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Objective 

•  To learn to efficiently use the important levels of 
the CUDA memory hierarchy 
–  Registers, shared memory, global memory 
–  Tiled algorithms and barrier synchronization 
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The Von-Neumann Model 
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Going back to the program 

•  Every instruction needs to be fetched from 
memory, decoded, then executed. 
–  The decode stage typically accesses register file 

•  Instructions come in three flavors: Operate, Data 
transfer, and Program Control Flow. 

•  An example instruction cycle is the following: 
 

Fetch | Decode | Execute | Memory 
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Operate Instructions 

•  Example of an operate instruction: 
  ADD R1, R2, R3 

 
•  Instruction cycle for an operate instruction: 

Fetch | Decode | Execute | Memory 
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Memory Access Instructions 

•  Examples of memory access instruction: 
  LDR R1, R2, #2 
  STR  R1, R2, #2 

 
•  Instruction cycle for an operate instruction: 

Fetch | Decode | Execute | Memory 
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Registers vs Memory 

•  Registers are “free”  
–  No additional memory access instruction 
–  Very fast to use, however, there are very few of them 

•  Memory is expensive (slow), but very large 
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Programmer View of  CUDA Memories 

•  Each thread can: 
–  Read/write per-thread 

registers (~1 cycle) 
–  Read/write per-block 

shared memory (~5 
cycles) 

–  Read/write per-grid 
global memory (~500 
cycles) 

–  Read/only per-grid 
constant memory (~5 
cycles with caching) 
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Shared Memory in CUDA 

•  A special type of memory whose contents are 
explicitly declared and used in the source code 
–  Located in the processor 
–  Accessed at much higher speed (in both latency and 

throughput) 
–  Still accessed by memory access instructions 
–  Commonly referred to as scratchpad memory in 

computer architecture 
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•   __device__ is optional when used with  
__shared__, or  __constant__ 

 
•  Automatic variables without any qualifier reside in 

a register 
–  Except per-thread arrays that reside in global memory 
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CUDA Variable Type Qualifiers 
Variable declaration Memory Scope Lifetime 

                        int LocalVar; register thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 
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Where to Declare Variables? 

Can host 
access it?

Outside of !
any Function In the kernel

yes no
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__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
 
1.  __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH]; 
2.  __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH]; 
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A Common Programming Strategy 
•  Global memory resides in device memory (DRAM) 

- slow access 
•  So, a profitable way of performing computation on 

the device is to tile input data to take advantage of 
fast shared memory: 
–  Partition data into subsets that fit into shared memory 
–  Handle each data subset with one thread block by: 

•  Loading the subset from global memory to shared memory, 
using multiple threads to exploit memory-level parallelism 

•  Performing the computation on the subset from shared 
memory; each thread can efficiently multi-pass over any data 
element 

•  Copying results from shared memory to global memory 
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Matrix-Matrix Multiplication using  
Shared Memory 



Base Matrix Multiplication Kernel 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 
 
float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col]; 
 
d_P[Row*Width+Col] = Pvalue; 
} 
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How about performance on Fermi? 

•  All threads access global memory 
for their input matrix elements 

–  Two memory accesses (8 bytes) 
per floating point multiply-add 

–  4B/s of memory bandwidth/
FLOPS 

–  4*1,000 = 4,000 GB/s required 
to achieve peak FLOP rating 

–  150 GB/s limits the code at 37.5 
GFLOPS 

•  The actual code runs at about 25 
GFLOPS 

•  Need to drastically cut down 
memory accesses to get closer to 
the peak 1,000 GFLOPS 



Shared Memory Blocking Basic Idea 
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Basic Concept of Blocking/Tiling 

•  In a congested traffic 
system, significant 
reduction of  vehicles can 
greatly improve the delay 
seen by all vehicles 
–  Carpooling for commuters 
–  Blocking/Tiling for global 

memory accesses 
•  drivers = threads, 
•  cars = data 
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Some computations are more 
challenging to block/tile than others. 
•  Some carpools may 

be easier than others 
–  More efficient if 

neighbors are also 
classmates or co-
workers 

–  Some vehicles may be 
more suitable for 
carpooling 

•  Similar variations exist 
in blocking/tiling 
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Carpools need synchronization. 

•  Good – when people have similar schedule 

•  Bad – when people have very different schedule 
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Same with Blocking/Tiling 

•  Good – when threads have similar access timing 

•  Bad – when threads have very different timing 
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Outline of Technique 

•  Identify a block/tile of global memory content that 
are accessed by multiple threads 

•  Load the block/tile from global memory into on-
chip memory 

•  Have the multiple threads to access their data 
from the on-chip memory 

•  Move on to the next block/tile 
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Idea: Use Shared Memory to reuse 
global memory data 

•  Each input element is 
read by WIDTH 
threads. 

•  Load each element into 
Shared Memory and 
have several threads 
use the local version to 
reduce the memory 
bandwidth 
–  Tiled algorithms 
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Tiled Multiply 
•  Break up the execution of the 

kernel into phases so that the 
data accesses in each phase is 
focused on one subset (tile) of 
Md and Nd 



Loading a Tile 

•  All threads in a block participate 
–  Each thread loads one Md element and one Nd 

element in based tiled code 

•  Assign the loaded element to each thread such 
that the accesses within each warp is coalesced 
(more later). 
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Work for Block (0,0) 
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Work for Block (0,0) 

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

28 



Work for Block (0,0) 
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N1,0

Work for Block (0,0) 
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Work for Block (0,0) 

SM
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Barrier Synchronization 

•  An API function call in CUDA 
–  __syncthreads() 

•  All threads in the same block must reach the 
__synctrheads() before any can move on 

•  Best used to coordinate tiled algorithms 
–  To ensure that all elements of a tile are loaded 
–  To ensure that all elements of a tile are consumed 

32 



Figure 4.11 An example execution timing of barrier synchronization.
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Loading an Input Tile 

m 
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by 

k 
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Row = by * TILE_WIDTH +ty 

Accessing tile 0 2D indexing: 
 M[Row][tx] 
 N[ty][Col] 
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Loading an Input Tile 
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However, M and N are dynamically allocated 
and can only use 1D indexing: 
 

 M[Row][m*TILE_WIDTH+tx] 
 M[Row*Width + m*TILE_WIDTH + tx] 

 
 N[m*TILE_WIDTH+ty][Col] 
 N[(m*TILE_WIDTH+ty) * Width + Col] 

Loading Input Tile m 



37 

Tiled Matrix Multiplication Kernel 
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
1.  __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH]; 
2.  __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH]; 
 
3.  int bx = blockIdx.x;  int by = blockIdx.y; 
4.  int tx = threadIdx.x; int ty = threadIdx.y; 
 
// Identify the row and column of the Pd element to work on 
5.  int Row = by * TILE_WIDTH + ty; 
6.  int Col = bx * TILE_WIDTH + tx; 

7.  float Pvalue = 0; 
// Loop over the Md and Nd tiles required to compute the Pd element 
8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
// Coolaborative loading of Md and Nd tiles into shared memory 
9.    ds_M[ty][tx] = d_M[Row*Width + m*TILE_WIDTH+tx]; 
10.    ds_N[ty][tx] = d_N[Col+(m*TILE_WIDTH+ty)*Width]; 
11.    __syncthreads(); 
12.   for (int k = 0; k < TILE_WIDTH; ++k) 
13.    Pvalue += ds_M[ty][k] * ds_N[k][tx]; 
14.    __synchthreads(); 
15.}  
16.   d_P[Row*Width+Col] = Pvalue; 
} 



Compare with the Base Kernel 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 
 
float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col]; 
 
d_P[Row*Width+Col] = Pvalue; 
} 
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First-order Size Considerations 

•  Each thread block should have many threads 
–  TILE_WIDTH of 16 gives 16*16 = 256 threads 
–  TILE_WIDTH of 32 gives 32*32 = 1024 threads 
 

•  For 16, each block performs 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 
8,192 mul/add operations.  

•  For 32, each block performs 2*1024 = 2048 float 
loads from global memory for 1024 * (2*32) = 
65,536 mul/add operations 
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Shared Memory and Threading 
•  Each SM in Fermi has 16KB or 48KB shared memory* 

–  SM size is implementation dependent! 
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB 

of shared memory.  
–  Can potentially have up to 8 Thread Blocks actively executing  

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 
threads per block) 

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB 
shared memory usage per thread block, allowing 2 or 6 thread 
blocks active at the same time 

•  Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16 
–  The 150GB/s bandwidth can now support (150/4)*16 = 

600GFLOPS! 

    *Configurable vs L1, total 64KB 



Boundary conditions 

•  What to do if the matrix size is not a multiple of 
width? 
–  Tricky problem, lets work through an example 

•  Too many boundary checks can cause control 
divergence and overhead 

•  Something that you have to work through for lab 
2 
–  I’ll start a piazza discussion on the topic 
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Device Query 
•  Number of devices in the system 

int dev_count; 
cudaGetDeviceCount( &dev_count); 

•  Capability of devices 
cudaDeviceProp  dev_prop; 
for (i = 0; i < dev_count; i++) { 

 cudaGetDeviceProperties( &dev_prop, i); 
   // decide if device has sufficient resources and capabilities  
} 

•  cudaDeviceProp is a built-in C structure type  
–  dev_prop.dev_prop.maxThreadsPerBlock  
–  dev_prop.sharedMemoryPerBlock 
– … 
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•  Global variables declaration 
–  __host__ 
–  __device__... __global__, __constant__, __texture__ 

•  Function prototypes 
–  __global__ void kernelOne(…) 
–  float handyFunction(…) 

•  Main () 
–  allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes ) 
–  transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…) 
–  execution configuration setup 
–  kernel call – kernelOne<<<execution configuration>>>( args… ); 
–  transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…) 
–  optional: compare against golden (host computed) solution 

•  Kernel – void kernelOne(type args,…) 
–  variables declaration - auto, __shared__ 

•  automatic variables transparently assigned to registers  
–  syncthreads()… 

•  Other functions 
–  float handyFunction(int inVar…);     

      

Summary- Typical Structure of a 
CUDA Program 

repeat
as 
needed



ANY MORE QUESTIONS? 
READ CHAPTER 5! 
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