
CS/EE 217
GPU Architecture and Parallel Programming

	

Lectures 4 and 5:
Memory Model and Locality

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2013
1

Objective

•  To learn to efficiently use the important levels of
the CUDA memory hierarchy
–  Registers, shared memory, global memory
–  Tiled algorithms and barrier synchronization

2

3

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

4

Going back to the program

•  Every instruction needs to be fetched from
memory, decoded, then executed.
–  The decode stage typically accesses register file

•  Instructions come in three flavors: Operate, Data
transfer, and Program Control Flow.

•  An example instruction cycle is the following:

Fetch | Decode | Execute | Memory

5

Operate Instructions

•  Example of an operate instruction:
 ADD R1, R2, R3

•  Instruction cycle for an operate instruction:

Fetch | Decode | Execute | Memory

6

Memory Access Instructions

•  Examples of memory access instruction:
 LDR R1, R2, #2
 STR R1, R2, #2

•  Instruction cycle for an operate instruction:

Fetch | Decode | Execute | Memory

7

Registers vs Memory

•  Registers are “free”
–  No additional memory access instruction
–  Very fast to use, however, there are very few of them

•  Memory is expensive (slow), but very large

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Memory

Control Unit

I/O

ALUALU
Reg
File
Reg
File

PC IR

8

Programmer View of CUDA Memories

•  Each thread can:
–  Read/write per-thread

registers (~1 cycle)
–  Read/write per-block

shared memory (~5
cycles)

–  Read/write per-grid
global memory (~500
cycles)

–  Read/only per-grid
constant memory (~5
cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Shared Memory in CUDA

•  A special type of memory whose contents are
explicitly declared and used in the source code
–  Located in the processor
–  Accessed at much higher speed (in both latency and

throughput)
–  Still accessed by memory access instructions
–  Commonly referred to as scratchpad memory in

computer architecture

9

•  __device__ is optional when used with
__shared__, or __constant__

•  Automatic variables without any qualifier reside in

a register
–  Except per-thread arrays that reside in global memory

10

CUDA Variable Type Qualifiers
Variable declaration Memory Scope Lifetime

 int LocalVar; register thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

11

Where to Declare Variables?

Can host
access it?

Outside of !
any Function In the kernel

yes no
global
constant

register (automatic)
shared
local

12

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{

1. __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

13

A Common Programming Strategy
•  Global memory resides in device memory (DRAM)

- slow access
•  So, a profitable way of performing computation on

the device is to tile input data to take advantage of
fast shared memory:
–  Partition data into subsets that fit into shared memory
–  Handle each data subset with one thread block by:

•  Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism

•  Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any data
element

•  Copying results from shared memory to global memory

14

Matrix-Matrix Multiplication using
Shared Memory

Base Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col];

d_P[Row*Width+Col] = Pvalue;
}

15

16

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on Fermi?

•  All threads access global memory
for their input matrix elements

–  Two memory accesses (8 bytes)
per floating point multiply-add

–  4B/s of memory bandwidth/
FLOPS

–  4*1,000 = 4,000 GB/s required
to achieve peak FLOP rating

–  150 GB/s limits the code at 37.5
GFLOPS

•  The actual code runs at about 25
GFLOPS

•  Need to drastically cut down
memory accesses to get closer to
the peak 1,000 GFLOPS

Shared Memory Blocking Basic Idea

Thread
1

Thread
2

…

in

Global Memory

Thread
1

Thread
2

…

Global Memory

in

On-chip Memory

17

Basic Concept of Blocking/Tiling

•  In a congested traffic
system, significant
reduction of vehicles can
greatly improve the delay
seen by all vehicles
–  Carpooling for commuters
–  Blocking/Tiling for global

memory accesses
•  drivers = threads,
•  cars = data

18

Some computations are more
challenging to block/tile than others.
•  Some carpools may

be easier than others
–  More efficient if

neighbors are also
classmates or co-
workers

–  Some vehicles may be
more suitable for
carpooling

•  Similar variations exist
in blocking/tiling

19

Carpools need synchronization.

•  Good – when people have similar schedule

•  Bad – when people have very different schedule

Worker A

Worker B

Time

sleep

sleep work

work

dinner

dinner

Worker A

Worker B

time

sleep

sleep work

work

dinner

party

20

Same with Blocking/Tiling

•  Good – when threads have similar access timing

•  Bad – when threads have very different timing

Thread 1

Thread 2

Time

Thread 1

Thread 2

time

…

21

Outline of Technique

•  Identify a block/tile of global memory content that
are accessed by multiple threads

•  Load the block/tile from global memory into on-
chip memory

•  Have the multiple threads to access their data
from the on-chip memory

•  Move on to the next block/tile

22

23

Idea: Use Shared Memory to reuse
global memory data

•  Each input element is
read by WIDTH
threads.

•  Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth
–  Tiled algorithms

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

Col = 0 * 2 + threadIdx.x
Row = 0 * 2 + threadIdx.y

C
ol = 0

C
ol = 1

Work for Block (0,0)
in a TILE_WIDTH = 2 Configuration

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

Row = 0
Row = 1

blockIdx.x blockIdx.y

blockDim.x blockDim.y

24

25

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T

IL
E

_W
ID

T
H

E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Break up the execution of the

kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

Loading a Tile

•  All threads in a block participate
–  Each thread loads one Md element and one Nd

element in based tiled code

•  Assign the loaded element to each thread such
that the accesses within each warp is coalesced
(more later).

26

Work for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

SM

SM

27

Work for Block (0,0)

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

28

Work for Block (0,0)

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

29

N1,0

Work for Block (0,0)

30

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,1

SM

Work for Block (0,0)

SM

31

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

SM

Barrier Synchronization

•  An API function call in CUDA
–  __syncthreads()

•  All threads in the same block must reach the
__synctrheads() before any can move on

•  Best used to coordinate tiled algorithms
–  To ensure that all elements of a tile are loaded
–  To ensure that all elements of a tile are consumed

32

Figure 4.11 An example execution timing of barrier synchronization.

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…
Thread N-3

Thread N-2

Thread N-1

Time

34

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx 01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T

IL
E

_W
ID

T
H

E

W
ID

T
H

W

ID
T

H

Loading an Input Tile

m

k bx

by

k

m

Row = by * TILE_WIDTH +ty

Accessing tile 0 2D indexing:
 M[Row][tx]
 N[ty][Col]

35

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx 01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T

IL
E

_W
ID

T
H

E

W
ID

T
H

W

ID
T

H

Loading an Input Tile

m

k bx

by

k

m

Row = by * TILE_WIDTH +ty

Accessing tile 1 in 2D indexing:
 M[Row][1*TILE_WIDTH+tx]
 N[1*TILE_WIDTH+ty][Col]

d_M

d_N

d_P

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T

IL
E

_W
ID

T
H

E

W
ID

T
H

W

ID
T

H

m
*TILE_W

ID
TH

m*TILE_WIDTH

Col

Row

…

…

However, M and N are dynamically allocated
and can only use 1D indexing:

 M[Row][m*TILE_WIDTH+tx]
 M[Row*Width + m*TILE_WIDTH + tx]

 N[m*TILE_WIDTH+ty][Col]
 N[(m*TILE_WIDTH+ty) * Width + Col]

Loading Input Tile m

37

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
1. __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. ds_M[ty][tx] = d_M[Row*Width + m*TILE_WIDTH+tx];
10.  ds_N[ty][tx] = d_N[Col+(m*TILE_WIDTH+ty)*Width];
11.  __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += ds_M[ty][k] * ds_N[k][tx];
14. __synchthreads();
15.}
16. d_P[Row*Width+Col] = Pvalue;
}

Compare with the Base Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += d_M[Row*Width+k]* d_N[k*Width+Col];

d_P[Row*Width+Col] = Pvalue;
}

38

39

First-order Size Considerations

•  Each thread block should have many threads
–  TILE_WIDTH of 16 gives 16*16 = 256 threads
–  TILE_WIDTH of 32 gives 32*32 = 1024 threads

•  For 16, each block performs 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.

•  For 32, each block performs 2*1024 = 2048 float
loads from global memory for 1024 * (2*32) =
65,536 mul/add operations

40

Shared Memory and Threading
•  Each SM in Fermi has 16KB or 48KB shared memory*

–  SM size is implementation dependent!
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB

of shared memory.
–  Can potentially have up to 8 Thread Blocks actively executing

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing 2 or 6 thread
blocks active at the same time

•  Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
–  The 150GB/s bandwidth can now support (150/4)*16 =

600GFLOPS!

 *Configurable vs L1, total 64KB

Boundary conditions

•  What to do if the matrix size is not a multiple of
width?
–  Tricky problem, lets work through an example

•  Too many boundary checks can cause control
divergence and overhead

•  Something that you have to work through for lab
2
–  I’ll start a piazza discussion on the topic

41

Device Query
•  Number of devices in the system

int dev_count;
cudaGetDeviceCount(&dev_count);

•  Capability of devices
cudaDeviceProp dev_prop;
for (i = 0; i < dev_count; i++) {

 cudaGetDeviceProperties(&dev_prop, i);
 // decide if device has sufficient resources and capabilities
}

•  cudaDeviceProp is a built-in C structure type
–  dev_prop.dev_prop.maxThreadsPerBlock
–  dev_prop.sharedMemoryPerBlock
– …

42

43

•  Global variables declaration
–  __host__
–  __device__... __global__, __constant__, __texture__

•  Function prototypes
–  __global__ void kernelOne(…)
–  float handyFunction(…)

•  Main ()
–  allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
–  transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)
–  execution configuration setup
–  kernel call – kernelOne<<<execution configuration>>>(args…);
–  transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)
–  optional: compare against golden (host computed) solution

•  Kernel – void kernelOne(type args,…)
–  variables declaration - auto, __shared__

•  automatic variables transparently assigned to registers
–  syncthreads()…

•  Other functions
–  float handyFunction(int inVar…);

Summary- Typical Structure of a
CUDA Program

repeat
as
needed

ANY MORE QUESTIONS?
READ CHAPTER 5!

44

