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Abstract information from the sensors play a vital role in the overall
success of the system. On the other hand, a class of appli-

Sensor Networks will soon become ubiquitous, makin . .
d gcat|ons that were not addressed to this datdarg-epoch

them essential tools for monitoring the activity and evolu- Lo e
applications. In these applications the user needs an an-

tion of our surrounding environment. However such envi- ‘0 hi | K i
ronments are expected to generate vast amounts of tempora?Wer 0 his query more sparsely (e.g. weekly or monthly)
Ialthough the sensor node has to read values from the sur-

data that needs to be processed in a power-effective manner’ i : tf " d). Th
To this date sensor nodes feature small amounts of memoryyoun ing environment frequently (e.g. every second). The

which mostly limits their capabilities to queries that only Eser rtr;:gr;]t_ tEentask.At thf day art1d tmtathonl W?'Ch V‘{E,),,
refer to the current point in time. In this paper we initiate a ave the highest average temperature in the fast month:

study on the deployment of large memories at sensor nodesl.n order to evaluate such a query using current techniques,

Such an approach gives birth to an array of nesmporal would require gach sensor to report all its v'alues for the
and top-k queries which have been extensively studied byIaSt month. Th's happens because the data is fragmented
the database community. Our discussion is in the context ofAcross the d.n‘ferent nodes anq an answer to the query can
the RISE (Riverside SEnsoBardware platform, in which only be obtained after accessing all distributed relations

sensor nodes feature external flash card memories that pro-:.he'r entt.|re:y. VY? callbthls type oh;}snu data} frtggmenFa— .
vides them several Megabytes of storage. ion vertical partition, because each sensor’s timeseries is

one dimension. This makes it a challenging task to answer
user queries efficiently.
Our Contribution: In this paper we initiate a study on the

The improvements in hardware design along with the deployment and use of sensor networks characterized by
wide availability of economically viable embedded sensor large memories at sensor nodes. This will allow each sen-
systems will soon drive us into the ubiquitous silicon era. SOf node to accumulate measurements over a large window
Sensor networks will become essential tools for monitor- Of time enabling the network to efficiently answer tempo-
ing the activity and evolution of our surrounding environ- ral queries. We also address the issue of answering top-k
ment. Applications have already emerged in environmentaldueries, where the system only returnsifteghest ranked
monitoring, seismic and structural monitoring, factorglan answers. An example of a top-k query might'Bend the
process automation monitoring and a large array of otherthree moments on which we had the highest average tem-
applications [9, 5, 6, 8]. perature in the last month?”

Conventional approaches to monitoring have focused on  Temporal and top-k queries are useful in a number of
dense deployed networks that either transfer the data to gontexts. Our work is motivated by the requirements of
central sink node or perform in-network computation and the Bio-Complexity and the James Reserve Projects at the
generate alerts when certain events arise. An importaniCenter of Conservation Biology (CCB) at UC Riverside.
attribute of these applications is that the time interval be CCB is working towards the conservation and restoration
tween consecutive query re-evaluatiogsdch) is small be-  Of species and ecosystems by collecting, evaluating scien-
cause we want to achieve quick reaction to various alerts tific information (Figure 1). The bio-complexity project is
For example, a query might continuously manipulate the designed to develop the kinds of instruments that can mon-
temperature at some region in order to identify fires or itor the.soil environment directly, rather than in laborgto
other extreme situations (e.find which sensors recorda ~ récreations.
temperature-120F?"). Therefore the querying nodsi(ik) We are currently developing tHRISE platformin which
must continuously maintain an updated view of the, values LAlternatively the sink could continuously gather the dataicentral-
recorded at the sensors [8, 5]. In sistfort-epoctapplica- ized fashion, but this would become prohibitively expeesiv
tions, the frequency of updates and the timely delivery of  2http://www.ccb.ucr.edu/
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On-Chip Flash Memory
Current (On,Idle,Off) at 14 MHz

Characteristic | Capability
MCU
Processor 24 MHz 8051 core

32 KB
14.8 mA, 8.2 mA, 0.2LA

Radio (RF Transceiver)

Communication Rate
Communication Range
Current (Receive,Send at 10dBn

76.8 kbits/s
250m at 868/915 MHz
1)11.9 mA, 26.6 mA

Figure 1. Soil-Organism Monitoring Application: Each SPI bus (Interfacing MCU with SD Card)

sensor stores locally on external flash memorydii, lev- Data rate Up to 3 Mbps
els over a large window of time. Data block length 512 bytes
SD Card

Current (Read, Write, Sleep)
Access Time
“Read/Write (256-512MB card)

Table 1. Characteristics of the RISE platform.

60mA, 80 mA, 50QA
20Qusec (max)
10MB/sec

sensors feature a large external memory (SD flash memory),
RISE sensors are able to store measurements of Carbor
dioxide levels in the soil as well as ambient sound from the
surrounding environment over a large period of time. This
will allow scientists to monitor the long-term behavior of
certain soil micro-organisms and bird species. (Serial Peripheral Interface) bus, DES encryption, 26 gen-
We address the efficient evaluation of top-k queries in €ral /O pins and many other components constituting it ap-
our platform by sketching an algorithm that estimates some Propriate for a multitude of sensory and computation needs.
threshold below which tuples do not need to be fetched from2, The SD-Card interface: An SD-Card (Secure Digital
the sensor nodes. Key ideas of our algorithm are to transmitCard) has been interfaced to the main chip using the SPI
only the necessary information towards the querying nodepus equipping the RISE platform with a large external stor-
and to perform calculation in the network rather than in a age memory (up to a 1 GB!). Data can be buffered on the
centralized way. 32KB flash memory for reading and writing efficiently on
the SD-Card. Data is transferred to the SDCard in blocks of
512 bytes at a maximum rate of 3 Mbps. We are currently
working on developing tiny access method structures which
will allow efficient sorted and random access to local data.

2 The RISE Platform

The RISE (Rlverside SEnsorplatform employs a
System-on-Chip interfaced with a large external storage
memory in the form of off-the-shelf SD (Secure Digital)
card to develop a new paradigm of "sense and store” as op
posed to the prevalent "sense and send”. The RISE plat
form was conceived by observing the twin trends of falling
flash memory pricélsand the need of larger memories on

3. The OS & Compilation: To facilitate ease and modular-
ity of programming, we have ported the most prevalent de-

sign environment, the TinyOS (version 1.1) and NesC (ver-

sion 1.2alphal), facilitating easier and modular program-
ming, interfacing of an SD-CARD and developing the reac-

sensory devices for more efficient querying, processing andt'Ve methodology of query based response on large datasets

o : 2 . stored locally on the nodes.
communication. Also, higher levels of device integratibn a
low cost and size now provide us with single chip solutions 4. Deployed SensorsThe platform has a temperature sen-
for most of the sensory and communication needs, reducingS0r and is also being interfaced with(&@), sensor and a
complexity and improving performance. The RISE wireless microphone.
platform is built around the Chipcon CC1010 System on  Note that the energy cost of writing to flash memory is
Chip (SoC), which together with just a few external passive much cheaper than the RF transmission cost even in the case
components and the required sensors constitutes a powelof a single hop. Given the characteristics outlined on Ta-
ful, robust and versatile wireless embedded sensor systemple 1 along with a 3V voltage, it is easy to derive that a
The following is a description of the important components transmitting one byte over the RF radio requires 8.379 mJ
of the RISE platform (summarized in table 1): while storing the same byte on the flash card requires 0.480
1. The MicroController Unit (MCU): The Chipcon mJ. Although accessing the external flash card can only be
CC1010 SoC is a true single-chip RF transceiver with an performed in blocks of 512 bytes, the 32KB on-chip flash
integrated high performance 8051 microcontroller and high memory allows us to buffer a page before it is written out.
end features which include a 32KB flash memory, an SPI This in combination of the fact that the energy required for
the transmission of one byte is roughly equivalent to exe-
cuting 1120 CPU instructions, makes local storage and pro-
cessing highly desirable.

3According to research firm IDC, flash memory card sales wiltéase
from about 100 million units this year to 315 million annyaih 2007
together with a sustained fall in price.
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H n
3 The Query Processing Framework Score(o;) = 3 w; * sim;(g, 0;), wheresim;(q, 0;), is
. . . . J=1
In this section we expand on the class of queries we will some similarity function which evaluates thi#" attribute
consider in the RISE platform. This class represents gsierie (sensor) of the query against thej attribute of an ob-
that are interesting and important in our framework that is ject o; and returns a value in the domain [0,1] (1 de-
characterized by long-epochs and large storage capaities npotes the highest similarity). Since each sensor might
individual sensors. We also describe and contrast alieenat haye a different factor of importance, we also use a weight
frameworks that have been proposed for data acquisition infgctor w; (w; > 0), which adjusts the significance of

sensor networks. each attribute according to the user preferences. Note
that, similarly to [3], we require the score function to
3.1 Temporal and top-k queries in RISE be monotone A function is monotone if the following

property holds: ifsim; (g, 01)>sim;(g,02) (Vjem) then

We assume that a query dissemination mechanism sim-g¢ore (o, )>Score(o,). This is true whenu; > 0.
ilar to the one described in [6, 5] creates a "virtu@lliery '
Spanning Tree (QSTipterconnecting all nodes in the net- . .
work. This provides each node with the next hop towards 4 Query Evaluation Techniques

the sink (See Figure 2.) Alternatively each node could  From the sink’s point of view, denoted a$ the data

maintain multiple parents in order to achieve fault toler- n this scenario is vertically fragmented across the networ

ance [1]. Therefore answering such a query would requir® gather
Let G(V, E) denote an undirected and connected net- the whole space of * m values. In section 4 we sketch the

work graph that interconnects sensors inV using the TJA algorithm which alleviates the burden of transferring

edge setEl. The edges inE, represent the virtual con-  everything to the sink.

nections (i.e. nodes are within communication radius) be-

tween the sensors . Also assume that each sensor has 4.1 A Taxonomy of Data Gathering Techniques

enough storage to record a window @f measurements. ) ]

Each measurement has the fofm, val), wherets denotes _Below we provide a taxonomy of data gathering tech-

the timestamp on which the measurement was taken and!iques as a function of the available storage available at

val the recording at that particular time moménEssen-  €ach node: o

tially each sensop; has locally the following timeseries 1) Sense and Send (SS)n this naive case each sensor node

list(v;) = 041,042, - . ., 0im,» Whereo,; denotes the record- propagates its generated value towards its parent eveey tim
ing of thei®" sensor node at th¢" time moment. Each  Such value becomes available. This is, according to the ter-

time moment could logically be viewed as a collectiomof ~ Minology of [1], the LIST approach.

timeseries each with values. A node can maintain several i) Sense, Merge and Send (SMS)in this scheme, each
lists (e.g. temperature, humidity, others); for simpjicite node aggregates the valges coming fro'm its chlldrgn before
assume that only one such time-series is being maintainedforwarding its values to its parent. This is essentially the
We look at two main classes of queries. TAG approgch [6]. In this scheme, all aggrggqtes can not
Temporal Queries: The queries we consider will allow D€ treated in the same way. For exampletributive Ag-

the user to find the state of the sensor network at differentdrégates (e.g. Sum, Max, Min, Couogn locally be aggre-
time intervals, but also to identify intervals that certagm-  92ted into one valuerolistic Aggregates (e.g. Mediao
ditions hold. Examples of such queries afiéind the time the other hand can not be treated in the same way as aggre-

intervals such that the sensor values satisfy a given condi-9ation into one value can produce the wrong.re.su-lt.
tion” and“Given a sequence of values, identify time inter- 11l) Sense, Store, Merge and Send (SSMSJthis is the

vals that show similar sequences in the values recorded byScheme deployed in our platform, RISE. Each sensor node
the sensor” maintains locally in the flash memory a windowrafmea-

Top-k Queries: An example of a top-k query §ind the surements. This window evolves with time, and therefore,

k time instances with the highest average reading across allonce Fhe limit of the available memory is re"’?‘:hed' at each
sensors” More formally, consider) — (g1, g o) a new time moment the oldest measurement is deleted. We
. ] - 9 sy dUn )y

top-k query withn attributes. Each attribute @ refers to note however that given the capacities of flash cawdsan

the corresponding attribute of an object and the query at-be very large. Registered queries can perform some local

tempts to find the k objects which have the maximum value 299regation, if the correctness of the query outcome is not
in the following scoring function: violated, before values are propagated towards the parent.

Note that this is not possible in current systems such as
4Sensors are time synchronized through a lower layer mesimage.g. T_inyDB- m'Ti.nyD_B users are only allowed to define fixed
The Operating System). size materialization points through t8§ ORAGE PO NT
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Figure 2. The QST for the three phases of the TJA Algorithm: 1) Lower ®b(LB), 2) Hierarchical Join (HJ) and 3) Clean-Up
(CL) Phase. The table shows the objects qualifying in eaclsg@h

clause. This allows each sensor to gather locally in a bufferof 70F. In order to fetch records by their value we will use
some measurements. However the measurements can nat static hash index. We use a static index for simplicity
be utilized until the materialization point is created is it reasons and because the construction of a dynamic hashing
entirety. Furthermore, even if there was enough on-boardindex, such agxtendibleor linear, might be considerably
memory to store MBs of data in such a point, the absence ofmore power demanding (e.g. due to page splits during in-
efficient access methods makes the retrieval of the desiredsertions).
values quite expensive. i) Sorted Access By Value:An example of such operation
The three gathering techniques outlined above basicallyis to locally load the records that have a temperature be-
represent the scale of available memory at the sensor nodetveen 50F-70F. In order to fetch records by their value we
(i.,e. SSMS > SMS D SS). We believe that although  will use a simple B+ tree index. This index is a minimalistic
the SM S approach offers in practice the most efficient way version of its counterpart found in a real database system.
to cope with short-epoch applications, the SSMS approachlt consists of a small number of non-leaf index pages which
will be more practical for long-epoch applications. provide pointers to the leaf pages. Depending on the sample
We note that under the SS model evaluating the kinds of rate of a query, we expect to have a number of insertion and
gueries we propose requires sending all information to thedeletion that need to be handled efficiently. For this puepos
sink. Under the SMS model we can design algorithms thatwe plan to keep the non-leaf pages in the MCU flash mem-
perform aggregation or more sophisticated computation inory (32KB) which has space for tens of such pages (each
the network, there are however significant limitations. Due page is 512 bytes).
to the short-epoch emphasis of this model when informa-
tion gets older than the window of interest, we have to dis- 4.3 Efficient Top-k Query Evaluation in RISE
card this information or we have to transmit it for perma-
nent storage to the sink (or other specially designatedsiode  We now sketch &hreshold Join Algorithmwhich is an

in the network). efficient top-k query processing algorithm for sensor net-
works. Our algorithm decreases the number of objects that
4.2 Providing Local Access Methods are required to be transmitted from each sensor, by using an

Efficiently evaluating the queries described above re- addmonql problng.and filtering phase: More specifically,
the algorithm consists of three phases:

quires efficient access to the data that is stored on the "ex- . . .
ternal” flash memory. Therefore we plan to deploy the cer- 1)nithne L]?tvr;/ert BoEr:obhlatls?r, '21 Wl?fhdthei:'t?]k EOItI\?thfkﬂ:je
tain access methods (indexes) directly at the sensor nodeg 'oN OTthe 1op-k resufis from all nodes e network (de

These access methods will serve as primitive operationsnmeOI aLsink={l1, 12, ... Lo}, 0 2 k),

for the efficient execution of a wide spectrum of queries. 2) theHierarchicaI_ Joiningp_hase, in which each node uses
Since the flash card on each nadean only holdn pages Lisink for e"”."”a“.”g anything that has a value below the
(0i0..0:m) the available memory is organized as a circular least ranked item ”L“'"’?' .

array, in which the newesy; pair always replaces the old- .3) theplean-Upphase, in which the actual top-k results are
esto;; pair. Note that thissorted file organizatiorallows identified.

each sensor to have random or sorted acbgggnestamp of ::r:gutrherezeShr?evl\;seg gfra(l)pryz?l gilif]tr;?tlﬁlr\}eoLtahi f;:feudt'gnr
in O(1), without the requirement of any index. Next we P ur aigonitnm. v u

address how indexes become useful, when we need to hav?I?:r't?T Irn amPeer-tro—nF_:eﬁtr net\ﬂ/orI: lés'rlgsaz rei?l d?rtla\s/\(/at Orf
accesdy valueas well as the involved challenges. emperature measurements coflected a Sites as

i) Random Access By Value:An example of such oper- ington and OregoR.Each site (node) maintained the aver-

ation is to locally load the records that have a temperature Shttp://www-k12.atmos.washington.edu/k12/grayskies/ .
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cogg e ormance of Techniques with Amospheric Daiaset Routing (DCR) such as directed diffusion [4], besides in-

4500 ss i network aggregation low-latency paths are established be-
4000 sova tween the sink and the sensors. Such an approach is sup-
% B plementary to our framework. In Data Centric Storage
5 2500 (DCS) [7] data with the same name (e.g. humidity measure-
g o ments) are stored at the same node in the network, offering
B s therefore efficient location and retrieval. However thereve

*° head of relocating the data in the network will become very

expensive if the network generates many MBs of GBs of
data. We believe that DCS is not appropriate for the class of
applications we discussed in this paper. Local compression
techniques, such as the one proposed in [2], would improve
the efficiency of our framework and their investigation will
age temperature on an hourly basis for 208 days betweerbe a topic of future research.

June 2003 and June 2004 (i.e. 4990 time moments), and

our query was to find the 10 moments at which the averageg  Conclusions

temperature was the highest. Our algorithm uses efficient . )

index structures to execute efficiently. In Figure 3 we com-  In this paper we discussed many of the data manage-
pare our approach with th@Sapproach (sending all data ment issues that arise in the context of RISEsensor net-
over the network), and our results indicate tBgtonsumes ~ Work platform. In RISE, sensors feature large memories
an order of magnitude more network bytes than $8MS which creates a new paradlgm.for power conservation in
approach_ We also compare our approach with a Simp|er apjong epOCh appllcatlons. We believe that many appllcatlons
proach that computes the scores of all tuples in the network can benefit from a large local storage, as such storage can
combining partial results as data are transmitted to tHe sin b? gsed for local aggregation or compression before trans-
This approach does not use any index methods, and can bg1|tt|.r!g the_ results tow_ar.ds.the smk.. We expect that this in
implemented in theSMSframework. Our preliminary re- addmon with .the provisioning of efficient access methgds
sults show that our approach significantly outperforms this Will also provide a powerful new framework to cope with

Temperature Dataset

Figure 3. Number of bytes transmitted in tH&S SMS
andSSMSnodels using atmospheric data.

technique. new types of queries, such as temporal or top-k, that have
not been addressed adequately to this date. In the future we
4.4 TinySQL Extensions plan to investigate the effectiveness of our framework.

In order to be able to run top-k queries using the References
TinySQL [6] syntax, we plan to add thel M T TO k&
clause, which will identify that the user is only interested [1] Considine J., LiF., Kollios G., Byers J., "ApproximategA
getting the k highest ranked results. Additionally we wil i gregation Techniques for Sensor Databases1CIE'04,
corporate thesSENSE_FREQUENCY clause, which will de- Boston, MA, 2004.

. - [2] Deligiannakis A., Kotidis Y., Roussopoulos N. "Compses
fine the rate at which the sensors have to read measurements ing historical information in sensor networks”, BIG-

from the?r enviror?men'F. We believe that.t_he declarative na- MOD'04, Paris, France, 2004.

ture of TinySQL, in which the user specifies what he wants (3] Fagin R., "Fuzzy Queries In Multimedia Database Sys-
to retrieve without specifying how to get it, is highly ap- tems”, INPODS'98 Seattle, WA, 1998.

propriate for running queries in sensor networks. Such an  [4] Intanagonwiwat C., Govindan R. Estrin D. "Directed dif-
approach provides simplicity and insulates the user fram th fusion: A scalable and robust communication paradigm for
physical storage details. sensor networks”, [IMlobiCOM'00, Boston, MA, 2000.

[5] Madden S.R., Franklin M.J., Hellerstein J.M., Hong W.,
"The Design of an Acquisitional Query Processor for Sen-

5 Related Work sor Networks”, InSIGMOD’03 San Diego, CA, 2003.

[6] Madden S.R., Franklin M.J., Hellerstein J.M, Hong W..
"TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks”, INnOSDI'02, Boston, MA, 2002.

[7] Shenker S., Ratnasamy S., Karp B., Govindan R., Estrin

Systems which propose a declarative approach for query-
ing sensor networks include TinyDB[5] and Cougar[8].
These systems achieve energy reduction by pushing aggre-

gation and selections in the network rather than process- D., “Data-centric storage in sensornets”, ACM SIG-
ing everything at the sink. Both approaches are optimized COMM Computer Communication Review, vol 33-1, 2003
for sensor nodes with limited storage and relatively short-  [8] Yao Y., Gehrke J.E., "Query Processing in Sensor Net-
epochs, while our technigues are designated for sensors works”, In CIDR’03, Asilomar, CA, 2003.

with larger memories and longer epochs.Data Centric [9] Crossbow Technology Inc. http://www.xbow.com/



