academic work. Gelado et al. ASPLOS 2010.

CPU <& GPU Bandwidth

e Shared DRAM as found in AMD Fusion (recent Core
i7) enables the elimination of copies from CPU to
GPU. Painful coding as of 2013.

* One question how much benefit versus good coding.
Our limit study (WDDD 2008) found only ~50% gain.
Lustig & Martonosi HPCA 2013.

* Algorithm design—MummerGPU++

CPU <~ GPU Latency

* NVIDIA’s solution: CUDA Streams. Overlap GPU
kernel computation with memory transfer. Stream =
ordered sequence of data movement commands and
kernels. Streams scheduled independently. Very
painful programming.

e Academic work: Limit Study (WDDD 2008), Lustig &
Martonosi HPCA 2013, Compiler data movement
(August, PLDI 2011).

GPU Memory Size

* CUDA Streams

e Academic work: Treat GPU memory as cache on CPU memory (Kim et
al., ScaleGPU, IEEE CAL early access).

Solution to all these sub-issues?

* Heterogeneous System Architecture: Integrated CPU and GPU with
coherence memory address space.

* Need to figure out how to provide coherence between CPU and GPU.

* Really two problems: Coherence within GPU and then between CPU
and GPU.

Research Direction 4.
Easier Programming with
Synchronization

Synchronization

* Locks are not encouraged in current GPGPU programming
manuals.

* Interaction with SIMT stack can easily cause deadlocks:

while(atomicCAS(&lock[a[tid]],0,1) != 0)

; // deadlock here if a[i] = a[j] for any 1,7 = tid 1in
warp

// critical section goes here

atomicExch (&lock[a[tid]], ©) ;

67

Correct way to write critical section for GPGPU:

done = false;
while(!done) {
if(atomicCAS (&lock[a[tid]], © , 1)==0) {

// critical section goes here

atomicExch(&lock[a[tid]], ©) ;

}
}

Most current GPGPU programs use barriers within thread
blocks and/or lock-free data structures.

This leads to the following picture...

68

* Lifetime of GPU Application Development

Performance

Time

Fine-Grained Locking/Lock-Free

Time

E.g. N-Body with 5M bodies
CUDA SDK: O(n?) — 1640 s (barrier)
Barnes Hut: O(nLogn) — 5.2 s (locks)

Transactional Memory

Time

69

Transactional Memory

* Programmer specifies atomic code blocks called
transactions [Herlihy’93]

Lock Version: TM Version:
Lock (X[a]) ; atomic {
Lock (X[b]) ; j>| X[c] = X[a]+X[b];
Lock (X[c]) ; }
X[c] = X[a]+X[Db];
Unlock (X[c]) ; Potential Deadlock!

Unlock (X[b]) ;
Unlock (X[a]) ;

70

Transactional Memory

Programmers’ View:

TX1
TX2

Non-conflicting transactions
may run in parallel

Memory
— A
TX1 B —
N TX2
\ 4 S
Commit D c .
ommit

TX2
TX1

Conflicting transactions

automatically serialized
Memory

«— | A

V C V
Commit Ab_ort

TX2

Commit

Are TM and GPUs Incompatible?

GPU uarch very different from multicore CPU...

KILO TM [MICRO’11, IEEE Micro Top Picks]

e Hardware TM for GPUs

* Half performance of fine grained locking
m Chip area overhead of 0.5%

Research Direction 5:
GPU Power Efficiency

GPU power

* More efficient than CPU but
e Consumes a lot of power
* Much less efficient than ASIC or FPGAs
 What can be done to reduce power consumption?

* Look at the most power hungry components
* What can be duty cycled/power gated?
 GPUWattch to evaluate ideas

Other Research Directions....

* Non-deterministic behavior for buggy code
* GPUDet ASPLOS 2013

Result Variation (Kepler)
100%

different results over
multiple executions
(@)
o
X

20000 30000 40000 50000
edges

* Lack of gooa perrormance analysis tools
* NVIDIA Profiler/Parallel NSight
e AerialVision [ISPASS 2010]
* GPU analytical perf/power models (Hyesoon Kim)

Lack of I/O and System Support...

e Support for printf, malloc from kernel in CUDA
* File system I/O?

* GPUfs (ASPLOS 2013):

POSIX-like file system API

One file per warp to avoid control divergence
Weak file system consistency model (close->open)
Performance API: O_GWRONCE, O_ GWRONCE
Eliminate seek pointer

 GPUnet (OSDI 2014): Posix like API for sockets
programming on GPGPU.

Conclusions

* GPU Computing is growing in importance due to
energy efficiency concerns

 GPU architecture has evolved quickly and likely to
continue to do so

* We discussed some of the important
microarchitecture bottlenecks and recent research.

 Also discussed some directions for improving
programming model

