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Abstract
Sensor Networks will soon become ubiquitous, making

them essential tools for monitoring the activity and evolu-
tion of our surrounding environment. However such envi-
ronments are expected to generate vast amounts of temporal
data that needs to be processed in a power-effective manner.
To this date sensor nodes feature small amounts of memory
which mostly limits their capabilities to queries that only
refer to the current point in time. In this paper we initiate a
study on the deployment of large memories at sensor nodes.
Such an approach gives birth to an array of newtemporal
and top-k queries which have been extensively studied by
the database community. Our discussion is in the context of
theRISE (RIverside SEnsor)hardware platform, in which
sensor nodes feature external flash card memories that pro-
vides them several Megabytes of storage.

1. Introduction

The improvements in hardware design along with the
wide availability of economically viable embedded sensor
systems will soon drive us into the ubiquitous silicon era.
Sensor networks will become essential tools for monitor-
ing the activity and evolution of our surrounding environ-
ment. Applications have already emerged in environmental
monitoring, seismic and structural monitoring, factory and
process automation monitoring and a large array of other
applications [9, 5, 6, 8].

Conventional approaches to monitoring have focused on
dense deployed networks that either transfer the data to a
central sink node or perform in-network computation and
generate alerts when certain events arise. An important
attribute of these applications is that the time interval be-
tween consecutive query re-evaluations (epoch) is small be-
cause we want to achieve quick reaction to various alerts.
For example, a query might continuously manipulate the
temperature at some region in order to identify fires or
other extreme situations (e.g.”Find which sensors record a
temperature>120F?”). Therefore the querying node (sink)
must continuously maintain an updated view of the values
recorded at the sensors [8, 5]. In suchshort-epochapplica-
tions, the frequency of updates and the timely delivery of

information from the sensors play a vital role in the overall
success of the system. On the other hand, a class of appli-
cations that were not addressed to this date arelong-epoch
applications. In these applications the user needs an an-
swer to his query more sparsely (e.g. weekly or monthly)
although the sensor node has to read values from the sur-
rounding environment frequently (e.g. every second). The
user might then ask:”At the day and time on which we
have the highest average temperature in the last month?”.
In order to evaluate such a query using current techniques,
would require each sensor to report all its values for the
last month.1 This happens because the data is fragmented
across the different nodes and an answer to the query can
only be obtained after accessing all distributed relationsin
their entirety. We call this type ofin-situ data fragmenta-
tion vertical partition, because each sensor’s timeseries is
one dimension. This makes it a challenging task to answer
user queries efficiently.
Our Contribution: In this paper we initiate a study on the
deployment and use of sensor networks characterized by
large memories at sensor nodes. This will allow each sen-
sor node to accumulate measurements over a large window
of time enabling the network to efficiently answer tempo-
ral queries. We also address the issue of answering top-k
queries, where the system only returns thek highest ranked
answers. An example of a top-k query might be”Find the
three moments on which we had the highest average tem-
perature in the last month?”.

Temporal and top-k queries are useful in a number of
contexts. Our work is motivated by the requirements of
the Bio-Complexity and the James Reserve Projects at the
Center of Conservation Biology (CCB) at UC Riverside.2

CCB is working towards the conservation and restoration
of species and ecosystems by collecting, evaluating scien-
tific information (Figure 1). The bio-complexity project is
designed to develop the kinds of instruments that can mon-
itor the soil environment directly, rather than in laboratory
recreations.

We are currently developing theRISE platform, in which

1Alternatively the sink could continuously gather the data in a central-
ized fashion, but this would become prohibitively expensive.

2http://www.ccb.ucr.edu/
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Figure 1. Soil-Organism Monitoring Application: Each
sensor stores locally on external flash memory theCO2 lev-
els over a large window of time.

sensors feature a large external memory (SD flash memory).
RISE sensors are able to store measurements of Carbon-
dioxide levels in the soil as well as ambient sound from the
surrounding environment over a large period of time. This
will allow scientists to monitor the long-term behavior of
certain soil micro-organisms and bird species.

We address the efficient evaluation of top-k queries in
our platform by sketching an algorithm that estimates some
threshold below which tuples do not need to be fetched from
the sensor nodes. Key ideas of our algorithm are to transmit
only the necessary information towards the querying node
and to perform calculation in the network rather than in a
centralized way.

2 The RISE Platform

The RISE (RIverside SEnsor)platform employs a
System-on-Chip interfaced with a large external storage
memory in the form of off-the-shelf SD (Secure Digital)
card to develop a new paradigm of ”sense and store” as op-
posed to the prevalent ”sense and send”. The RISE plat-
form was conceived by observing the twin trends of falling
flash memory prices3 and the need of larger memories on
sensory devices for more efficient querying, processing and
communication. Also, higher levels of device integration at
low cost and size now provide us with single chip solutions
for most of the sensory and communication needs, reducing
complexity and improving performance. The RISE wireless
platform is built around the Chipcon CC1010 System on
Chip (SoC), which together with just a few external passive
components and the required sensors constitutes a power-
ful, robust and versatile wireless embedded sensor system.
The following is a description of the important components
of the RISE platform (summarized in table 1):
1. The MicroController Unit (MCU): The Chipcon
CC1010 SoC is a true single-chip RF transceiver with an
integrated high performance 8051 microcontroller and high
end features which include a 32KB flash memory, an SPI

3According to research firm IDC, flash memory card sales will increase
from about 100 million units this year to 315 million annually in 2007
together with a sustained fall in price.

Characteristic Capability
MCU
Processor 24 MHz 8051 core
On-Chip Flash Memory 32 KB
Current (On,Idle,Off) at 14 MHz 14.8 mA, 8.2 mA, 0.2µA
Radio (RF Transceiver)
Communication Rate 76.8 kbits/s
Communication Range 250m at 868/915 MHz
Current (Receive,Send at 10dBm)11.9 mA, 26.6 mA
SPI bus (Interfacing MCU with SD Card)
Data rate Up to 3 Mbps
Data block length 512 bytes
SD Card
Current (Read, Write, Sleep) 60mA, 80 mA, 500µA
Access Time 200µsec (max)
Read/Write (256-512MB card) 10MB/sec

Table 1. Characteristics of the RISE platform.

(Serial Peripheral Interface) bus, DES encryption, 26 gen-
eral I/O pins and many other components constituting it ap-
propriate for a multitude of sensory and computation needs.

2. The SD-Card interface: An SD-Card (Secure Digital
Card) has been interfaced to the main chip using the SPI
bus equipping the RISE platform with a large external stor-
age memory (up to a 1 GB!). Data can be buffered on the
32KB flash memory for reading and writing efficiently on
the SD-Card. Data is transferred to the SDCard in blocks of
512 bytes at a maximum rate of 3 Mbps. We are currently
working on developing tiny access method structures which
will allow efficient sorted and random access to local data.

3. The OS & Compilation: To facilitate ease and modular-
ity of programming, we have ported the most prevalent de-
sign environment, the TinyOS (version 1.1) and NesC (ver-
sion 1.2alpha1), facilitating easier and modular program-
ming, interfacing of an SD-CARD and developing the reac-
tive methodology of query based response on large datasets
stored locally on the nodes.

4. Deployed Sensors:The platform has a temperature sen-
sor and is also being interfaced with aCO2 sensor and a
microphone.

Note that the energy cost of writing to flash memory is
much cheaper than the RF transmission cost even in the case
of a single hop. Given the characteristics outlined on Ta-
ble 1 along with a 3V voltage, it is easy to derive that a
transmitting one byte over the RF radio requires 8.379 mJ
while storing the same byte on the flash card requires 0.480
mJ. Although accessing the external flash card can only be
performed in blocks of 512 bytes, the 32KB on-chip flash
memory allows us to buffer a page before it is written out.
This in combination of the fact that the energy required for
the transmission of one byte is roughly equivalent to exe-
cuting 1120 CPU instructions, makes local storage and pro-
cessing highly desirable.
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3 The Query Processing Framework

In this section we expand on the class of queries we will
consider in the RISE platform. This class represents queries
that are interesting and important in our framework that is
characterized by long-epochs and large storage capacitiesin
individual sensors. We also describe and contrast alternative
frameworks that have been proposed for data acquisition in
sensor networks.

3.1 Temporal and top-k queries in RISE

We assume that a query dissemination mechanism sim-
ilar to the one described in [6, 5] creates a ”virtual”Query
Spanning Tree (QST)interconnecting all nodes in the net-
work. This provides each node with the next hop towards
the sink (See Figure 2.) Alternatively each node could
maintain multiple parents in order to achieve fault toler-
ance [1].

Let G(V, E) denote an undirected and connected net-
work graph that interconnectsn sensors inV using the
edge setE. The edges inE, represent the virtual con-
nections (i.e. nodes are within communication radius) be-
tween the sensors inV . Also assume that each sensor has
enough storage to record a window ofm measurements.
Each measurement has the form(ts, val), wherets denotes
the timestamp on which the measurement was taken and
val the recording at that particular time moment.4 Essen-
tially each sensorvi has locally the following timeseries
list(vi) = oi1, oi2, . . . , oim, whereoij denotes the record-
ing of the ith sensor node at thejth time moment. Each
time moment could logically be viewed as a collection ofn

timeseries each withm values. A node can maintain several
lists (e.g. temperature, humidity, others); for simplicity we
assume that only one such time-series is being maintained.
We look at two main classes of queries.
Temporal Queries: The queries we consider will allow
the user to find the state of the sensor network at different
time intervals, but also to identify intervals that certaincon-
ditions hold. Examples of such queries are:“Find the time
intervals such that the sensor values satisfy a given condi-
tion,” and“Given a sequence of values, identify time inter-
vals that show similar sequences in the values recorded by
the sensor.”
Top-k Queries: An example of a top-k query is“Find the
k time instances with the highest average reading across all
sensors.”More formally, considerQ = (q1, q2, . . . , qn), a
top-k query withn attributes. Each attribute ofQ refers to
the corresponding attribute of an object and the query at-
tempts to find the k objects which have the maximum value
in the following scoring function:

4Sensors are time synchronized through a lower layer mechanism (e.g.
The Operating System).

Score(oi) =
n∑

j=1

wj ∗ simj(q, oi), wheresimj(q, oi), is

some similarity function which evaluates thejth attribute
(sensor) of the queryq against thejth attribute of an ob-
ject oi and returns a value in the domain [0,1] (1 de-
notes the highest similarity). Since each sensor might
have a different factor of importance, we also use a weight
factor wj (wj > 0), which adjusts the significance of
each attribute according to the user preferences. Note
that, similarly to [3], we require the score function to
be monotone. A function is monotone if the following
property holds: ifsimj(q, o1)>simj(q, o2) (∀j∈m) then
Score(o1)>Score(o2). This is true whenwj > 0.

4 Query Evaluation Techniques

From the sink’s point of view, denoted asv′, the data
in this scenario is vertically fragmented across the network.
Therefore answering such a query would requirev′ to gather
the whole space ofn ∗m values. In section 4 we sketch the
TJA algorithm which alleviates the burden of transferring
everything to the sink.

4.1 A Taxonomy of Data Gathering Techniques

Below we provide a taxonomy of data gathering tech-
niques as a function of the available storage available at
each node:
i) Sense and Send (SS):In this naive case each sensor node
propagates its generated value towards its parent every time
such value becomes available. This is, according to the ter-
minology of [1], the LIST approach.
ii) Sense, Merge and Send (SMS):In this scheme, each
node aggregates the values coming from its children before
forwarding its values to its parent. This is essentially the
TAG approach [6]. In this scheme, all aggregates can not
be treated in the same way. For exampleDistributive Ag-
gregates (e.g. Sum, Max, Min, Count)can locally be aggre-
gated into one value.Holistic Aggregates (e.g. Median)on
the other hand can not be treated in the same way as aggre-
gation into one value can produce the wrong result.
iii) Sense, Store, Merge and Send (SSMS):This is the
scheme deployed in our platform, RISE. Each sensor node
maintains locally in the flash memory a window ofm mea-
surements. This window evolves with time, and therefore,
once the limit of the available memory is reached, at each
new time moment the oldest measurement is deleted. We
note however that given the capacities of flash cardsm can
be very large. Registered queries can perform some local
aggregation, if the correctness of the query outcome is not
violated, before values are propagated towards the parent.
Note that this is not possible in current systems such as
TinyDB. In TinyDB users are only allowed to define fixed
size materialization points through theSTORAGE POINT
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Figure 2. The QST for the three phases of the TJA Algorithm: 1) Lower Bound (LB), 2) Hierarchical Join (HJ) and 3) Clean-Up
(CL) Phase. The table shows the objects qualifying in each phase.

clause. This allows each sensor to gather locally in a buffer
some measurements. However the measurements can not
be utilized until the materialization point is created in its
entirety. Furthermore, even if there was enough on-board
memory to store MBs of data in such a point, the absence of
efficient access methods makes the retrieval of the desired
values quite expensive.

The three gathering techniques outlined above basically
represent the scale of available memory at the sensor nodes
(i.e. SSMS ⊃ SMS ⊃ SS). We believe that although
theSMS approach offers in practice the most efficient way
to cope with short-epoch applications, the SSMS approach
will be more practical for long-epoch applications.

We note that under the SS model evaluating the kinds of
queries we propose requires sending all information to the
sink. Under the SMS model we can design algorithms that
perform aggregation or more sophisticated computation in
the network, there are however significant limitations. Due
to the short-epoch emphasis of this model when informa-
tion gets older than the window of interest, we have to dis-
card this information or we have to transmit it for perma-
nent storage to the sink (or other specially designated nodes
in the network).

4.2 Providing Local Access Methods

Efficiently evaluating the queries described above re-
quires efficient access to the data that is stored on the ”ex-
ternal” flash memory. Therefore we plan to deploy the cer-
tain access methods (indexes) directly at the sensor nodes.
These access methods will serve as primitive operations
for the efficient execution of a wide spectrum of queries.
Since the flash card on each nodevi can only holdm pages
(oi0..oim) the available memory is organized as a circular
array, in which the newestoij pair always replaces the old-
estoij pair. Note that thissorted file organizationallows
each sensor to have random or sorted accessby timestamp
in O(1), without the requirement of any index. Next we
address how indexes become useful, when we need to have
accessby valueas well as the involved challenges.
i) Random Access By Value:An example of such oper-
ation is to locally load the records that have a temperature

of 70F. In order to fetch records by their value we will use
a static hash index. We use a static index for simplicity
reasons and because the construction of a dynamic hashing
index, such asextendibleor linear, might be considerably
more power demanding (e.g. due to page splits during in-
sertions).
ii) Sorted Access By Value:An example of such operation
is to locally load the records that have a temperature be-
tween 50F-70F. In order to fetch records by their value we
will use a simple B+ tree index. This index is a minimalistic
version of its counterpart found in a real database system.
It consists of a small number of non-leaf index pages which
provide pointers to the leaf pages. Depending on the sample
rate of a query, we expect to have a number of insertion and
deletion that need to be handled efficiently. For this purpose
we plan to keep the non-leaf pages in the MCU flash mem-
ory (32KB) which has space for tens of such pages (each
page is 512 bytes).

4.3 Efficient Top-k Query Evaluation in RISE

We now sketch aThreshold Join Algorithmwhich is an
efficient top-k query processing algorithm for sensor net-
works. Our algorithm decreases the number of objects that
are required to be transmitted from each sensor, by using an
additional probing and filtering phase. More specifically,
the algorithm consists of three phases:
1) theLower Boundphase, in which the sink collects the
union of the top-k results from all nodes in the network (de-
noted asLsink={l1, l2, . . . , lo}, o ≥ k),
2) theHierarchical Joiningphase, in which each node uses
Lsink for eliminating anything that has a value below the
least ranked item inLsink,
3) theClean-Upphase, in which the actual top-k results are
identified.

Figure 2 shows a graphical illustration of the execution
of the three phases of our algorithm. We have tested our
algorithm in a Peer-to-Peer network using a real dataset of
temperature measurements collected at 32 sites in Wash-
ington and Oregon.5 Each site (node) maintained the aver-

5http://www-k12.atmos.washington.edu/k12/grayskies/ .
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age temperature on an hourly basis for 208 days between
June 2003 and June 2004 (i.e. 4990 time moments), and
our query was to find the 10 moments at which the average
temperature was the highest. Our algorithm uses efficient
index structures to execute efficiently. In Figure 3 we com-
pare our approach with theSSapproach (sending all data
over the network), and our results indicate thatSSconsumes
an order of magnitude more network bytes than theSSMS
approach. We also compare our approach with a simpler ap-
proach that computes the scores of all tuples in the network,
combining partial results as data are transmitted to the sink.
This approach does not use any index methods, and can be
implemented in theSMSframework. Our preliminary re-
sults show that our approach significantly outperforms this
technique.

4.4 TinySQL Extensions

In order to be able to run top-k queries using the
TinySQL [6] syntax, we plan to add theLIMIT TO k

clause, which will identify that the user is only interestedin
getting the k highest ranked results. Additionally we will in-
corporate theSENSE FREQUENCY clause, which will de-
fine the rate at which the sensors have to read measurements
from their environment. We believe that the declarative na-
ture of TinySQL, in which the user specifies what he wants
to retrieve without specifying how to get it, is highly ap-
propriate for running queries in sensor networks. Such an
approach provides simplicity and insulates the user from the
physical storage details.

5 Related Work

Systems which propose a declarative approach for query-
ing sensor networks include TinyDB[5] and Cougar[8].
These systems achieve energy reduction by pushing aggre-
gation and selections in the network rather than process-
ing everything at the sink. Both approaches are optimized
for sensor nodes with limited storage and relatively short-
epochs, while our techniques are designated for sensors
with larger memories and longer epochs. InData Centric

Routing (DCR), such as directed diffusion [4], besides in-
network aggregation low-latency paths are established be-
tween the sink and the sensors. Such an approach is sup-
plementary to our framework. In Data Centric Storage
(DCS) [7] data with the same name (e.g. humidity measure-
ments) are stored at the same node in the network, offering
therefore efficient location and retrieval. However the over-
head of relocating the data in the network will become very
expensive if the network generates many MBs of GBs of
data. We believe that DCS is not appropriate for the class of
applications we discussed in this paper. Local compression
techniques, such as the one proposed in [2], would improve
the efficiency of our framework and their investigation will
be a topic of future research.

6 Conclusions

In this paper we discussed many of the data manage-
ment issues that arise in the context of theRISEsensor net-
work platform. In RISE, sensors feature large memories
which creates a new paradigm for power conservation in
long epoch applications. We believe that many applications
can benefit from a large local storage, as such storage can
be used for local aggregation or compression before trans-
mitting the results towards the sink. We expect that this in
addition with the provisioning of efficient access methods
will also provide a powerful new framework to cope with
new types of queries, such as temporal or top-k, that have
not been addressed adequately to this date. In the future we
plan to investigate the effectiveness of our framework.
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