CS/EE 217

GPU Architecture and Parallel
Programming

Lecture 23:
Introduction to OpenACC

Objective

* To Understand the OpenACC programming
model
— basic concepts and pragmatypes

— Simple examples to illustrate basic concepts and
functionalities

OpenMP and OpenACC Pragmas

e In C and C++, the #pragma directive 1s the
method to provide, to the compiler,
information that is not specified in the
standard language.

* A sequential compiler can just 1ignore the
pragmas to produce sequential code

— If you are careful

OpenACC extends OpenMP

Parallel Task | Parallel Task Il Parallel Task Il

-

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread /TR -, -
- e —

OpenMP 1s a shared memory parallel programming API
It uses pragmas (or compiler directives) to specify parallel
regions within a program

OpenACC extends openMP to allow some of the code to run
on GPUs/acclerators

— Also using pragmas

Example of OpenMP
#1nclude <stdio.h>
int main(void) {
#pragma omp parallel

printf("Hello, world.\n");
return 0;

* To compile: gce -fopenmp hello.c -o hello
* What will the output be?

More interesting example

int main(int argc, char **argv)
{
int a[100000];

#pragma omp parallel for

int 1;

for (1 = 0; 1 < 100000; 1++)
af[i] = 2 * 1;

return 0O;

}

Summary of OpenACC directives

OpenMP language

extensions
runtime
parallel control : data L)
work sharing : synchronization functions, env.
structures environment .
variables
governs flow of distributes work scopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set_num_threads ()]
do/parallel do shared and critical and omp_get_thread_num()
parallel directive and private atomic directives OMP_NUM_THREADS
section directives clauses barrier directive OMP_SCHEDULE

OpenACC

* The OpenACC Application Programming
Interface provides a set of
— compiler directives (pragmas)
— library routines and

— environment variables

that can be used to write data parallel FORTRAN, C
and C++ programs that run on accelerator devices
including GPUs and CPUs

Simple Matrix-Matrix Multiplication in OpenACC

1 void computeAcc(float *P, const float *M, const float *N, int Mh, int Mw, int Nw)

2 {

3

4 #pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
5 for (int i=0; i<Mh; i++) {

6 #pragma acc loop

7 for (int j=0; j<Nw; j++) {

8 float sum = 0;

9 for (int k=0; k<Mw; k++) {

10 float a = M[1*Mw+Kk];
11 float b = N[k*Nw+j];
12 sum += a*b;

13 }

14 P[1*Nw+]j] = sum;

15 }

16 }

17}

Some Observations

* The code 1s almost 1dentical to the sequential
version, except for the two lines with #pragma
at line 4 and line 6.

* OpenACC uses the compiler directive
mechanism to extend the base language.

— #pragma at line 4 tells the compiler to generate code for the ‘1’ loop
at line 5 through 16 so that the loop iterations are executed in parallel
on the accelerator.

— The copyin clause and the copyout clause specify how the matrix data
should be transferred between the host and the accelerator. The
#pragma at line 6 instructs the compiler to map the inner ‘j” loop to

the second level of parallelism on the accelerator.

Motivation

* OpenACC programmers can often start with
writing a sequential version and then annotate
their sequential program with OpenACC
directives.

— leave most of the details 1n generating a kernel
and data transfers to the OpenACC compiler.

* OpenACC code can be compiled by non-
OpenACC compilers by 1gnoring the
pragmas.

Frequently Encountered Issues

* Some OpenACC pragmas are hints to the
OpenACC compiler, which may or may not
be able to act accordingly

— The performance of an OpenACC depends
heavily on the quality of the compiler.

— Much less so in CUDA or OpenCL

* Some OpenACC programs may behave
differently or even incorrectly if pragmas are
1ignored

OpenACC Device Model

G

execution unit

|

e

execution unit

PO

execution unit

[

|l BRAl
vector
ImEEN
thread

execution unit

accelerator

Currently OpenACC does not allow synchronization across threads.

OpenACC Execution Model

o PoRE o '

Parallel vs. Loop Constructs

#pragma acc parallel loop copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
for (int 1=0; 1i<Mh; 1++) {

1s equivalent to:
#pragma acc parallel copyin(M[0:Mh*Mw]) copyin(N[0:Nw*Mw]) copyout(P[0:Mh*Nw])
{

#pragma acc loop

for (int i=0; i<Mh; i++) {

(a parallel region that consists of just a loop)

Parallel Construct

* A parallel construct 1s executed on an
accelerator

* One can specity the number of gangs and
number of works in each gang

#pragma acc parallel copyout(a) num gangs(1024) num workers(32)
{

)

a=23;

1024*32 workers will be created. a=23 will be executed
redundantly by all 1024 gang leads

What does each “Gang Loop” do?

#pragma acc parallel num gangs(1024) #pragma acc parallelnum_ gangs(1024)

{ d
for (int 1=0; 1<2048; 1++) { #pragma acc loop gang
for (int 1=0; 1<2048; 1++) {
h
b h

Worker Loop

#pragma acc parallel num_gangs(1024) num_workers(32)

d

#pragma acc loop gang
for (int i=0; 1<2048; i++) {
#pragma acc loop worker
for (int j=0; j<512; j++) {
foo(i,));

b

1024*32=32K workers will be created, each executing 1M/32K = 32 instance
of foo()

#pragma acc parallel num_ gangs(32)

{

Statement 1; Statement 2;

e Statements 1 and 2 are
redundantly executed by 32

#pragma acc loop gang gangs
for (int i=0; i<n; i++) { e The n for-loop iterations are
Statement 3; Statement 4; distributed to 32 gangs

b

Statement 5; Statement 6;

#pragma acc loop gang

for (int i=0; i<m; 1++) {
Statement 7; Statement §;

b

Statement 9;

if (condition)

Statement 10;

Kernel Regions

#pragma acc kernels

e Kernel constructs are

{ descriptive of
#pragma acc loop num_gangs(1024) p
for (int i=0; i<2048; i++) { programmer
afi] = blil; Intentions
§

#pragma acc loop num_gangs(512)
for (int j=0; j<2048; j++) {
cl] =alil*2;
b
for (int k=0; k<2048; k++) {
d[k] = c[k];

ANY MORE QUESTIONS?
READ CHAPTER 15

