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ABSTRACT
Current state of the art in information dissemination com-
prises of publishers broadcasting XML-coded documents, in
turn selectively forwarded to interested subscribers. The de-
ployment of XML at the heart of this setup greatly increases
the expressive power of the profiles listed by subscribers,
using the XPath language. On the other hand, with great
expressive power comes great performance responsibility: it
is becoming harder for the matching infrastructure to keep
up with the high volumes of data and users. Traditionally,
general purpose computing platforms have generally been
favored over customized computational setups, due to the
simplified usability and significant reduction of development
time. The sequential nature of these general purpose com-
puters however limits their performance scalability. In this
work, we propose the implementation of the filtering infras-
tructure using the massively parallel Graphical Processing
Units (GPUs). We consider the holistic (no post-processing)
evaluation of thousands of complex twig-style XPath queries
in a streaming (single-pass) fashion, resulting in a speedup
over CPUs up to 9x in the single-document case and up to
4x for large batches of documents. A thorough set of exper-
iments is provided, detailing the varying e↵ects of several
factors on the CPU and GPU filtering platforms.

1. INTRODUCTION
Publish-subscribe systems (or simply pub-subs) are timely

asynchronous event-based dissemination systems consisting
of three main components: publishers, who feed a stream
of documents (messages) into the system, subscribers, who
register their profiles (queries, i.e., subscription interests),
and a filtering infrastructure for matching subscriber inter-
ests with published messages and delivering the matched
messages to the interested subscriber(s).

Early pub-sub implementations restricted subscriptions
to pre-defined topics or channels, such as weather, world
news, finance, among others. Subscribers would hence be
“spammed” with more (irrelevant) information than of in-
terest. The second generation of pub-subs evolved by allow-
ing predicate expressions; here, user profiles are described as
conjunctions of (attribute, value) pairs. In order to add fur-
ther descriptive capability to the user profiles, third-generation
pub-subs adopted the eXtensible Markup Language (XML)
as the standard format for data exchange, due to its self-
describing and extensible nature. Exchanged documents are
now encoded with XML, while profiles are expressed with
XML query languages, such as XPath [2]. Such systems
take advantage of the powerful querying that XML query
languages o↵er: profiles can now describe requests not only
on the document values but also on the structure of the
messages 1 allwoing to match complex twig-like messages.

Currently, XML-based Pub-Sub systems have been adopted
for the dissemination of Micronews feeds. These feeds are
typically short fragments of frequently updated information,
such as news stories and blog updates. The most promi-
nent XML-based format used is RSS. In this environment,
the RSS feeds are accessed via HTTP through URLs and
supported by client applications and browser plug-ins (also
called feed readers). Feed readers (like Bloglines and News-
Gator), periodically check the contents of micronews feeds
and display the returned results to the user.

The complex process of matching thousands of profiles
against massive amounts of published messages is performed
in the filtering infrastructure. From a user/functionality
perspective, filtering consists of determining, for each pub-
lished message, which subscriptions match at least once.
The novelty lies in exploring new e�cient filtering algo-
rithms, as well as high-performance platforms on which to
implement algorithms and further accelerate their execu-
tion. Several fine-tuned CPU-based software filtering al-
gorithms have been studied [3, 12, 14, 19]. These memory-
bound approaches, however, su↵er from the Von Neumann
bottleneck and are unable to handle large volume of input
streams. Recently, various works have exploited the obvious
embarrassingly parallel property of filtering, by evaluating
all queries in parallel using Field Programmable Gate Ar-
rays (FPGAs) [22, 24, 25]. By introducing novel parallel-

1
In this paper, we use the terms “profile”, “subscription” and “query”

interchangeably; similarly for the terms “document” and “message”.
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Path ::= Step | Path Step
Step ::= Axis TagName | Step “[” Step “]”
Axis ::= “/” | “//”
TagName ::= Name | “*”

Figure 1: Production rules to generate an XPath
expression; Name corresponds to an arbitrary al-
phanumeric string

hardware-tailored filtering algorithms, FPGAs have been
shown to be particularly well suited for the stream process-
ing of large amounts of data, where the temporary com-
putational state is not o✏oaded to o↵-chip (low-latency)
memory. These algorithms allowed the massively parallel
streaming matching of complex path profiles that supports
the /child:: axis and /descendant-or-self:: axis 2, wildcard
(‘*’) node tests and accounts for recursive elements in the
XML document. Using this streaming approach, inter-query
and intra-query parallelism were exploited, resulting in up to
two orders of magnitude speed-up over the leading software
approaches.

In [23] we presented a preliminary study on the mapping
of the path matching approach on GPUs, providing the flex-
ibility of software alongside the massive parallelism of hard-
ware. In this paper we detail the support of the more com-
plex twig queries on GPUs in a massively parallel manner.
In particular, the novel contributions of this paper are:

• The first design and implementation of XML twig fil-
tering on GPUs, more so in a holistic fashion.

• An extensive performance evaluation of the above ap-
proach is provided, with comparison to leading soft-
ware implementations.

• A study on the e↵ect of several query and document
factors on GPUs and the software implementations
through experimentation is depicted.

The rest of the paper is organized as follows: in Section
2 we present related work in software and hardware XML
processing. Section 3 provides in depth description of the
holistic XML twig filtering algorithm. Section 4 details the
implementation of the XML filtering on GPUs. Section 5
presents an experimental evaluation of the parallel GPU-
based approach compared to the state of the art software
counterparts. Finally conclusions and open problems for
further research appear in Section 6.

2. RELATED WORK
The rapid development of XML technology as a common

format for data interchange together with the emergence
of information dissemination through event notification sys-
tems, has led to increased interest in content-based filtering
of XML data streams. Unlike the traditional XML query-
ing engines, filtering systems experience essentially di↵erent
type of workload. In a querying system, the assumption is
that XML documents are fixed (known in advance), which
allows building e�cient indexing mechanisms on them to
facilitate the query process; whereas queries are adhoc and
can have arbitrary structure. On contrary, XML filtering

2
In the rest of the paper we shall use ‘/’ and ‘//’ as shorthand to

denote the /child:: axis and /descendant-or-self:: axis, respectively.

engines are fed a series of volatile documents, incoming in
a streaming fashion while queries are static (and known
in advance). This type of workload prevents filtering sys-
tems from using document indexing, thus requiring a di↵er-
ent paradigm to solve this problem. Moreover, since filter-
ing systems return only binary result (match or no match,
whether a particular query was matched or not in a given
document), they should be able to process large number of
queries. This is in contrast to XML querying engines, which
need to report every document node that was matched by
an incoming query.

Software based XML filtering algorithms can be classified
into several categories: (1) FSM-based, (2) sequence-based
and (3) others. XFilter [4] is the earliest work studying
FSM-based filtering, which builds a single FSM for each
XPath query. Each query node is represented by an in-
dividual state at the FSM. Transitions in the automaton
are fired when an appropriate XML event is processed. An
XPath query (profile) is considered matched if an accepting
state is reached at the FSM. YFilter [12] leverages path com-
monalities between individual FSMs, creating a single Non-
Deterministic Finite Automaton (NFA) representation of all
XPath queries and therefore reducing the number of states.
Subsequent works [16, 29, 14] use a unified finite automa-
ton for XPath expressions, using lazy DFAs and pushdown
automata.

FiST [19] and it’s successors are the examples of the sequence-
based approach for XML Filtering, which implies a two-step
process: (i) the streaming XML document and the XPath
queries are converted into sequences and (ii) a subsequence
match algorithm is used to determine if a query had a match
in the XML document.

Among the other works, [10] builds a Trie index to exploit
query commonalities. Another form of similarity is explored
in the AFilter [9] which uses prefix as well as su�x sharing to
create an appropriate index data structure. [13] introduces
stream querying and filtering algorithms LQ and EQ, using
a lazy and eager strategy, respectively.

Recent advances in the GPGPU technology opened a pos-
sibility to speedup many traditional applications, leveraging
the high degree of parallelism o↵ered by GPUs. A large
number of research works explore the usage of GPUs for im-
proving traditional database relational operations. [5] dis-
cusses improving the SELECT operation performance, while
[17] focuses on implementing e�cient join algorithms. Re-
cently [11] addressed all commonly used relational operators.
There are also research works concentrated on improving in-
dexing operations. [18] introduces a hierarchical CPU-GPU
architecture for e�cient tree querying and bulk updating
and [7] proposes an abstraction for tree index operations.

There has also been much interest in using GPUs for
XML related problems. [8] introduced the Data partition-
ing, Query partitioning and Hybrid approaches to parallelize
XPath queries on multi-core systems. [31] used these strate-
gies to create a cost model, which decides how to process
XPath queries on GPUs in parallel. [15] processed XPath
queries in a way similar to Yfilter, by creating end executing
a NFA on a GPU, whereas [30] studied twig query process-
ing on a large XMLs with the help of GPUs. All these works
focus on the problem of indexing and querying XML docu-
ments using XPath queries. However none of them address
filtering XML documents, which an orthogonal problem to
query processing, thus requiring a di↵erent implementation

2
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Figure 2: Step-by-step overview of stack updates for (a) parent-child and (b) ancestor-descendant relations.
Each step corresponds to open(tag) event, with respective opened tag highlighted. As the XML document
tree is traveled downwards, content is pushed onto the top of the stacks. The leftmost stack column is set to
be always in a matched state, corresponding to a dummy root node (denoted by $).

approach.
As mentioned, our previous work on the XML filtering

problem concentrated on using FPGAs. In [24] we pre-
sented a new dynamic-programming based XML filtering
algorithm, mapped to FPGA platforms.
To support twig filtering, a post-processing step is re-

quired to identify which path matches correspond to twig
matches. In [25] we extended this approach to support the
holistic (no post-processing) matching of the considerably
more complex twig-style queries. While providing signifi-
cant performance benefits, these FPGA-based approaches
were not without their disadvantages. Matching engines
running on the FPGA relied on custom implementations
of the queries in hardware and did not allow the update,
addition, and deletion of user profiles on-the-fly. Although
the query compilation to VHDL is fast, re-synthesis of the
FPGA, which includes translation, mapping and place-and-
route are expensive (up to several hours) and must be done
o↵-line. Furthermore, solutions on FPGAs cannot scale be-
yond available resources, where the number of queries is lim-
ited to the amount of real-estate on the chip.
GPU architectures do not have these limitations thus o↵er

a promising approach to the XML filtering problem. In this
paper we extend our previous work [23] that considered only
filtering linear XPath queries on GPUs and provide a holistic
filtering of complex twig queries.

3. PARALLEL HOLISTIC TWIG MATCH-
ING ALGORITHM

We proceed with the overview of the stack-based holis-
tic twig filtering algorithm and respective modifications as
required for the mapping onto GPUs.

3.1 Framework Overview
The structure of an XML-encapsulated document can be

represented as a tree, where nodes are XML tags. Opening
and closing tags in the XML document translate to the trav-
eling (down and up) through the tree. SAX parsers process
XML documents in a streaming fashion, while generating
open(tag) and close(tag) events. XML queries expressed in

XPath relate to the structure of XML documents, hence,
rely heavily on these open/close events. As will be clearer
below, stacks are an essential structure of XML query pro-
cessing engines, used to save the state as the structure of
the tree is visited (push on open, pop on close).

Figure 1 shows the XPath grammar used to form twig
queries, consisting of nodes, connected with parent-child
(“/”), ancestor-descendant (“//”) or nested path relation-
ships (“[]”). We denote by L the length of the twig query,
representing the total number of nodes in the twig, in addi-
tion to a dummy start node at the beginning of each query
(the latter being essential for query processing on GPUs).

Such a framework allows us to filter the whole stream-
ing document in a single pass, while capturing query match
information in the stack.

In [25] we show that matching a twig query is a process
consisting of 2 interleaved mechanisms:

• Matching individual root-to-leaf paths. Here, each
such path is evaluated (matched) using a stack whose
contents are updated on push (open(tag)) events.

• Carefully joining the matched results at query split
nodes. This task is performed using stacks that are
mainly updated on pop (close(tag)) events. The main
reasoning lies in that a matched path reports its match
state to its ancestors using the pop stack.

In both mechanisms, the depth of the stack is equal to the
maximum depth of the streaming XML document, while the
width of the stack is equal to the length of the query. The
top-of-stack pointer is referred to as TOS in the remainder
of this paper.

Detailed descriptions of the operations and properties of
these stacks are presented next.

3.2 Push Stack Algorithm
As noted earlier, an essential step in matching a twig

query lies in matching all root-to-leaf paths of this query.
We achieve this task using push stacks, namely stacks hold-
ing query matching state, updated solely on push events as
the XML document is parsed.
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Figure 3: Abstract view of the structure of an XML
document tree, with root R0, and several subtrees
such as T0, T1, etc.

We describe the matching process as a dynamic program-
ming algorithm, where the push stack represents the dy-
namic programming table. Each column in the push stack
represents a query node from the XPath expression; when
mapping a twig to the GPU, each stack column needs a
pointer to its parent column (prefix column). A split node
acts as a prefix for all its children nodes.

The intuition is that the root-to-leaf path with length L
can be in a matched state only if its prefix of length L-1 is
matched. This optimal substructure property can be triv-
ially proved by an induction over the matched query length
(assuming a matched dummy root as base case).

The Lth column is matched if ‘1’ is stored on the top of
the stack for this particular column. When a column, corre-
sponding to a leaf node in the twig query, stores ‘1’ on the
top-of-stack, then the entire root-to-leaf path is matched.

The following list summarizes the properties of the push
stack:

• Only the entries in the top-of-stack are updated on
each event.

• The entries in the push stack can be modified only in
response to a push event (open(tag)).

• On a pop event, the pointer to the stop-of-stack is
updated (decreased). The popped state (data entries)
is lost.

• A dummy root node is in a matched state at the begin-
ning of the algorithm (columns corresponding to root
nodes are assumed to be matched even before any op-
eration on the stack occurs).

• If a relationship between a node and its prefix is parent-
child, then a ‘1’ can diagonally propagate from the par-
ent’s column to the child column, only on a push event
if the opened tag matches that of the child. Figure 2a
depicts the diagonal propagation for a parent-child re-
lationship.

a

b

c

d f

c

e

XML Document

a

c

d e

Twig query

Figure 4: Sample XML document tree represen-
tation and twig query. The twig query can be
broken down into two root-to-leaf paths, namely
/a//c//d and /a//c/e. While each of these paths
is individually matched (found) in the tree, the twig
/a//c[//d]/e is not.

• Columns corresponding to wildcard nodes allow the
propagation from a prefix column without checking
whether the column tag is the same as the tag respec-
tive to the push event.

• If the relationship between node and its prefix is ancestor-
descendant, then the diagonal propagation property
applies, as in parent-child relationships. In addition,
in order to satisfy ancestor-descendant semantics (the
descendant lies potentially more than one node apart
from the parent), a match is carried in the prefix col-
umn vertically upwards, even if the tag, which trig-
gered the push event does not correspond to the de-
scendant’s column tag. Using this technique, all de-
scendants of the prefix node can see the matched state
of the prefix. This matched info is popped with the
prefix.

Figure 2b depicts the matching of the path /c//d,
where d is a descendant but not a child of c. Note
that upward match propagation for prefix node c will
continue even after d is matched. This process will
stop only after c will be popped out of the stack.

• A match in an ancestor column will only be seen by
descendants. This is visualized through Figure 3, de-
picting an abstract XML tree, with root R0, and sev-
eral subtrees such as T0, T1, etc. Assuming node Rn�1

is a matched ancestor, this match will be reported in
child subtree T2 using push events. Subtrees T0 and
T1 would not see the match, as they would be popped
by the time Rn�1 is visited. Similarly, subtrees T3 and
T4 will not see the match, as Rn�1 would be popped
prior to entering them.

Considering twigs: in the case of a split query node hav-
ing both ancestor-descendant and parent-child below it, then
two stack columns are allocated for the split node; one would
allow vertical upwards propagation of 1’s (for ancestor-descendant
relationships), and another would not (for parent-child re-
lationships). These two separate columns will also later be
used to report matches back to root in the pop stack (Sec-
tion 3.3 describes this situation in details).

Recurrence equation, applied at each (binary) stack cell
Ci,j on push events is shown on Figure 5.

4



Ci,j =

8
>>>>>>>>>><

>>>>>>>>>>:

1 if

8
>>>>>>>><

>>>>>>>>:

Ci�1,j�1 = 1 AND

8
>>>><

>>>>:

relationship between jth column and its prefix is “/”
AND8
<

:

jth column tag was opened in push event
OR
jth column tag is wildcard symbol “*”

OR
Ci�1,j = 1 AND relationship between jth column and its prefix is “//”

0 otherwise

Figure 5: Recurrence relation for push stack cell Ci,j. 1  i  d, 1  j  l, where d - maximum depth of XML
document, l - length of the query.

3.3 Pop Stack Algorithm
Matching of all individual root-to-leaf paths in a twig

query is a necessary condition for a twig match, but it is
not su�cient. Figure 4 shows the situation when both paths
/a//c//d and /a//c/e of the query /a//c[//d]/e report a
match, but holistically the twig fails to match. In order to
correctly match the twig query we need to check that the
two root-to-leaf paths, branching at split node j report their
match to the same node j, by the same time it will be popped
out of stack.

In order to report a root-to-leaf match to the nearest split
node in [25] we introduced a pop stack. As for the push
stack, the reporting problem could be solved using a dy-
namic programming approach, where the pop stack serves
as a dynamic programming table. Columns of the pop stack
similarly represent query nodes of the original XPath ex-
pression.

Column j would be considered as matched in pop stack
if ‘1’ is stored on TOS for a particular column after a pop
event. The optimal substructure property could again be
easily proved, but this time the induction step for a split
node should consider optimality of all its children paths,
rather than just one leaf-to-split-node path, in order to re-
port a match. When a column, corresponding to the dummy
root node, stores ‘1’ on the top of the pop stack, the entire
twig query is matched.

The subsequent list summarizes the pop stack properties:

• Unlike the push stack, the pop stack is updated both
on push and pop events: push always forces rewriting
the value on the top of the pop stack to its default
value, which is ‘0’. A pop event on the other hand
reports a match, propagating ‘1’ downwards, but will
not force ‘0’ to be carried in the same direction.

• If the relationship between a node and its prefix is
parent-child, then ‘1’ is propagated diagonally down-
wards from the node’s column to its parent. As with
the push stack, propagation occurs only if the pop
event that fired the TOS decrement, closes the tag,
corresponding to the column’s tag in the query (unless
the column tag is the wildcard).

• The propagation rule for the case when the relation-
ship between a node and its prefix is ancestor-descendant,
is similar to the one described for the push stack. This
time however a match is propagated in the descendant
node and downwards, rather than in its prefix and up-
wards.

Recalling Figure 3, only nodes R0, . . . , Rn�1 would be
reported about a matched ancestor. In this case sub-
tree T2 is not matched, since we report a match only
during the pop event of the last matched path node
Rn�1, which in turn occurs after T2 has been pro-
cessed. Subtrees T0 and T1 again do not observe the
match, because it was not yet reported at the moment
they are encountered. Although subtrees T3, T4 are
processed after the pop event, they still cannot see the
match, since the top of the stack has grown by pro-
cessing additional push events.

• Since the purpose of the pop stack is to report a matched
path back to the root, reporting starts at the twig
leaf nodes. Stack columns corresponding to leaf nodes
in the original query are matched only if they were
matched in the push stack.

• A split node reports a match only if all of its children
have been matched. If the latter is true, relationship
propagation rules are applied so as to carry the split
match further.

Figure 6 shows a recurrence relation, which is applied at
each stack cell Di,j on a pop event.

4. FROM ALGORITHM TO EFFICIENT GPU
IMPLEMENTATION

The typical workload for an XML based publish-subscribe
system consists of a large number of user profiles (twig queries),
filtered through a continuous document data stream. Par-
allel architectures like GPUs o↵er an opportunity for much
performance improvement, by exploiting the inherent paral-
lelism of the filtering problem. Using GPUs, the implemen-
tation of our stack-based filtering approach leverages several
levels of parallelism, namely:

• Inter-query parallelism: All queries (stacks) are
processed independently in a parallel manner, as they
are mapped on di↵erent SMs (streaming multiproces-
sors).

• Intra-query parallelism: All query nodes (stack co-
lumns) are updating their top-of-stack contents in par-
allel. The main GPU kernel consists of the query node
evaluation, and each is allocated a SP (streaming pro-
cessor).
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Di,j =

8
>>>>>>>>>><

>>>>>>>>>>:

1 if

8
>>>>>>>><

>>>>>>>>:

Ci+1,j = 1, if a node corresponding to jth column is a leaf in twig query
8c 2 {children of jth column}Di+1,c = 1, if a node corresponding tojth column is a split node

Di+1,j+1 = 1 AND

8
<

:

j + 1th column tag was closed in pop event
OR
j + 1th column tag is wildcard symbol “*”

OR
Di+1,j = 1 AND relationship between jth column and its prefix is “//”

0 otherwise

Figure 6: Recurrence relation for pop stack cell Di,j. 1  j  l , 1  i  d, where d - maximum depth of XML
document, l - length of the query, Ci,j - a corresponding cell of push stack.

FIELD SIZE
Event type (pop/push) 1 bit
Tag ID 7 bits

Table 1: Encoding of XML events at parsing (pre-
GPU). The size of each encoded event is 1 byte.

FIELD SIZE
IsLeaf 1 bit
Prefix relationship 1 bit
Query children with “/” relationship 1 bit
Query children with “//” relationship 1 bit
Prefix ID 10 bits
. . . 11 bits
Tag name 7 bits

Table 2: GPU Kernel personality storage format.
This information is encoded using 4 bytes. Some
bits are used for padding, and do not encode any
information (depicted as “. . . ”).

• Inter-document parallelism: This type of paral-
lelism, provided by the Fermi NVidia GPU architec-
ture [27], is used to process several XML documents
in parallel, thus increasing the filtering throughput.

In the following subsections, we provide a detailed descrip-
tion of the implementation of our stack approach on GPUs,
alongside with hardware-specific optimizations we deployed.

4.1 XML Stream Encoding
XML parsing is orthogonal to filtering, and has been thor-

oughly studied in the literature [20, 28, 21]. In this work,
parsed XML documents are passed to the GPU as encoded
open/close events, ready for filtering. In order to minimize
the information transfer between CPU and GPU (which is
heavily limited by the PCIe interface bandwidth), XML doc-
uments are compressed onto an e�cient binary representa-
tion, that is easily processed on the GPU side.

Each open/close tag event is encoded as a 1 byte entry,
whose most significant bit is reserved to encode the type of
event (push/open internally viewed as pop/close) while the
remaining 7 bits represent the tag ID (Table 1). Using this
encoding, the whole XML document is represented as an
array of such entries, which is then transferred to the GPU.

4.2 GPU Streaming Kernel

Every GPU kernel, executed in a thread on a GPU Stream-
ing Processor (SP), logically represents a single query node
(evaluated using one stack column). Each of the thread up-
dates the top-of-stack value of its column according to the
received XML stream event.

On the GPU side, multiple threads are grouped within a
thread block. Each thread block is individually scheduled by
the GPU to run on a Streaming Multiprocessor (SM). The
latter have a small low-latency memory, which we use to
store the stack and other relevant state. The deployed ker-
nels within a block perform filtering of whole twig queries by
updating the top-of-stack information in a parallel fashion.

Algorithm 1 represents a simplified version of the GPU
kernel: the process of updating a value on the top-of-stack.

Algorithm 1 GPU Kernel

1: level 0
2: for all XML events in document stream do
3: if push event then
4: level ++
5: prefixMatch pushStack[level� 1][prefixID]
6: if prefixMatch propagates diagonally then
7: pushStack[level][colID]! childMatch 1
8: end if
9: if prefixMatch propagates upwards then
10: pushStack[level][colID]! descMatch 1
11: end if
12: else
13: level ��
14: prevMatch popStack[level + 1][colID]
15: if prevMatch propagates upwards then
16: pop stack[level][colID]! descMatch 1
17: end if
18: if prevMatch propagates diagonally then
19: if node is leaf && pushStack[level+1][colID]

then
20: popStack[level][colID] ! childMatch  

1
21: end if
22: end if
23: popStack[level][prefix] ! childMatch  

popStack[level][prefix] && popStack[level][colID]
24: end if
25: end for

Note that the ColID variable refers to the column ID in-
dex, unique within a single thread block (threadId in CUDA
primitives). Similarly, prefix serves as a pointer to the colID

6



of the prefix node, within the thread block (twigs are eval-
uated within a single block).

The match state on lines 6 and 18 propagates diagonally
upwards and downwards respectively, if:

• The relationship between node and its prefix is “/”.

• The childMatch value of the entry from the respective
level in the push/pop stack is matched (lines 5 or 14
respectively).

• The (fixed) column tag corresponds to the open/closed
XML tag, or the column tag is a wildcard.

The match on lines 9 and 15 propagates strictly upwards
and downwards respectively, if:

• The relationship between node and its prefix is “//”.

• The descMatch value of the entry from the respective
level in the push/pop stack is matched (lines 5 or 14
respectively).

To address the case of a split node with children having
di↵erent relationship types, the push stack needs to keep
two separate fields: childMatch to carry the match for the
children with parent-child relationship and descMatch for
the ancestor-descendant case.

The same occurs with the pop stack: descMatch will
propagate match from the node’s descendants, and childMatch
will carry the match from all its nested paths. The latter
is especially meaningful for split nodes, as they are matched
only when all their split-node-to-leaf paths are matched.
This reporting is done as the last step on processing of pop
event on line 23.

4.3 Kernel Personality Encoding
As every GPU kernel executes the same program code,

it requires a parameterization in the form of a single ar-
gument which we call personality. A personality is created
once o✏ine, by the query parser on CPU, which encodes all
information about the query node.

A personality is encoded using a 4 byte entry, whose at-
tribute map is shown in Table 2.

The most significant bit indicates whether the query node
is a leaf node in the twig. This information is used in pop
event processing to start matching leaf-to-split-node paths
on line 19 of Algorithm 1.

The following bit encodes the type of relationship that the
query node has with its prefix, which is needed to determine
match is propagated on lines 6,9,15 and 18.

Consider the case where a split node has two children
with di↵erent types of relationship connecting them to their
prefix. Instead of duplicating the following query nodes, we
use the 3rd and 4th most significant bits of personality entry
to encode whether a node has children with parent-child,
ancestor-descendant relationship, or both respectively. Note
that for other types of query nodes (including split nodes,
which have several children, but all of them are connected
with one type of relationship) only one of those bits will
be set. This information would be later used to propagate
push value into either childMatch or descMatch fields for
ordinary node, or both of them is addressed special case on
lines 7 and 10.

A query node also needs to encode its prefix pointer, which
is the prefix ID in a contiguous thread block. Since in the

FIELD SIZE

Push stack

Value for children
1 bit

with “/” relationship
Value for children

1 bit
with “//” relationship
. . . 2 bits

Pop stack

. . . 2 bits
Value obtained from

1 bit
descendant
Value obtained from

1 bit
nested paths

Table 3: Merged push/pop stack entry. The size of
each entry is 1 byte. Padding bits are depicted as
“. . . ”.

Fermi architecture [27] the maximum number of threads al-
lowed to be accommodated in a single thread block along
one dimension is 1024, ten bits would be enough to encode
a prefix reference.

Finally the last 7 bits represent the tag ID of the query
node. Tag ID is needed to determine if a match should be
carried diagonally on lines 6 and 18.

4.4 Exploited GPU Parallelism Levels
Since a GPU executes instructions in the SIMT (Sin-

gle instruction, multiple threads) manner, at each point
in time multiple threads are concurrently executed on SM.
CUDA programming platform executes the same instruction
in groups of 32 threads, called a warp. As each GPU kernel
(thread) evaluates one query node, intra-query parallelism
is achieved through the parallel execution of threads within
a warp. Parrallel evaluation is beneficial in comparison to
serial query execution not only when the number of split
nodes is large, but also in a case, when most of the split
nodes appears in the nodes which are close to query root.

Threads are grouped into blocks, which are executed each
on one SM; having said that, the amount of parallelism is
not bounded to the number of SMs. It could be further
improved by scheduling warps from di↵erent logical thread
blocks on one physical SM. This is done in order to fully
utilize the available hardware resources. But the number of
co-allocated blocks depends on available resources (shared
memory and registers), which are shared between all blocks
executing on SM.

SM uses simultaneous multithreading to issue instructions
from multiple warps in parallel manner. However GPU ar-
chitecture, as well as resource constraints, limit the maxi-
mum number of warps, available for execution. The ratio
between achieved number of active warps per SM and max-
imum allowed limit, is known as the GPU occupancy. It is
always desirable to achieve 100% occupancy, because a large
number of warps, available to be scheduled on SM helps to
mask memory latency, which is still a problem even if we use
fast shared memory. There are two main ways to increase
occupancy: increasing the block size or co-scheduling more
blocks that share the same physical SM. The trade-o↵ be-
tween these two approaches is determined by the amount of
resources consumed by individual threads within a block.

Inter-query parallelism is achieved by parallel processing
of thread blocks on SMs and sharing them in time multiplex
fashion.
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MEMORY TYPE SCOPE LOCATION
Global All threads O↵-chip
Shared One thread block On-chip
Register One thread On-chip

Table 4: Characteristics of memory blocks available
as part of the GPU architecture. The scope de-
scribes the range of accessibility to the data placed
within the memory.

Because typical queries in XML filtering systems are rela-
tively short, we pack query nodes related to di↵erent queries
into a single thread block. This is done in order to avoid
having large number of smal thread blocks, since GPU achi-
tecture limits maximum number of thread blocks, that could
be scheduled on SM. Therefore packing maximizes the num-
ber of used SPs within a SM. However depending on query
size some SPs could be unoccupied. We address this issue by
using a simple greedy heuristic to assign queries to blocks.

Finally, the Fermi architecture [27] opened a possibility
to leverage inter-document parallelism, by executing several
GPU kernels concurrently, every kernel processes a single
XML document. It is supported by using asynchronous
memory copying and kernel execution operations together
with fine-grained synchronization signaling events, delivered
through GPU event streams. This feature allows us to in-
crease GPU occupancy even in cases when there is a shortage
of queries, which in normal situation would lead to under-
utilization, hence lower GPU throughput. Benefits from the
concurrent kernel invocation are later discussed in the ex-
perimental section 5.

4.5 Efficient Memory GPU Memory Hierar-
chy Usage

The GPU architecture provides several hierarchical mem-
ory modules (summarized in Table 4), depicting varying
characteristics and latencies. In order to fully benefit from
the highly parallel architecture, good performance is achieved
by carefully leveraging the trade-o↵s of the provided mem-
ory levels.

Global memory is primarily used to copy data from CPU
to GPU and to save values, calculated during kernel exe-
cution. Kernel personailies and XML document stream are
examples of such data in our case. Since global memory is
located o↵ the chip its latency penalty is very high. If a
thread needs to read/write value from/in global memory it
is desirable to organize those accesses in coalesced patterns,
when each thread within a warp accesses adjacent memory
location, thus combining reads/writes into a single contigu-
ous global memory transaction, avoiding memory bus con-
tention.

In our case, global memory accesses are minimized such
that:

• The thread reads its personality at the beginning ker-
nel of execution, then stores it in registers.

• Only threads, corresponding to root nodes, write back
their match state at the end of execution.

Unlike the kernel personality XML document stream is
shared among all queries within a thread block, which makes
it a good candidate for storing in shared memory. However

XML event stream is too big to be stored into shared mem-
ory, which has very limited size. It is hence placed in global
memory and is read by all threads throughout execution.
We optimize accesses by reading the XML event stream into
shared memory in small pieces, looping over the document
in a strided manner.

Experimental evaluation showed that the main factor that
limits achieving high GPU occupancy is the SM shared mem-
ory. In order to save this resource we merged the pop and
push stacks into a single data structure. This merged stack
contains compressed elements, each of which consumes of 1
byte of shared memory. The most significant half of this
byte stores information needed for the push stack, and the
least significant half encodes the pop stack value. The de-
tailed encoding scheme is shown in Table 3. Both the push
and pop parts of the merged stack value contain the fields:
childMatch and descMatch, described in Section 4.2.

4.6 Additional Optimizations
Processing of pop event makes each node responsible for

reporting its match/mismatch to the prefix node through
the prefix pointer, because the split node does not keep in-
formation about its children. In case of a massively parallel
architecture like a GPU, this reporting could lead to race
conditions between children, reporting their matches in an
unsynchronized order. In order to avoid these race condi-
tions the CUDA Toolkit provides a set of atomic operations
[26], including atomicAnd(), needed to implement the match
propagating logic, described in Section 4.2.

Experimental results showed that the usage of atomic op-
erations heavily deteriorates performance, up to several or-
ders of magnitude in comparison to implementations having
non-atomic counterparts of that operations. To overcome
this issue each merged stack entry is coupled with an ad-
ditional childrenMatch array of predefined size. All chil-
dren report their matches into di↵erent elements within this
array, therefore avoiding race conditions. After children re-
porting is done, the split node can iterate through this array
and collect matches, “AND”-ing elements of the children-
Match array and finally reporting its own match according
to the obtained value. The size of childrenMatch array is
statically set during compilation, such that the algorithmic
implementation is customized to the query set at hand.

This number should be chosen carefully, since large ar-
rays could significantly increase shared memory usage. Each
query is coupled with exactly the number of stack columns
needed, depending on the number of respective children.
Customized data structures are compiled (once, o✏ine) from
an input set of queries. This is in contrast to a more generic
approach which would greatly limit the scalability of the
proposed solution, where each query node would be asso-
ciated with a generic data structure, accommodating for a
max (rather than custom) set of properties. For most prac-
tical cases, twig queries are not very “bushy”, hence this
optimization could significantly decrease filtering execution
time, as opposed to the general solution leveraging atomic
operation semantics.

5. EXPERIMENTAL RESULTS
Our performance evaluation was completed on two GPU

devices from di↵erent product families, namely:
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• NVidia Tesla C2075: Fermi architecture, 14 SMs with
32 SPs, 448 computational cores in total.

• NVidia Tesla K20: Kepler architecture, 13 SMs with
192 SPs each, 2496 compute cores.

Measurements for CPU-based approaches are produced
from a dual 6-core 2.30GHz Intel Xeon E5-2630 server with
30GB of RAM, running on CentOS 6.4 Linux. As a repre-
sentative of software-based XML filtering methods, we used
the state-of-the-art YFilter [12].

Wall-clock execution time is measured for the proposed
approach running on the above GPUs, and for YFilter ex-
ecuted on the 12-core CPU. In the case of YFilter, parsing
time is not measured, since it is done on CPU and uses sim-
ilar streaming SAX techniques. Execution time starts from
having the parsed documents in the cache. With regards to
the GPU setup, execution time includes sending the parsed
documents, filtering, and receiving back filtering results.

Documents of di↵erent sizes are used, obtained by trim-
ming the original DBLP XML dataset [1] into chunks of
di↵erent lengths; also, synthetic XML documents are gener-
ated using the DBLP DTD schema with the help of ToXgene
XML Generator [6]. Experiments were performed on single
documents of sizes ranging from 32kB to 2MB. Furthermore,
to capture the streaming nature of pub-subs, another set of
experiments was carried out, filtering batches of 500 and
1000 25kB synthetic XML documents.

Several performance experiments while varying the block
size were carried out, with conclusion that a block size of 256
threads is best, maximizing utilization hence performance
(data omitted for brevity).

As for the profile creation, unique twig queries are gener-
ated using the XPath generator provided with YFilter [12].
In particular, we made use of a fairly diverse query dataset:

• Number of queries: 32 to 2K.

• Query size: 5, 10 and 15 nodes.

• Number of split points: 1, 3 or 6 node respectively (to
the above query sizes).

• Maximum number of children for each split node: 4
nodes.

• Probability of ‘*’ and ‘//’: 10%, 30%, 50%

5.1 GPU Throughput
Figure 7 shows the throughput of Tesla C2075 GPU using

a 1MB XML document, for an increasing number of queries
with varying lengths. Throughput is given in MB/s and
in thousands of XML Events/s, which is obtained assum-
ing that on average every 6.5 bytes of the XML document
encodes push/pop event (due to document design).

Data for di↵erent wildcard and //-probabilities and other
document sizes is omitted for brevity, since they do not a↵ect
the total throughput.

The characteristics of the throughput graph are correlated
with the results reported in [23]: starting o↵ as a constant,
throughput eventually reaches a point, where all computa-
tional GPU cores are utilized. After this point, which we
refer to as breaking point, the amount of parallelism avail-
able by the GPU architecture is exhausted. Evaluating more
queries will result in serialized execution, which results in an
almost linear relation with the added queries (e.g. a 50% de-
crease in throughput as the number of queries is doubled).
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Figure 7: Tesla C2075 throughput (in MB/s and
thousands of XML Events/s) of filtering 1MB XML
document for queries of length 5,10 and 15.

5.2 Speedup Over Software
In order to calculate the speedup of filtering over YFilter,

we measured the execution time of YFilter running on a
CPU and our GPU approach running on Tesla C2075 while
filtering 256 queries of length 10. This particular query
dataset was picked to study the speedup of a fully utilized
GPU, because it corresponds to one of the breaking points
shown on Figure 7. As mentioned earlier, the execution
times for both systems do not include the time spent on
parsing the XML documents.

Figure 8 shows that the maximum speedup is achieved
for documents of small size. As the size increases, speedup
gradually lowers and flattens out for documents � 512kB.
This e↵ect could be explained by the latency of global mem-
ory reads, since number of strided memory accesses grows
with increasing document size.

The existence of wildcard and // has a positive e↵ect on
the speedup: the execution time of the YFilter depends on
size of the NFA automaton, which, in turn, grows with the
aforementioned probability.

5.3 Batch Experiments
To study the e↵ect of inter-document parallelism we per-

formed experiments with batches of documents. These ex-
periments used synthetically generated XML documents.

Since the YFilter implementation is single-threaded and
cannot benefit from the multicore/multiprocessor setup that
we used for our experiments, we also perform measurements
for a “pseudo”-multicore version of YFilter. This version
equally splits document-load across multiple copies of the
program, the number of copies being equal to the number
of CPU cores. Query load is the same for each copy of the
program. Note that the same tecnique cannot be applied
to split query load among multiple CPU cores in previous
experiments, since this could possibly deteriorate YFilter
performance due to splitting single unified NFA into several
automata.

For this experiment we have measured the batched execu-
tion time not only on the Tesla C2075 GPU, but also on the
Tesla K20, which has six times more available computational
cores.
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FACTOR CPU GPU FPGA

Document size Decreases Minimal e↵ect
No e↵ect on the
filtering core

Number of queries Slowly decreases No e↵ect prior breaking point, decreases after Slowly decreases
Query length Slowly decreases No e↵ect prior breaking point, decreases after Minimal e↵ect

‘*’ and //-probability
Decreases on 15% on average per

No e↵ect No e↵ect
10 % increase in probability

Query bushyness Minimal e↵ect
No e↵ect until maximum number of query

Minimal e↵ect
node children exceeds predefined parameter

Query dynamicity Minimal e↵ect Minimal e↵ect No support

Batch size Slowly decreases Minimal e↵ect
No e↵ect on the
filtering core

Table 5: Summary of factors and their e↵ects on the throughput of CPU-, FPGA- and CPU-based XML
filtering. Query dynamicity refers to the capability of updating user profiles (the query set). The FPGA
analysis is added using results from our study in [25].
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Figure 8: Speedup of GPU-based version running on
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Figure 9 shows throuput graph for batch of 500 docuemnts
(experiments with other batch sizes yields similar results).
Unlike Figure 7 the graph does not have a breaking point.
This happens because all available GPU cores are always
occupied by concurrently executing kernels, therefore GPU
is always fully utilized. Doubling the number queries or
query length requires two times more GPU computational
cores, thus decreasing throughput by factor of two.

Figures 10 and 11 individualy study the e↵ect of query
length and number of queries on the speedup for batches of
size 500 and 1000 respectively. In both cases speedup drops
almost by almost a factor of two, while query load is doubled,
and eventually even leads to perfomance, worse than CPU-
version. Thus we can infer that YFilter throughput is only
sigtly a↵ected by query length or number of queries.

Both figures show that GPU performance (hence speedup
over CPU version) slightly deteriorates with the increasing
batch size. This e↵ect could be expalined by low global
memory bus throughput due to irregular asynchronous copy-
ing access patter.

On Figures 10 and 11 the speedup for the Tesla K20 is
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Figure 9: Batched throughput (500 documents) of
GPU-based version running on Tesla C2075 and
Tesla K20 for wildcard and //-probability fixed at
50%. Data is shown for queries, having length equal
to 5, 10 and 15. Throughput is shown in MB/s as
well as in millions of Events/s

better than for Tesla C2075, but is not as big as the ratio
of the number of their computational cores: the amount of
concurrent kernel overlapping is limited by GPU architec-
ture.

Finally, the speedup of the GPU-based versions over the
software-multithreaded version is, as expected, lower then
the speedup over a single-thread YFilter.

5.4 The Effect of Several Factors on Different
Filtering Platforms

Table 5 summarizes the various factors a↵ecting the single-
document filtering throughput for GPUs as well as for soft-
ware approaches (Yfilter) and FPGAs. The FPGA analysis
is added using results from our study in [25].

Query dynamicity refers to the capability of updating user
profiles (the query set).

While FPGAs typically provide a high throughput, their
main drawback is that that queries are static. As queries
are mapped to hardware structures, updating queries could
result in up to several hours; this is because hardware compi-
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Figure 10: Speedup for Tesla C2075 and Tesla K20
GPUs over single-threaded and multicore YFilter
for document batches. Query length is equal to 5,
wildcard and //-probability is fixed at 50%.

lation (synthesis/place-and-route) is a very complex process.
On the other hand, queries can be updated on-the-fly when
using CPUs and GPUs.

6. CONCLUSIONS
This paper presents a novel XML filtering framework,

which exploits the massive parallelism of GPU architectures
to improve the filtering performance. GPUs enable the use
of a highly parallel architecture, while preserving the flexi-
bility of software approaches. Our solution is able to pro-
cess complex twig queries holistically, without requiring an
additional post-processing step. By leveraging all available
levels of parallelism we were able to extract maximum per-
formance out of a given GPU. In our experiments we were
able to achieve speedup of up to 9x in a single-document
scenario and up to 4x in the batched-document case against
a multicore software filtering system.
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