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Question 1] [24 Points]   
 
Given a GPGPU with 14 streaming multiprocessor each supporting up to 1536 threads in up 
to 8 blocks.  Each block can have up to 1024 threads.  The GPU has 500 GFLOP peak 
performance.  Assume further that the DRAM system has 8 channels, and can provide up to 
150 GB/s. 
 
For any three of the following, explain how it could harm performance and possible ways 
the program can be modified to reduce this effect.  Please be specific. 
 

(a) The application needs to access global memory to get one floating point value for 
every operation. 

 
How this harms performance: If 4 bytes are required for every floating point operation, then 
our performance is limited by the number of bytes which we can read from memory.  With 
150GB/s, we can read 150/4 or 37.5 billion floating point numbers per second, which means 
our performance is limited at 37.5 GFlops—much lower than the nominal 500 GFlops. 
 
Technique/change that could reduce this effect: Take advantage of locality across threads by 
loading data into shared memory (e.g., using tiling). 
 

(b) Memory accesses are not coalesced. 
 
How this harms performance: each DRAM access returns 128 bytes taking advantage of 
bursting and multiple channels.  If data is not coalesced, most of these 128 bytes are not used, 
and we obtain much lower than the maximum memory bandwidth, limiting our performance.  
A warp that has uncoalesced accesses will have to access memory multiple times to get the 
necessary data. 
 
Technique/change that could reduce this effect: try to change the global memory reference 
pattern to be coalesced.  There are several techniques to do this, but one general technique is 
tiling.  Tiling allows us to load the tile data in a coalesced way into shared memory.  After 
that the algorithm reference pattern is less important since the data is fetched from shared 
memory. 
 

(c) Control divergence 
  
How this harms performance: control statements (such as if statements) that cause multiple 
warps to execute different paths within the code.  Since there is only one controller (SIMD), it 
has to sequentially issue the different branches, lowering overall performance. 
 
Technique/change that could reduce this effect:  Try to map threads to data in a way that 
each warp has identically behaving threads.  We saw many examples of this technique. 
 

(a) Suboptimal block size selection in grid decomposition 
 
How this harms performance:  
Case 1: if block size is too big, we can end up not taking advantage of all the available 
threads on an SM because we cannot map multiple blocks to the SM.  At a block size of 1024, 
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we can only map one block to an SM on Fermi.  In addition to underutilization, we could end 
up with poor utilization during barriers since there are no other blocks to schedule from. 
 
Case 2: block sizes are too small, we run into the limit of 8 blocks per SM, with the total 
number of threads significantly lower than capacity. 
 
Technique/change that could reduce this effect: Picking the right block size would allow us to 
use all the threads, and have multiple blocks mapped per SM. 

 
 
Question 2] [32 Points]   

 
 
We would like to launch a matrix multiplication kernel to multiply an 80X96 matrix A with a 
96X40 matrix B with the simple matrix multiplication kernel using 16X16 thread blocks.  
Answer the following questions: 
 

(a) (6 points) How many blocks will be launched if each thread is responsible for one 
element? 

 
 
The output matrix size is 80x40.  Since we need one thread to compute each output element, 
this is our grid size.  The other dimension (96) affects the number of iterations through the 
dot product loop, but not the block decomposition.  With 16x16 blocks, we need 
ceil(80/16)*ceil(40/16) = 5x3 or 15 blocks. 
 
I worked with your solution if you assumed a different size output matrix. 
 

(b) (6 points) How many blocks if each thread is responsible for four elements? 
 
 
Assuming each thread is responsible for 4 elements arranged 2x2, we need 40x20 threads to 
cover the matrix.  With 16x16 blocks we need ceil(40/16)*ceil(20/16) = 3x2 or 6 blocks. 
 
I worked with your solution if you assumed a different configuration of the 4 elements (e.g., 
4x1). 
 

(c) (10 points) Assume we use tiled with case (b) where each thread is responsible for 
four elements.  For a non-boundary tile what is the ratio of global memory accesses in 
the tiled version to that in the simple matrix multiplication? 

 
We load a tile of size 32x32 data elements for M and the same for N. For each output element 
we carry out 32 multiplies and 32 adds for a total number of 32x32x64 operations (number of 
threads x 64 operations per thread).  These used to require 32x32x64 memory accesses, and 
with tiling need only 32x32x2 for a 1/32 reduction in the number of memory accesses. 
 
You could also reach this number by finding the loads per thread; in the tiled implementation 
each thread loads 8 elements now, 4 from M and 4 from N.  It also does 32 adds and 32 
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multiplies for each of the four output elements it is responsible for.  This used to require 64 
memory accesses for each of the 4 output elements.  So, the reduction is 8/(4x64) or 1/32. 
 

(d) (10 points) What are the considerations in selecting the tile size for matrix 
multiplication? 

 
We would like to make the size of the tile bigger to get more global memory access reduction.  
However, we may be limited by the shared memory size.  We also may need too many threads 
which means the block size is large, and we cannot schedule multiple blocks to the same SM, 
or hide barrier synchronization delays.  So, we want to find a balance between reduction of 
global memory accesses (bigger tile) and reasonable block sizes that allow multiple blocks to 
be scheduled to the same SM.  Finally, you may want a block size that minimizes boundary 
effects/thread divergence. 
 
 
Question 3] [20 points]: Consider a tiled 3D convolution kernel on data of size 
512x512x512.   Assume mask size is 5x5x5.  Assume that the size of the output set in the tile 
is 8x8x8. 
 

(a) We considered two implementations that load the full input set into shared memory: 
the first had one thread per output set element, with some of the threads also helping 
in loading the halo elements.    The second had one thread per input element.  How 
many threads does each configuration need?   Are they both feasible? 

 
 
In the first configuration, we have 8x8x8 threads per block (matching the output set), which is 
512.  This configuration is feasible.  In the second configuration, we have 12x12x12 threads 
per block, matching the input set (8 + 2 halo on each side for 12 in each dimension).  This 
total is 1728 which exceeds the maximum block size and the number of threads per block.  
Both configurations are fine with respect to the size of the required shared memory. 
 
Some solutions computed the total number of threads for the full 3D array.  This is simply 
512^3 for the first configuration (noting that 1 thread is needed for each output element).  
For the second configuration, we have 12^3 threads per tile, and 512/8 tiles in every 
dimension.  So, the total is 512^3*12^3/8^3=768^3.  This is fine but it is hard to judge 
feasibility.  They both fit in global memory assuming floats. 
 

(b) What is the reduction in the number of global memory accesses per full tile compared 
to a non-tiled implementation? 

 
We load 12x12x12 per tile and perform 8^3 * 5^3 operations.  These operations require 40^3 
memory accesses without tiling, so the reduction ratio is 12^3/40^3 = 27/1000 or 
approximately 40x reduction. 
 
 
 
 
 
 



 5 

 
 
Question 4 [24 points]   

 
I made a mistake in the cut and paste of the work efficient kernel – the post-reduction step 
code is identical to the reduction step.  The question targeted the reduction step, which is 
correct, but I understand if there is confusion and as a result, am giving free credit for part c 
that has to do with the work efficient code.  If you got it correctly despite my error, you got  a 
bonus. 

(a) Explain work efficiency in the context of the two prefix sum implementations above 
 
Work efficiency refers to the number of operations in the parallel implementation compared 
to the best sequential implementation.  The best sequential implementation is O(n).  The work 
inefficient implementation is O(n log n) operations while the work efficient one is ~2xn or 
O(n) as well, making it more work efficient. 
 

(b) For the work inefficient kernel, assuming a BLOCK_SIZE of 1024 threads, how many 
warps will have control divergence at the step when stride is 16. 

All threads < stride are not active.  All threads >= stride are active.  When stride = 16, the 
bottom 16 threads are not active.  So, the first warp has threas 0 to 15 inactive, while 16-31 
are active (control divergence).  All other warps have all threads active.  Answer: 1 warp 
with divergence. 

(c) For the work efficient kernel, assume that we have 2048 elements (each block has 
BLOCK_SIZE=1,024 threads) in each section and warp size is 32, how many warps 
in each block will have control divergence during the reduction tree phase iteration 
where stride is 16?  

When stride = 16 only the bottom 1/16th of the threads which are 64 threads will be active.  
These form two consecutive warps because of the remapping of the index, and we have no 
thread divergence. 

Work inefficient Prefix Sum kernel 
__shared__ float   XY[BLOCK_SIZE]; 
int i = blockIdx.x * blockDim.x + threadIdx.x; 
//load into shared memory 
if (i < InputSize) { XY[threadIdx.x] = X[i];} 
//perform iterative scan on XY 
for (unsigned int stride = 1; stride <= threadIdx.x; stride 
*=2) { 
 __syncthreads(); 
 if(i>=stride) 
                in1 = XY[threadIdx.x – stride]; 
 __syncthreads(); 
 if(i>=stride) 
    XY[threadIdx.x]+=in1; 
} 

Work efficient Prefix Sum kernel 
// XY[2*BLOCK_SIZE] is in shared memory 
for(int stride=1; stride <= BLOCK_SIZE; 
stride=stride*2) 
    { 
        int index = (threadIdx.x+1)*stride*2 - 1; 
        if(index < 2*BLOCK_SIZE) 
            XY[index] += XY[index-stride]; 
        stride = stride*2; 
        __syncthreads(); 
    } 
//post reduction step 
for(int stride=1; stride <= BLOCK_SIZE; 
stride=stride*2) 
    { 
        int index = (threadIdx.x+1)*stride*2 - 1; 
        if(index < 2*BLOCK_SIZE) 
            XY[index] += XY[index-stride]; 
        stride = stride*2; 
        __syncthreads();} 


