CS/EE 217 GPU Architecture and
Parallel Programming

Lecture 22:
Introduction to OpenCL

Objective

e To Understand the OpenCL programming
model

— basic concepts and data types

— OpenCL application programming interface -
basic

— Simple examples to 1llustrate basic concepts and
functionalities

OpenCL Programs

* An OpenCL “program”
contains one or more
“kernels” and any
supporting routines that
run on a target device

* An OpenCL kernel 1s the
basic unit of parallel
code that can be
executed on a target
device

OpenCL Program

OpenCL Execution Model

* Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g

Parallel Kernel (device)
KernelA<<< nBlIk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlIk, nTid >>>(args);

OpenCL Kernels

* Code that actually kernel void
executes on target - 4 4
devices vadd(global const float *a,
« Kernel body is ~global const float *b,
instantiated once for ~global float *result)
each work 1tem
— An OpenCL work item = _
is equivalent to a int id = get global 1d(0);
CUDA thread result[id] = a[id] + b[id]:
« Each OpenCL work
item gets a unique J

index

Array of Parallel Work ltems

An OpenCL kernel is executed by an array of
work items
— All work items run the same code (SPMD)

— Each work item has an index that it uses to compute
memory addresses and make control decisions

threads o|l1]2|3|4|5]|6]|7

int id = get global id(0) ;

result[id] = a[id] + b [id];

Work Groups: Scalable Cooperation

* Divide monolithic work 1tem array into work groups

— Work 1tems within a work group cooperate via shared
memory, atomic operations and barrier synchronization

— Work items in different work groups cannot cooperate

work group O work group 1 work group 7

work items 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I56|57|58|59|60|61 |62|63|

int id = get global_id(0) ;
result [id] = a[id] + b [id];

int id = get_global_id(0) ; int id = get_global_id(0) ;
result[id] = a[id] + b [id]; result [id] = a[id] + b [id];

OpenCL

OpenCL API Call

Explanation

CUDA Equivalent

get_global_id(0);

global index of the
work item in the X
dimension

blockldx.x*blockDim.x+
threadldx.x

get_local _id(0)

local index of the work
item within the work
group in the x
dimension

threadldx.x

get_global_size(0);

size of NDRange in the
X dimension

gridDim.x*blockDim.x

get_local_size(0);

Size of each work
group in the x
dimension

blockDim.x

Multidimensional Work indexing

-

Work Group 3 Gilobal Size(0)
Crroup 1D
i Bl (o) iy 0.0 0.1
o |

& l . 1,0 22
2 t "
B T
2
=
=
\ O

W ork llcm

OpenCL Data Parallel Model
Summary

Parallel work 1s submitted to devices by launching
kernels

Kernels run over global dimension index ranges
(NDRange), broken up into “work groups”, and
“work 1tems”

Work 1tems executing within the same work group
can synchronize with each other with barriers or
memory fences

Work 1tems in different work groups can’t sync
with each other, except by launching a new kernel

OpenCL Host Code

* Prepare and trigger device code execution

— Create and manage device context(s) and
associate work queue(s), etc...

— Memory allocations, memory copies, etc
— Kernel launch

* OpenCL programs are normally compiled
entirely at runtime, which must be managed
by host code

OpenCL Hardware Abstraction

* OpenCL CPU
pel T SRS > OpenCL Device

GPUs, and other
Accelerators as “devices”

e Each “device” contains one D %'7 D %'7

or more ‘“‘compute units”, 1.e.

cores, SMs, etc...

* Each “compute unit”
contains one or more SIMD D ‘ | D ‘ |

“processing elements”

Compute Device

Compute unit 7

Private Private
memory 7 memory 1
l - .. l
PE 7 PE M
Local
memory 7

Compute unit N

Private Private
memory 7 memory
PE 7 | PEM |
Local
memory N

Global/Constant Memory Data Cache

A

A

A 4

Global Memory

Constant Memory

Compute Device Memory

An Example of Physical Reality
Behind OpenCL Abstraction

e)
GPU w/

p
on
local DRAM oy
_ (device)
166raph»c MCH

4 Serial
mm ATA Ports

Intel* High
Definition Audio

4 PCl

Express*x1 [

8 Hi-Speed
USB 2.0 Ports

OpenCL Context

Contains one or more devices

OpenCL memory objects are
assoclated with a context, not a
specific device

clCreateBuffer() 1s the main
data object allocation function

— error 1f an allocation 1s too large
for any device in the context
Each device needs 1ts own
work queue(s)

Memory transfers are
associated with a command
queue (thus a specific device)

OpenCL Context

OpenCL Device

LI
LI

LI
LI

LI
LI

LI
LI

OpenCL Device

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

OpenCL Context Setup Code (simple)

cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL,
NULL, &clerr);

size_t parmsz;
clerr = clGetContextlnfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);
clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

OpenCL Memory Model Overview

* Global memory

— Main means of

communicating R/W Data

between host and deWge

— Contents visible to all
threads

— Long latency access

* We will focus on global
memory for now

Host

NDRange

Work Group (0, 0)

S

Work Group (1, 0)

S

Thread (0, 0)

Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

OpenCL Device Memory Allocation

clCreateBuffer();

— Allocates object in the device Global
Memory
— Returns a pointer to the object
— Requires five parameters
* OpenCL context pointer
» Flags for access type by device
» Size of allocated object

» Host memory pointer, if used in copy-
from-host mode

e Error code

clReleaseMemObject()

— Frees object

 Pointer to freed object

Grid

Block (0, 0)

] e

Block (1, 0)

] e

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

Host

OpenCL Device Memory Allocation (cont.)

e Code example:
— Allocate a 1024 single precision float array
— Attach the allocated storage tod a

— “d ” 1s often used to indicate a device data structure

VECTOR_SIZE = 1024;
cl_mem d_a;
int size = VECTOR _SIZE* sizeof(float);

d_a = clCreateBuffe(clctx, CL_MEM_READ_ONLY, size, NULL, NULL);
clReleaseMemObject(d_a);

OpenCL Device Command Execution

Cmd Queue

— Cmd Queue

v

OpenCL Device

HE e
HE e

OpenCL Context

v

OpenCL Device

HE e
HE e

HE e
HE e

OpenCL Host-to-Device Data Transfer

* clEnqueueWriteBuffer();
— memory data transfer to device

— Requires nine parameters
* OpenCL command queue pointer
 Destination OpenCL memory buffer
» Blocking flag
» Offset in bytes
 Size (in bytes) of written data
* Host memory pointer

 List of events to be completed before
execution of this command

» Event object tied to this command

* Asynchronous transfer later

Grid

Block (0, 0)

Block (1, 0)

] e

] e

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

\«gss,/

(bpenCL Device-to-Host Data Transfer

 clEnqueueReadBuffer();

— memory data transfer to host

— requires nine parameters

OpenCL command queue pointer
Source OpenCL memory buffer
Blocking flag

Offset in bytes

Size of bytes of read data
Destination host memory pointer

List of events to be completed before
execution of this command

Event object tied to this command

e Asynchronous transfer later

Grid

Block (0, 0)

] e

Block (1, 0)

] e

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

N
\g=s/

OpenCL Host-Device Data Transfer
(cont.)

e Code example:
— Transfer a 64 * 64 single precision float array
— a1s 1n host memory and d a is 1n device memory

int mem_size = 64*64*sizeof(float);
clEnqueueWriteBuffer(clcmdq, d_a, CL_FALSE, 0,
mem_size, (const void *)a, 0, 0, NULL);

clEnqueueReadBuffer(clcmdq, d_result, CL_FALSE, 0,
mem_size, (void *) host_result, 0, 0, NULL);

OpenCL Host-Device Data Transfer
(cont.)

clCreateBuffer and clEnqueueWriteBuffer can be combined
into a single command using special flags.

Eg:
d A=clCreateBuffer (clctxt, CL MEM READ ONLY |
CL MEM COPY HOST PTR, mem size, h_A NULL)

— Combination of 2 flags here. CL MEM_COPY_ HOST PTR
to be used only if a valid host pointer is specified.

— This creates a memory buffer on the device, and copies data
fromh A intod A.

— Includes an implicit clEnqueueWriteBuffer operation, for all
devices/command queues tied to the context clctxt.

OpenCL Memories

_global — large, long latency
__private — on-chip device registers

_local —memory accessible from multiple

PEs or work items. May be SRAM or
DRAM, must query...

~_constant — read-only constant cache

Device memory 1s managed explicitly by the
programmer, as with CUDA

OpenCL Kernel Execution Launch

g — Cmd Queue
Cmd Queue
 ——
| I
' i
OpenC L Device OpenC L Device

HiEEE e HiEEE e
I:II:I HiEEE e I:II:I HiEEE e

oo|[oo][oo)og
OpenCL Context 00|00 00|00

OpenCL Kernel Compilation Example

const char* vaddsrc = 7

“__kernel void vadd(__global float *d_A, __global float *d_B, __global float *d_C, int N) { \n®

[...etc and so forth...]

cl_program clpgm;
clpgm = clCreateProgramWithSource(clctx, 1, &vaddsrc, NULL, &clerr);
char clcompileflags[4096];

sprintf(clcompileflags, “-cl-mad-enable");

clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);
cl_kernel clkern = clCreateKernel(clpgm, “vadd", &clerr);

S

Summary: Host code for vadd

int main ()

{
float *h A = .., *h B = ..;

cl mem d A, d B, dC;
d A = clCreateBuffer(clctx, CL MEM READ ONLY |

CL MEM COPY HOST PTR, N *sizeof (float), h A, NULL);
d B = clCreateBuffer(clctx, CL MEM READ ONLY |

CL MEM COPY HOST PTR, N *sizeof (float), h B, NULL);

d C = clCreateBuffer(clctx, CL MEM WRITE ONLY, N
*sizeof (float), NULL, NULL);

clkern=clCreateKernel (clpgm, “vadd", NULL) ;

clerr= clSetKernelArg(clkern, 0, sizeof(cl mem), (void *)é&d A);
clerr= clSetKernelArg(clkern, 1, sizeof(cl mem), (void *)é&d B);
clerr= clSetKernelArg(clkern, 2, sizeof(cl mem), (void *)é&d C);

3

clerr= clSetKernelArg(clkern, , sizeof(int), &N);

Summary of Host Code (cont.)

cl event event=NULL;

clerr= clEnqueueNDRangeKernel(clemdq, clkern, 2, NULL, Gsz,Bsz, 0, NULL,
&event);

clerr= clWaitForEvents(1, &event);

clEnqueueReadBuffer(clcmdq, d C, CL_TRUE, 0, N*sizeof(float), h C, 0, NULL,
NULL);

clReleaseMemObject(d_A);
clReleaseMemObject(d B);
clReleaseMemObject(d_C);

b

ANY MORE QUESTIONS?
READ CHAPTER 14

