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Given a weighted, ordered query set & and a partition of & into classes, we study the problem of computing a minimum-cost
decision tree that, given any query @ ∈ & , uses equality tests and less-than tests to determine @’s class. Such a tree can be
faster and smaller than a conventional search tree and smaller than a lookup table (both of which must identify @, not just its
class). We give the first polynomial-time algorithm for the problem. The algorithm extends naturally to the setting where
each query has multiple allowed classes.
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1 INTRODUCTION
Given a weighted, ordered query set & partitioned into classes, we study the problem of computing a decision
tree that, given any query @ ∈ & , uses equality tests (e.g., “@ = 4?”) and less-than tests (e.g., “@ < 7?”) to quickly
determine @’s class. We call such a tree a two-way-comparison decision tree (2WDT). Figure 1 shows an example. In
the special case where each class is a singleton (so identifies the query), we call such a tree a two-way-comparison
search tree (2WST). The goal is to find a 2WDT of minimum cost, defined as the weighted sum of the depths of all
queries, where the depth of a given query @ ∈ & is the number of tests the tree makes when processing query @.
Whereas search trees and lookup tables must identify the query @ (or the inter-key interval that @ lies in),

a decision tree needs only to identify @’s class, so can be faster and smaller than a conventional search tree,
and smaller than a lookup table. Consequently, decision trees are used in applications such as dispatch trees,
which allow compilers and interpreters to quickly resolve method implementations for objects declared with
type inheritance [3, 4]. (Each type is assigned a numeric ID via a depth-first search of the inheritance digraph.
For each method, its tree maps each type ID to its method resolution.) Chambers and Chen [3, 4] give a heuristic
to construct low-cost 2WDTs, but leave open whether minimum-cost 2WDTs can be found in polynomial time.

We give the first polynomial-time algorithm to find minimum-cost 2WDTs. It runs in time$ (=4), where = = |& |
is the number of distinct query values. This matches the best run-time known for the special case of 2WSTs. The
algorithm extends naturally to the setting where each query can belong to multiple classes, any one of which is
acceptable as an answer for the query. The extended algorithm runs in time $ (=3<), where< is the sum of the
sizes of the classes.

∗An extended abstract of this paper appears in WADS 2023 [7].
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@ cls wt
1 A 6
2 B 7
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4 A 6
5 D 8
6 B 8
7 E 7
8 F 6
9 A 8
10 G 7
11 H 10
12 H 11
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14 H 9
15 H 500
16 H 9
17 H 10

@ cls wt
18 I 10
19 I 8
20 I 15
21 I 17
22 H 7
23 H 8
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26 J 1
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29 J 1
30 J 2
31 J 2
32 J 100
33 J 1
34 J 2

@ cls wt
35 J 2
36 J 2
37 J 1
38 J 1
39 J 1
40 J 2
41 J 1
42 K 3
43 K 3
44 K 3
45 K 3
46 K 3
47 K 3
48 K 3
49 K 3
50 K 3

Fig. 1. An optimal two-way-comparison decision tree (2WDT) for the problem instance shown on the right. The instance
(but not the tree) is from [3, 4, Figure 6]. Each internal node represents a comparison between the given query and the node’s
key : : either an equality test, represented as “=:”, or a less-than test, represented as “<:”. Each leaf (rectangle) is labeled
with the queries that reach it, and below that with the class for the leaf. The table gives the class and weight of each query
@ ∈ & = [50] = {1, 2, . . . , 50}. The tree has cost 2055, about 11% cheaper than the tree from [3, 4], of cost 2305.

Related work. Decision trees of various kinds are ubiquitous in the areas of artificial intelligence, machine
learning, and data mining, where they are used for data classification, clustering, and regression (see e.g. [2]).
Here we study decision trees for one-dimensional data. Most work on such trees has focussed on search trees.
Here is a summary of relevant work on optimal search trees.

The tractability of finding an optimal search tree depends heavily on the kind of tests that the tree may use. The
most general case, allowing tests of membership in sets from any given family of subsets of & , is NP-hard, even
if all subsets have size at most three [14], or the family is required to be laminar [15]. Early works considered
trees in which each test compared the given query value @ to some particular comparison key : , with three
possible outcomes: the query value @ is less than, equal to, or greater than : [8, §14.5] [17, §6.2.2]. We call such a
tree a three-way-comparison search tree, or 3WST for short. (See Figure 2 (a).) In a 3WST, the query values that
reach any given node form an interval. The possible intervals naturally represent $ (=2) dynamic-programming
subproblems, leading to an $ (=3)-time algorithm for finding minimum-cost 3WSTs [10]. Knuth reduced the
running time to $ (=2) [16].

In practice each three-way comparison is sometimes implemented by doing two two-way tests: a less-than test
followed by an equality test. Knuth [17, §6.2.2, Example 33] proposed exploring binary search trees that use these
two types of tests directly in any combination, that is, 2WSTs as defined earlier. For the so-called successful-queries
variant (defined later), assuming the query weights are normalized to sum to 1, there is always a 2WST whose
cost exceeds the entropy of the weight distribution by at most 1 [9]. As the entropy is a lower bound on the cost
of any binary search tree using arbitrary Boolean tests, this suggests that restricting to less-than and equality
tests need not be too costly.
Stand-alone equality tests introduce an algorithmic obstacle not encountered with 3WSTs. Namely, while

(analogously to 3WSTs) each node of a 2WST is naturally associated with an interval of queries, not all queries
from this interval necessarily reach the node, so the dynamic program for 3WSTs does not extend easily to
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Fig. 2. Tree (a) is a three-way-comparison search tree (3WST). Tree (b) is a two-way-comparison search tree (2WST) for the
same instance. The query (or interval of queries) reaching each (rectangular) leaf is within the leaf. The weight of the query
(or interval) is below the leaf.
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(−∞, 1) z 1

1 A 0
(1, 2) z 2
2 z 5
(2, 3) z 0
3 B 4
(3, 4) z 0
4 C 4
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Fig. 3. Three trees for the 2WDT instance shown in (d). The set of queries reaching each (rectangular) leaf is shown within
the leaf (to save space, there ]8 denotes the inter-key open interval with right boundary 8 , e.g. ]1 = (−∞, 1), ]2 = (1, 2)). The
associated weights are below the leaf. The optimal tree (a) has cost 36 and is not heaviest-first. Each heaviest-first tree (e.g.
(b) of cost 37 or (c) of cost 39) is not optimal. These properties also hold if each weight is perturbed to make the weights
distinct. (Note: in our formal model, the inter-key intervals will be represented by virtual non-key queries.)

2WSTs. This led early works to focus on restricted classes of 2WSTs, namely median split trees [19] and binary
split trees [11, 13, 18]. These, by definition, constrain the use of equality tests so as to sidestep the obstacle they
introduce. Generalized binary split trees are less restrictive, but the only algorithm proposed to find them [12] is
incorrect [6]. Likewise, the recurrence relations underlying the first algorithms proposed to find minimum-cost
2WSTs (which were given without proof [20, 21]) are demonstrably wrong [6].
Spuler conjectured in 1994 that every 2WST instance has an optimal tree with the heaviest-first property:

namely, in each equality-test node, the comparison key is the heaviest among keys that reach the node [21]. In
2002 Anderson et al. proved the conjecture for successful-queries 2WSTs, leading to the first polynomial-time
algorithm for that variant [1]. The algorithm runs in $ (=4) time. In 2021, Chrobak et al. simplified their result
(in particular, the handling of equal-weight keys, as discussed later) to obtain an $ (=4)-time algorithm to find
optimal 2WSTs (both variants) [5]. These 2WST algorithms do not extend easily to 2WDTs, because some 2WDT
instances have no optimal tree with the heaviest-first property. Figure 3 gives an example.
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Our contributions. The rotation operation is a standard tool for studying 2WSTs with only less-than tests (and
3WSTs). Following [1] and [5] we use a generalized rotation that applies to 2WSTs with both types of tests. We
generalize it further, to decision trees ) such that the test at each internal node D is a test of membership in some
set -D ⊆ & , subject only to the constraint that the collection of such test sets {-D : D ∈ ) } is laminar. For each
such node D, the edge to one child is associated with -D while the edge to the other child is associated with the
complement -D = & \ -D . Given any query @, the search for @ in ) follows the unique root-to-leaf path whose
edges’ sets all contain @. We call such trees laminar decision trees, or LDTs for short. (See Section 1.1.)
Suppose that, in such a laminar decision tree ) , there is an “imbalance” in the tree: for some downward path

D1 → D2 → · · · → D3 , the sibling D′2 of D2 is lighter than D3 . (That is,F (D′2) < F (D3 ), whereF (D), the weight of
node D, is as usual the total weight of the queries that reach the node.) Then Theorem 2.1 (Section 2) states that,
if ) is optimal, the sets associated with the edges leaving the path D1 → · · · → D3 must be pairwise disjoint. (The
edges leaving the path are {D8 → D′8+1 : 1 ≤ 8 < 3}, where, for any node D other than the root, D′ denotes the
sibling of D in ) .) This theorem generalizes the key structural theorems of [1] and [5]; in particular, it implies the
heaviest-first property for 2WSTs.
Section 3 then proves Theorem 3.1, which strengthens Theorem 2.1 specifically for trees with less-than and

equality tests, that is, 2WSTs. Section 4 uses Theorem 3.1 to prove Theorem 4.5, that there is always an optimal
tree that is admissible. This means roughly that, at each equality-test node 〈 = ℎ〉 in the tree, if the key ℎ is not
the heaviest key reaching the node, it must be one of at most three other suitably restricted keys (Definition 4.3).
A careful implementation then yields the main result (Theorem 5.1 in Section 5): an $ (=3<)-time dynamic-
programming algorithm to find a minimum-cost 2WDT.

The role of distinct key weights. The discussion above glosses over a secondary technical obstacle for 2WSTs. For
2WST instances whose key weights are distinct, the heaviest-first property determines the key of each equality
test uniquely, so that the queries that reach any given node in a 2WST (with the property) must form one of$ (=4)
predetermined subsets, leading naturally to a dynamic program with $ (=4) subproblems. But this uniqueness is
lost when key weights are not distinct. This obstacle turns out to be more challenging than one might expect.
Indeed, there are instances with non-distinct weights for which, for every non-empty subset ( of & , there is a
2WST that has the heaviest-first property, and a node D such that the set of queries reaching D is ( . One cannot
just break ties naively: it can be that, for two maximum-weight keys ℎ and ℎ′ reaching a given node D, there is an
optimal subtree in which D does an equality-test to ℎ, but none in which D does an equality-test to ℎ′ [5, Figure
3]. Similar issues arise in finding optimal binary split trees—these can be found in time $ (=4) if the instance has
distinct weights, while for arbitrary instances the best bound known is $ (=5) [11].
Nonetheless, using a perturbation argument Chrobak et al. [5] show that an arbitrary 2WST instance can

indeed be handled as if it is a distinct-weights instance just by breaking ties among equal weights in a globally
consistent way.We use the same approach here for 2WDTs.

1.1 Definitions

An instance � of the laminar decision tree problem (LDT) is specified by a tuple � = (&,F, C, F ), where& is a finite,
totally ordered, non-empty set of queries, with each query @ ∈ & assigned a weightF (@) ≥ 0, the set C ⊆ 2& is a
collection of query classes (with each class having a unique identifier), and F ⊆ 2& \ {∅, &} is laminar. Call each
set - ∈ F a test, with two outcomes: - (the yes outcome), and - = & \ - (the no outcome). Let = and< denote,
respectively, |& | and ∑

2∈C |2 |. A decision tree for � is a rooted binary tree ) where each non-leaf node D has an
associated test -D ∈ F , with the edge to one child of D associated with the yes-outcome -D , and the edge to the
other child of D associated with the no-outcome -D . Each leaf node D is labeled with (the identifier of) some class
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2D ∈ C, which must contain the intersection of the outcomes of the edges along the path from the root to D (this
intersection is comprised of those queries @ ∈ & whose search, as defined next, ends at D).

For each @ ∈ & , the search for @ in) follows the (unique) root-to-leaf path of edges whose outcomes all contain
@. Call this path @’s search path. Say that @ reaches each node on this path. Call the leaf that @ reaches @’s leaf.
Define @’s depth (in ) ) to be the depth of @’s leaf (equivalently, the number of tests on @’s search path). The cost
of ) is the weighted sum of the depths of all queries in & (where each query @ ∈ & has weightF (@)). A solution
for � is a decision tree for � of minimum cost.
A decision tree ) is called irreducible if, for each node D in ) , (i) at least one query in & reaches D, and (ii) if

any class 2 ∈ C contains all the queries that reach D, then D is a leaf. Any decision tree can easily be converted
into an irreducible tree without increasing its cost, so we generally restrict attention to irreducible trees. As we
shall see, in an irreducible tree ) , each non-leaf node D has a distinct test -D and each edge D → E has a distinct
outcome, so, when convenient, we identify each node D with its test -D and identify each edge D → E with its
outcome (-D or -D ).

Note that an LDT instance is not necessarily feasible, that is, it might not have a decision tree. To be feasible, in
addition to each query belonging to some class, it must have the property that each set of queries that cannot be
separated by tests in F (that is, for each test - ∈ F either this set is a subset of - or is disjoint with - ) must be
contained in some class.

An equality test with key : is the test (set) {:}. A less-than test with key : is the test (set) {@ ∈ & : @ < :}. The
2WDT problem is the restriction of LDT to instances in which, for some set  ⊆ & of keys, F is comprised of the
equality and less-than tests whose keys are in  . (It is straightforward to verify that this is a laminar family.) In
this context we denote the instance as � = (&,F,�,  ).

The assumption  ⊆ & is for ease of presentation. Also, we can assume without loss of generality that each
query belongs to some class, so< ≥ = = |& | and the input size1 is Θ(= +<) = Θ(<). As discussed at the end of
Section 5, although our definition of 2WDTs allows only less-than and equality tests, all results extend easily to
the other standard inequality tests.

Successful-queries variants. Conventionally, in the successful-queries variants of binary search-tree problems,
the input is an ordered set  of weighted keys. Each comparison must compare the given query value to a
particular key in  and each query must be a value in  . Such queries are called successful. In the standard
variants, the input is augmented with a weight for each open interval between consecutive keys (and before the
minimum key and after the maximum key). Unsuccessful queries, that is, queries to values within these intervals,
are also allowed. They must be answered by returning the interval in which the query falls. Our definition of
2WDTs captures both variants: restricting to & =  gives the successful-queries variant, while the standard
variant can be modeled by adding one non-key query within each open interval to & .

2 IMBALANCE THEOREM FOR TREES WITH LAMINAR TESTS

This section states and proves Theorem 2.1 (the imbalance theorem):

Theorem 2.1. Let ) be any optimal, irreducible tree for an LDT instance � = (&,F, C, F ). Let D1 → D2 → · · · →
D3 be the downward path from any node D1 to any proper descendant D3 in ) such thatF (D′2) < F (D3 ). Then the
outcomes leaving D1 → · · · → D3 are pairwise disjoint.

1Note that F, being laminar, can be encoded as a tree in space$ (=) .
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The outcomes leaving D1 → · · · → D3 are {D8 → D′8+1 : 1 ≤ 8 < 3}. Note that this does not include any outcome
out of D3 . Recall that in ) each node D is identified with its test set -D , each edge D → E is identified with its
outcome -D or -D , and D′ denotes the sibling of D, unless D is the root.

Intuition. The theorem considers how, in an optimal 2WDT, it can happen that a node (D3 ) can be heavier than
the sibling (D′2) of some ancestor (D2). If this happens, then it must be that we can’t rotate the node up the tree
above its ancestor. The theorem says that this can happen only if the outcomes leaving the path from the ancestor
to the node are disjoint.
Here are some examples to build intuition. Let ) be as assumed in the theorem. First suppose that each test

along the path D1 → · · · → D3 with F (D′2) < F (D3 ) is a less-than test. Then each outcome leaving the path
contains either min& or max& , so, by the theorem, at most two edges leave the path (at most one containing
min& , at most one containing max&). That is, 3 ≤ 3.

Another consequence: for any downward path G → ~ → I in ) , the weightF (~′) of the sibling of ~ is at least
min

(
F (I),F (I′)

)
. (Otherwise, applying the theorem to the path G → ~ → I, and then to the path G → ~ → I′,

the outcome G → ~′ is disjoint from outcomes ~ → I′ and ~ → I, so the outcome G → ~′ would be empty,
contradicting the definition of LDTs.)

Finally, for any equality test 〈 = :〉 in ) , for any proper ancestor 0 of 〈 = :〉, the weightF (0′) of the sibling of
0 (if there is one) is at leastF (:). (Otherwise, let ? be the parent of 0. Let !: be the yes-child of 〈 = :〉. Then the
theorem applies to the path ? → 0 → · · · → 〈 = :〉 → !: , so the outcome of ? → 0′ is disjoint from the outcome
of 〈 = :〉 → !′

:
, so must be a subset of the outcome of 〈 = :〉 → !: , i.e., the singleton {:}. So the outcome ? → 0′

is either empty, contradicting the definition of 2WDTs, or also {:}, contradicting the irreducibility of ) .) As a
special case every equality-test ancestor 〈 = ℎ〉 of 〈 = :〉 satisfiesF (ℎ) ≥ F (:).

In fact, Theorem 2.1 generalizes the key structural theorems of [1] and [5] for 2WSTs. For instance, the heaviest-
first property of 2WSTs follows easily from the above paragraph. Indeed, fix an optimal, irreducible 2WST tree ) .
Assume without loss of generality that, if the parent of any leaf !: in ) is a test node 〈 = ℎ〉, thenF (ℎ) ≥ F (:).
(Otherwise just change the parent to 〈 = :〉, making !: the yes-child.) To show that ) has the heaviest-first
property, consider any test node 〈 = ℎ〉 whose no-subtree has a leaf !: for a key : . We will showF (:) ≤ F (ℎ).
In the case that !: is a child of 〈 = ℎ〉, then the previous assumption impliesF (:) ≤ F (ℎ). So assume that !: is
not a child of 〈 = ℎ〉. If the parent of !: is not already 〈 = :〉, consider replacing that parent by 〈 = :〉, making !:
the yes-child. This preserves optimality and correctness. NowF (ℎ) ≥ F (:) follows from the last sentence in the
previous paragraph, applied to the (possibly modified) tree.

The generalized rotation. Next we lay the groundwork for the proof of Theorem 2.1. Fix an LDT instance
� = (&,F, C, F ). Say tests -,. ∈ F are equivalent if - = . or - = . . We’ll use only the following property of F ,
which is essentially2 a restatement of laminarity:

Property 1. Given two non-equivalent tests -,. ∈ F , among the four pairs of outcomes in {-,- } × {.,. },
exactly one pair are disjoint.

Fix an irreducible tree ) for � .

Property 2. Let D and E be distinct non-leaf nodes in an irreducible decision tree ) for � . Then (i) the tests at D
and E are not equivalent. If D is a proper ancestor of E then (ii) the outcome from D on the path from D to E overlaps
with both outcomes from E , while (iii) the other outcome from D (the one leaving the path from D to E) is a subset of
one outcome from E , and disjoint from the other outcome from E .
2Property 1 is a-priori weaker than laminarity, but any family F with Property 1 can be converted into an equivalent laminar family F′ by
fixing any element @0 ∈ & and taking F′ = {- ∈ F : @0 ∉ - } ∪ {- : - ∈ F, @0 ∈ - }.
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1′ =⇒
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Fig. 4. Rotating a non-root test node 1 in ) moves 1 (along with its preferred child 2′ and the subtree rooted at 2′) above
its parent 0. Unlike binary search trees, laminar search trees are not inherently ordered. When drawing a rotation in a
laminar tree, we draw the first tree )0 using any convenient order, then, when drawing the rotated tree ) ′

1
, order each node’s

two outcomes the same as they were ordered in )0 . Above, (i) and (ii) are two ways of drawing the exact same rotation.
Throughout, D′ denotes the sibling of a given node D in the original tree ) , in which )0 is a subtree.

Proof. Part (ii) follows directly from the irreducibility of ) . In the case when D is an ancestor of E , Part (ii)
implies both Part (i) and, using Property 1, Part (iii), so we are done in this case. Since Part (i) (non-equivalence)
holds when D is an ancestor of E , it also holds when E is an ancestor of D, just by reversing their roles. To finish
we show Part (i) when neither is an ancestor of the other.

Suppose for contradiction that D and E are equivalent. Let 0 be the lowest common ancestor of D and E . Let
0 → 1 and 0 → 1′ be the outcomes from 0 leading towards D and E , respectively. Part (ii) holds for 0 and D, so
0 → 1 overlaps both outcomes from D. By the same reasoning (reversing the roles of D and E) outcome 0 → 1′

overlaps both outcomes from E , implying (by the equivalence of E and D) that 0 → 1′ overlaps both outcomes
from D. So both outcomes at 0 overlap both outcomes at D, contradicting Property 1. �

Here is some hopefully mnemonic terminology:

Definition 2.2. Given an outcome 1 → 2′ in ) from a non-root node 1 to child 2′, let 0 be the parent of 1. Call
the sibling 1′ of 1 the uncle of the child 2′. If 1 → 2′ is the outcome at 1 that is disjoint from the outcome 0 → 1′

from the grandparent to the uncle, say that the child 2′ and the outcome 1 → 2′ are preferred by 1.

By Property 2(iii), 1 has exactly one preferred child and one preferred outcome, which leads to that child. Also,
the outcome 0 → 1′ from the grandparent to the uncle is a subset of the non-preferred outcome 1 → 2 at 1.

Definition 2.3. Given a non-root test node 1, let 0 be the parent of 1. Rotating 1 (above 0) replaces the subtree
)0 rooted at 0 in ) with the subtree ) ′

1
obtained from )0 as shown in Figure 4, that is, it exchanges the nodes 0

and 1 along with the subtrees rooted at their respective children 1′ and 2′.

Next we show that the rotation operation is correct. To avoid confusion, note that, when considering a sequence
of trees derived from ) , the notation D′ always denotes the sibling of node D in ) , which is not necessarily the
sibling of D in subsequent trees. Likewise, the notation D → E always denotes the outcome leading from D to E in
) . The notation D

) ′→ E denotes the outcome leading from D to E in some subsequent tree ) ′.

Observation 1. Let ) ′ be obtained from ) by rotating 1 up as described above. Then (i) ) ′ is an irreducible decision
tree for � , and (ii) the cost of ) ′ is the cost of ) plusF (1′) −F (2′), so, provided ) is optimal,F (1′) ≥ F (2′). That is,
the preferred child 2′ cannot be heavier than its uncle 1′.

Proof. Part (i). Recall that the queries reaching a node are those in the intersection of all outcomes along the
path from the root to the node. We will show that, for each leaf !, this set is the same in ) as it is in ) ′.
If ! is not a descendant of 0, the path from the root to ! does not change. If ! is a descendant of 2 , this path

changes but the set of outcomes on this path is the same in ) and ) ′. It remains to consider the cases when ! is a
descendant of 1′ or 2′ in ) .

ACM Trans. Algor.
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In the case that ! is a descendant of 1′, the only change to the path to ! is the addition of the outcome 1 → 2 .
(In ) ′ that outcome is now 1

) ′→ 0.) But the path contains the outcome 0 → 1′, which (being disjoint from the
preferred outcome 1 → 2′) is a subset of the non-preferred outcome 1 → 2 . So the intersection is unchanged.

Similarly, in the remaining case (! is a descendant of 2′) the path loses 0 → 1 (which is 0
) ′→ 2 in ) ′). But the

path contains the preferred outcome 1 → 2′ which (being disjoint from 0 → 1′) is a subset of 0 → 1. So the
intersection is unchanged.

Part (ii). The rotation increases the depth of each descendant of the uncle 1′ by one, while decreasing the depth
of each descendant of the preferred child 2′ by one, thus increasing the tree cost byF (1′) −F (2′). �

Each non-root test node has a preferred child, so by Observation 1 if ) is optimal each non-root test node has
a child that weighs no more than the child’s uncle:

Observation 2. Suppose ) is optimal. For any non-root node D with children E and E ′,F (D′) ≥ min
(
F (E),F (E ′)

)
.

We now prove the theorem.

Proof of Theorem 2.1. Let ) , � = (&,F, C, F ), and D1 → D2 → · · · → D3 be as in the theorem statement, so
F (D′2) < F (D3 ). We claim that F (D′2) ≥ F (D′3) ≥ · · · ≥ F (D′3 ). Suppose otherwise for contradiction. Fix 9 < 3

such that F (D′2) ≥ F (D′3) ≥ · · · ≥ F (D′9 ) < F (D′9+1). By Observation 2 and F (D′9 ) < F (D′9+1), it must be that
F (D′9 ) ≥ F (D 9+1). Using this, the choice of 9 , and that D3 is a descendant of D 9+1, we have F (D′2) ≥ F (D′9 ) ≥
F (D 9+1) ≥ F (D3 ), contradictingF (D′2) < F (D3 ) and proving the claim.

The claim, andF (D′2) < F (D3 ), and the ancestry relations imply

F (D′
3
) ≤ F (D′

3−1) ≤ · · · ≤ F (D
′
2) < F (D3 ) ≤ F (D3−1) ≤ · · · ≤ F (D1) . (1)

Next suppose for contradiction that at least one pair of outcomes leaving the path overlaps. Fix such a pair
D? → D′?+1 and D@ → D′@+1 with ? < @ < 3 such that the later outcome D@ → D′@+1 overlaps the earlier outcome
D? → D′?+1, but is disjoint from each outcome leaving the path between these two. (Formally, D@ → D′@+1 overlaps
D? → D′?+1 but is disjoint from each D8 → D′8+1 with ? < 8 < @. Such a pair must exist. For example, fix any @ < 3

such that there is an earlier outcome leaving the path that overlaps D@ → D′@+1. Then, among the latter, take
D? → D′?+1 to be the one with maximum ? .)

Now, as illustrated in Figures 5(a) and (b), rotate D@ up the sub-path D? → D?+1 → · · · → D@ , ancestor
by ancestor, just until D@ becomes the parent of D? . That is, let )@−1 be the initial tree ) , then, for each 8 ←
@ − 1, @ − 2, . . . , ? in decreasing order, let the next tree ) 8 be obtained from the previous tree ) 8+1 by rotating D@
above D8 . In each tree ) 8 except the last, the parent of D@ is D8 . The final tree ) ?+1 is obtained from ) ? by rotating
D@ above D? .

For each rotation except the last (each 8 > ?), by the choice of @ and ? , the outcome leaving D@ that is disjoint
from D8 → D′8+1 is D@ → D′@+1 (in both the original tree ) and the current tree ) 8 ). So D@ → D′@+1 is the preferred
outcome for this rotation, and the rotation is as illustrated in Figures 5(a) and (b). The preferred outcome is
drawn to the right, so takes the form shown in Figure 4(i). It moves D@ (and the preferred outcome D@ → D′@+1)
above D8 . Thus, just before the final rotation, the tree () ? ) is as shown in Figures 5(a) and (b), with D@ (and the
preferred outcome D@ → D@+1) just below D? . (The tree ) ? could also be obtained directly from ) by just deleting
the three edges in D@−1 → D@ → D@+1 and D? → D?+1 and replacing them by the three edges D@−1 → D@+1 and
D? → D@ → D?−1.) The final rotation then rotates D@ above D? . By the choice of ? , the preferred outcome at D@ for

this rotation is D@ → D@+1 (in) ; in the current tree) ? this outcome is D@
)?→ D?+1). So the rotation is as illustrated

ACM Trans. Algor.

 



Classification via Two-Way Comparisons • 9

(a)
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(b)
)@−1 D?

D?+1

D@−1

D@

D@+1 D′
@+1

D′@

D′
?+2

D′
?+1

8=@−1
=⇒ · · ·

8=?+1
=⇒

) ? D?

D@

D?+1

D@−1

D@+1 D′@

D′
?+2

D′
@+1

D′
?+1

8=?
=⇒

) ′D@ D@

D?+1

D@−1

D@+1 D′@

D′
?+2

D?

D′
@+1 D′

?+1

. .
.

. .
.

. .
.

Fig. 5. The sequence of rotations in the proof of Theorem 2.1. The drawing orders the initial tree )@−1 = ) so the path
D? → · · · → D@ lies on the left spine. The case (?, @) = (2, 5) is shown in (a). For the general case, (b) shows the first and last
two trees in the sequence. In each rotation except the last, the preferred outcome of D@ is D@ → D′

@+1. The preferred outcome
is drawn to the right, so the rotation is of the form shown in Figure 4(i). It moves D@ (and the preferred outcome D@ → D′

@+1)
above D8 . Finally, in the last rotation, the preferred outcome of D@ is D@ → D@+1. The preferred outcome is drawn to the left,
so the rotation is of the form shown in Figure 4(ii). This rotation moves the root D? down and out of the path.

.

on the right of Figure 5(a) and (b), where the preferred outcome is drawn as the left outcome of D@ , so is drawn in
the form shown in Figure 4(ii). This rotation moves D? down and out of the path.

By inspection of the first and last trees in Figure 5(b), rotating D@ (with D′@+1) all the way up the path and then
rotating D? out of the path in the final rotation changes the leaf depths as follows. The depths of descendants of
D@+1 decrease by one, as they lose the ancestor D? . The depths of descendants of D′@+1 decrease by @ − ? − 1 ≥ 0, as
they lose ancestors D?+1, . . . , D@−1. The depths of descendants of D′?+1 increase by one, as they gain the ancestor
D@ , which is rotated above them. The depths of other leaves in the subtree)D@ don’t change, as they gain ancestor
D@ but lose D? . Hence, the increase in cost is at mostF (D′?+1) −F (D@+1). From the optimality of ) it follows that
F (D′?+1) ≥ F (D@+1), contradicting (1) and proving Theorem 2.1. �

3 STRUCTURAL THEOREM FOR 2WDTS

This section proves Theorem 3.1, below, which is an intermediate step towards proving the existence of an
admissible tree. The proof uses Theorem 2.1, a “bisection” operation (a generalization of the rotation operation),
and specific properties of inequality and equality tests. The example in Figure 3 may be helpful in developing
intuition for the theorem.
Let ) be an arbitrary irreducible tree for an arbitrary 2WDT instance (&,F, C,  ). Recall that, since we are

working with classification rather than search, the leaf !: for a key : may have additional queries in its query set.
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Theorem 3.1. Suppose the instance has distinct weights and ) is optimal. Consider any equality-test node 〈 = ℎ〉
in ) and a key : withF (:) > F (ℎ) reaching this node. Then (i) a search for ℎ from the no-child of 〈 = ℎ〉 would end
at the leaf !: for : , and (ii) the path from 〈 = ℎ〉 to !: has at most four nodes (including 〈 = ℎ〉 and !: ). (iii) Also, ℎ
is not in the class that ) assigns to : .

Proof. Let D1 → D2 → · · · → D3 be the path from 〈 = ℎ〉 to !: . As usual, the outcomes leaving the path are
{D8 → D′8+1 : 1 ≤ 8 < 3}. So D1 is 〈 = ℎ〉, while D′2 is the leaf for ℎ, and D3 is !: . As F (D3 ) = F (!: ) ≥ F (:) >
F (ℎ) = F (D′2), the imbalance theorem (Theorem 2.1) applies to the path. The theorem implies the following
observation:

Observation 3. The outcomes leaving the path are pairwise disjoint.

The yes-outcome D1 → D′2 of 〈 = ℎ〉 leaves the path, so by Observation 3 that outcome, that is, {ℎ}, is disjoint
with all other outcomes leaving the path. Hence, a search for ℎ starting from the no-child D2 of 〈 = ℎ〉 would not
leave the path, so would end at !: . This proves Part (i) of the theorem.

To prove Part (iii), suppose for contradiction that ℎ is in the class that ) assigns to : . Then, in the case 3 = 2,
we could replace the node 〈 = ℎ〉 by a leaf labeled with the class assigned by ) to : , contradicting irreducibility.
So assume 3 ≥ 3. By Part (i) of the theorem, changing the test key at 〈 = ℎ〉 to : (and relabeling D′2 with a class
containing :) would give a correct tree, while decreasing the cost by (F (:) − F (ℎ)) (3 − 2). By assumption
F (:) > F (ℎ), so (F (:) −F (ℎ)) (3 − 2) > 0, and thus the modification would give a correct tree strictly cheaper
than ) , contradicting the optimality of ) .

The rest of this section proves Part (ii), that is, that 3 is at most 4. Assume for contradiction that 3 ≥ 5. We
prove two independent lemmas.

Lemma 3.2. 2F (ℎ) < F (D3).

Proof. Consider inserting a new equality-test 〈 = :〉 above D3, that is, replacing )D3 by a new equality test
〈 = :〉 whose yes-child is a new leaf labeled with any answer that : accepts, and whose no-subtree is a copy
of )D3 . This increases the search depth of every query reaching D3, except key : , by 1. It decreases the search
depth of : by at least 1. Thus, the increase in cost is at most (F (D3) −F (:)) −F (:). With the optimality of) this
impliesF (D3) ≥ 2F (:) > 2F (ℎ). �

Let :1 ≤ :2 ≤ :3 ≤ :4 be the comparison keys of the four tests in D1, D2, D3, and D4, sorted into non-decreasing
order. Next we consider “bisecting” the subtree )D1 by introducing test node 〈 < :3〉 as a new root and adjusting
the rest of the tree appropriately.

Lemma 3.3. Among the four outcomes D8 → D′8+1 (with 1 ≤ 8 ≤ 4) leaving the path, two are disjoint with the
yes-outcome of 〈 < :3〉, while the other two are disjoint with the no-outcome of 〈 < :3〉.

Proof. We will show that :3 has the desired property.
Suppose at least two of the four tests in D1, D2, D3, and D4 are inequality tests, say 〈 < :8〉 and 〈 < : 9 〉 with

8 < 9 . Then (using :8 ≤ : 9 ) the yes-outcome of 〈 < :8〉 and the no-outcome of 〈 < : 9 〉 are disjoint. By Property 2
all other pairs of outcomes between the two nodes overlap. So, by Observation 3, if there are two less-than tests
〈 < :8〉 and 〈 < : 9 〉 in {D1, D2, D3, D4} with 8 < 9 , then the outcomes leaving the path from 〈 < :8〉 and 〈 < : 9 〉 are,
respectively, the yes-outcome and the no-outcome.
By the preceding sentence, {D1, D2, D3, D4} contains at most two less-than tests, and therefore at least two

equality tests. The yes-outcome of any equality test D8 is disjoint with some outcome of any D 9 , so by Property 2
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D′4

D′3

D′2
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D5 D′5

D′4

D′3
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) ′ < :3

D2

D4

D5 D′5

D′3

D1

D3

D5 D′4

D′2

Fig. 6. Bisecting )D1 around 〈 < :3〉 makes a new root 〈 < :3〉, makes each of its subtrees (yes and no) a copy of )D1 , and
then, for each outcome D8 → D′

8+1 leaving the path, splices out whichever copy of D8 → D′
8+1 is disjoint with the outcome of

〈 < :3〉 that leads to that copy. (In the example here the squiggly outcomes are pairwise disjoint and the dashed outcomes
are pairwise disjoint.) The outcomes on D1 → · · · → D5 are drawn to the left.

the no-outcome of D8 overlaps both outcomes of any D 9 with 9 ≠ 8 , and by Observation 3 the outcomes leaving the
path from the (at least two) equality tests are yes-outcomes.

Suppose for contradiction that the yes-outcome of some less-than test 〈 < : 9 〉 with : 9 ≠ :1 leaves the path. By
the conclusion of the second-to-last paragraph above, and by :1 < : 9 , the test with key :1 cannot be a less-than
test, so must be 〈 = :1〉. But then the yes-outcome of 〈 = :1〉 overlaps the yes-outcome of 〈 < : 9 〉, contradicting
Observation 3. So if a yes-outcome leaves the path from any less-than test, the test’s key is :1. By symmetric
reasoning, if a no-outcome leaves the path from any less-than test, the test’s key is :4.

It follows that any inequality test in {D1, D2, D3, D4} must be in D1 and/or D4, implying that D2 and D3 do equality
tests, so :2 < :3.

For all @ ≥ :3, none of the following hold: @ = :1, @ = :2 (using here :2 < :3), or @ < :2. So the no-outcome of
〈 < :3〉 is disjoint with the yes-outcomes of 〈 = :1〉, 〈 = :2〉, and 〈 < :1〉. By the conclusions of the preceding
paragraphs, these include all outcomes that leave the path from the nodes with keys :1 and :2. Similarly, for all
@ < :3, none of the following hold: @ = :3, @ = :4, or @ ≥ :4, so the yes-outcome of 〈 < :3〉 is disjoint with all
outcomes that leave the path from the nodes with keys :3 and :4. This proves Lemma 3.3. �

Returning to the proof of Theorem 3.1(ii), consider replacing )D1 in ) by the subtree ) ′ obtained by bisecting
)D1 around the new node 〈 < :3〉, in the following two steps (shown in Figure 6). First, make a subtree with root
〈 < :3〉, whose yes- and no-subtrees are each a copy of )D1 . (Note that this subtree is a correct replacement for
)D1 .) For each outcome D8 → D′8+1 (1 ≤ 8 ≤ 4) that leaves the path D1 → · · · → D5, per Lemma 3.3, the outcome is
disjoint with either the yes-outcome or the no-outcome of 〈 < :3〉. If the outcome D8 → D′8+1 is disjoint with the
yes-outcome, splice it out from the yes-copy of )D1 . Otherwise (it is disjoint with the no-outcome) splice it out
from the no-copy of )D1 .
Specifically, to splice out the copy of D8 → D′8+1 means to remove that copy of D8 and the subtree rooted at its

child D′8+1 by replacing the subtree rooted at D8 by the subtree rooted at the current sibling of D′8+1 (the other child
of D8 ), as happens in Figure 6. The outcome from 〈 < :3〉 that leads towards this copy of D8 is disjoint with the
deleted outcome D8 → D′8+1, so every search that reached the (now spliced out) copy of D8 continued through the
sibling, so splicing out this copy of D8 → D′8+1 preserves correctness.

By Lemma 3.3, two of the four outcomes are spliced out of the yes-copy of )D1 , while the other two are spliced
out of the no-copy, so the tree ) ′ obtained by bisecting )D1 around 〈 < :3〉 has one of the three forms shown
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Fig. 7. Bisecting )D1 around 〈 < :3〉 yields a tree with one of forms (a), (b), or (c). The outcomes on the path D1 → · · · → D3
are drawn to the left, as is the outcome 〈 < :3〉 → D1.

in Figure 7(a), (b), or (c). Note that ) ′ contains two copies of the subtree )D5 rooted at D5, so is not (in general)
irreducible. However, it is still correct.

Now we consider two cases, each reaching the desired contradiction.

Case 1: The tree ) ′ has the form in Figure 7(a). By inspection, the replacement increases the cost byF (D′3)+F (D′2)−
F (D5) −F (D′5) −F (D′4) = F (D′3) +F (D′2) −F (D3). By the optimality of ) this is non-negative. With Lemma 3.2
and F (ℎ) = F (D′2) this implies F (D′3) ≥ F (D3) −F (D′2) > F (D′2). But then, by Theorem 2.1 applied to the path
D1 → D2 → D′3, the outcomes D1 → D′2 and D2 → D3 (leaving that path) are disjoint. By Observation 3, outcomes
D1 → D′2 and D2 → D′3 are also disjoint, contradicting Property 2 for D1 and D2.

Case 2: The tree ) ′ has one of the forms in Figure 7(b) or (c). By inspection, either replacement increases the cost
byF (D′2) −F (D5) −F (D′5) = F (D′2) −F (D4). With the optimality of ) this impliesF (D′2) ≥ F (D4), which implies
F (ℎ) ≥ F (:), contradictingF (:) > F (ℎ). This proves Theorem 3.1. �

4 SOME OPTIMAL TREE IS ADMISSIBLE

This section defines admissible (Definition 4.3), then proves that some optimal tree is admissible (Theorem 4.5).
As mentioned in the introduction, we first handle the case when all weights are distinct (Lemma 4.4) then use a
perturbation argument to extend to the general case. The perturbation argument requires a globally consistent
tie-breaking for equal-weight keys.

Let ) be any irreducible tree for a feasible 2WDT instance � = (&,F, C,  ).

Definition 4.1 (ordering queries by weight). For any query subset ' ⊆ & and integer 8 ≥ 0 define heaviest8 (') to
contain the 8 heaviest queries in ' (or all of ' if 8 ≥ |' |). For @ ∈ & , define heavier(@) to contain the queries (in&)
that are heavier than @. Define lighter(@) to contain the queries (in &) that are lighter than @. Break ties among
query weights arbitrarily but consistently throughout.

Formally, we use the following notation to implement the tie-breaking mentioned above. Fix an ordering of &
by increasing weight, breaking ties in favor of queries that are smaller in the linear ordering of& . (This particular
tie-breaking rule is only for concreteness. Any consistent rule would work.) For @ ∈ & let F̃ (@) denote the rank of
@ in this sorted order. Throughout, given distinct queries @ and @′, define @ to be lighter than @′ if F̃ (@) < F̃ (@′)
and heavier otherwise (F̃ (@) > F̃ (@′)). So, for example heaviest8 (') contains the last 8 elements in the ordering
of ' by increasing F̃ (@). The symbol ⊥ represents the undefined quantity argmax ∅. Define F̃ (⊥) = F (⊥) = −∞,
heavier(⊥) = & , and lighter(⊥) = ∅.
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Definition 4.2 (intervals and holes). For any ℓ, A ∈ & , let [ℓ, A ]& and [ℓ, A ] denote the query interval {@ ∈ & :
ℓ ≤ @ ≤ A } and key interval {: ∈  : ℓ ≤ : ≤ A } =  ∩ [ℓ, A ]& .
Given any non-empty query subset ' ⊆ & , call [min',max']& the query interval of '. Define :∗ (') to be

the heaviest key in ', if there is one (that is, :∗ (') = argmax{F̃ (:) : : ∈  ∩ '}). Define also holes(') =
[min',max']& \ ' to be the set of holes in '. We say that a hole ℎ ∈ holes(') is light if F̃ (ℎ) < F̃ (:∗ (')), and
otherwise heavy.

The set of queries reaching a node D in a tree ) is called D’s query set, and denoted &D . The query interval, and
light and heavy holes, for D are defined to be those for D’s query set &D . WriteF (D) as a shorthand forF (&D),
whereF (') = ∑

@∈'F (@) denotes the total weight in the query set ' ⊆ & .

If ' contains no keys then :∗ (') is ⊥ (undefined), so F̃ (:∗ (')) is −∞ and ' has no light holes.
Each hole ℎ ∈ holes(&D) at a node D in a tree) must result from a failed equality test 〈 = ℎ〉 at an ancestor E of

D in) , so ℎ ∈  . The hole is light if any heavier key (and therefore :∗ (&D)) reaches D. For example, in the optimal
tree in Figure 3(a) (in which  = [4]}) the query set & 〈=1〉 of node 〈 = 1〉 has light holes 3 and 4. These are lighter
than the heaviest key :∗ (& 〈=1〉) = 2 reaching 〈 = 1〉, but (not coincidentally, as we shall soon see) are the two
heaviest in the node’s key interval minus 2’s class. The light holes in the query set of 〈 = 1〉’s (right) no-child are
1, 3, and 4, which are the three heaviest in the node’s key interval minus 2’s class. The query sets of the nodes in
the trees in Figure 3(b) and 3(c) have no light holes, but these trees are not optimal.

Definition 4.3 (admissible). A non-empty query subset ' ⊆ & is admissible if the set of light holes in ' is empty
or has the form

heaviest1 ( [min',max'] ∩ lighter(:∗ (')) \ 2 )
for some 1 ∈ [3] and 2 ∈ C such that :∗ (') ∈ 2 . (Throughout, for 8 ∈ N, let [8] denote {1, 2, . . . , 8}.)

The tree ) (or any subtree) is admissible if all its nodes have admissible query sets.

By definition, the holes of any query set ' lie in '’s key interval [min',max'] , and its light holes are those
lighter than :∗ ('), the heaviest key in '.

We next show Lemma 4.4. Here is the intuition. We need to constrain how the heaviest-first property can fail
at a node D in ) . One way the property can fail (as illustrated in Figure 3(a)), is that there is a single class 2 that
contains all of &D except for a few scattered keys, so that the optimal tree can use equality tests to pull out these
“stragglers”, then use a single leaf (labelled with 2) to handle the rest. These stragglers can include a few keys
lighter than :∗ (D), whose removal creates light holes, violating the heaviest-first property.

In fact, the proof shows that the path from D to such a leaf can have length at most four. (The path may have
up to two less-than tests.) The lemma states that if &D fails to be heaviest first (that is, &D has light holes), it
will still be admissible: for some 1 ∈ [3] and some class 2 that can be assigned to :∗ (&D), the light holes must
be the 1 heaviest keys in '’s interval that are lighter than :∗ (&D) and are not in 2 . We can think of this as the
heaviest-first property being preserved with respect to the keys minus those in 2 , with the restriction that at most
three keys from 2 can be exempted from being holes in this way. (This restriction to $ (1) keys is helpful for
efficiency.) As we see later, the number of possible admissible query sets will turn out to be small enough to yield
an efficient dynamic program.

As an exercise, consider the instance with query set & = [8], with classes and weights as specified in the table
below, and key set  = {2, 3, 4, 5, 7}. (Keys are in underlined.)

query 1 2 3 4 5 6 7 8
classes � �, � �, � �,� � � �, � �

weight 10 13 67 49 27 58 38 12
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For the subset '1 = {1, 2, 4, 8}, we have :∗ ('1) = 4 ∈ � ∩� . Subset '1 has three holes: a heavy hole 3 and two
light holes 5, 7. In the above definition, choose � for the class 2 of :∗ ('1). Then 5 and 7 are the two heaviest keys
in [min'1,max'1] ∩ lighter(:∗ ('1)) \�. So '1 is admissible. For the subset '2 = {2, 3, 6, 8}, we have :∗ ('2) = 3,
and three holes 4, 5 and 7, all light. Both classes (� and �) that contain :∗ ('2) also contain one of the light holes,
so '2 is not admissible.
Perhaps counterintuitively, the admissibility of a set ' is not determined solely by the subinstance naively

defined by '. (This instance is �' = (',F', C',  '), whereF' isF restricted to ', while C' is {2 ∩' : 2 ∈ C} \ {∅},
and  ' is  ∩ '.) Admissibility of ' also depends on its set of light holes, in  \ '. This will be important for the
implementation.

Lemma 4.4. If the instance has distinct weights and ) is optimal, then ) is admissible.

Proof. Consider any node D in ) . To prove the lemma we show that D’s query set is admissible. If &D has
no light holes, then we are done, so assume otherwise. Let :∗ = :∗ (&D) be the heaviest key reaching D. Let
�D = holes(&D) ∩ lighter(:∗) be the set of light holes at D. Let 1 = |�D |. Let 2 be the class that) assigns to :∗ and
( = [min&D,max&D] ∩ lighter(:∗) \ 2 . We want to show �D = heaviest1 (() and 1 ∈ [3].

First we show �D ⊆ ( . By definition, �D ⊆ [min&D,max&D] ∩ lighter(:∗). For any light hole ℎ ∈ �D , key :∗
is heavier than ℎ and reaches the ancestor 〈 = ℎ〉 of D. Applying Theorem 3.1 to that ancestor, hole ℎ is not in 2 . It
follows that �D ⊆ ( .
Next (recalling 1 = |�D |) we show �D = heaviest1 ((). Suppose otherwise for contradiction. That is, there are

: ∈ ( \�D ⊆ &D and ℎ ∈ �D such that : is heavier than ℎ. Keys :∗ and : reach the ancestor 〈 = ℎ〉 of D. Applying
Theorem 3.1 (twice) to that ancestor, the search path for ℎ starting from the no-child of 〈 = ℎ〉 ends both at !:∗
and at the leaf !: for : . So !: = !:∗ , which implies that : is in 2 , contradicting : ∈ ( . Therefore �D = heaviest1 (().
Finally, we show that 1 ≤ 3. Let ℎ ∈ �D be the light hole whose test node 〈 = ℎ〉 is closest to the root. Key :∗

reaches 〈 = ℎ〉 and weighs more than ℎ. Applying Theorem 3.1 to 〈 = ℎ〉 and key :∗, the path from 〈 = ℎ〉 to !:∗
has at most four nodes (including the leaf). Each light hole has a unique equality-test node on that path. So (using
that D is on this path) there are at most three light holes in &D . �

Now we use a perturbation argument to extend Lemma 4.4 to the general case. Recall that “feasible” means the
instance has a correct tree. As discussed in Section 1, not all instances do.

Theorem 4.5. If the instance is feasible, then some optimal tree is admissible.

Proof. Assume the instance � = (&,F, C,  ) is feasible. Recall that F̃ (@) is the rank of @ in the sorting of& by
weight, breaking ties consistently, as defined at the start of the section.

Let � ∗ = (&,F∗, C,  ) be an instance obtained from � by perturbing the query weights infinitesimally so that
(i) the perturbed weights are distinct and (ii) sorting & byF∗ gives the same order as sorting by F̃ . Specifically,
take F∗ (@) = F (@) + X F̃ (@), for X such that 0 < X < n/=3, where n > 0 is the minimum of two quantities: the
minimum absolute difference between any two distinct weights and the minimum absolute difference in cost
between any two irreducible trees with distinct costs, using here that there are finitely many irreducible trees.
Recall also that F̃ (@) ∈ [=].
The concept of tree irreducibility (defined in Section 1.1) is independent of the weight function (F or F̃ ). So

the sets of irreducible trees for � and for � ∗ are the same.
Let) ∗ be an optimal, irreducible tree for � ∗ (so also irreducible for � ). Applying Lemma 4.4 to) ∗ and � ∗, tree) ∗

is admissible for � ∗. By inspection of Definition 4.3, whether ) ∗ is admissible for an instance depends only on ) ∗
and the (tie-broken) ordering of the queries by weight. Since these orderings are the same in � and � ∗, the tree ) ∗
is admissible for � if and only if it is admissible for � ∗.
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To finish we observe that) ∗ is also optimal for � . For any tree) ′, let cost() ′) and cost∗ () ′) denote the costs of
) ′ under weight functionsF (for � ) andF∗ (for � ∗), respectively. Recall that earlier we fixed) to be an irreducible
tree for � . Assume that ) is also optimal for � . Then

cost() ∗) ≤ cost∗ () ∗) ≤ cost∗ () ) ≤ cost() ) + =3X < cost() ) + n.
So by the choice of n we have cost() ∗) ≤ cost() ). Therefore ) ∗ is optimal for � as well. �

5 ALGORITHM

This section proves the main result:

Theorem 5.1. There is an $ (=3<)-time algorithm for finding a minimum-cost 2WDT.

Proof. Fix the input, an arbitrary 2WDT instance � = (&,F, C,  ). Let A denote the set of admissible query
subsets of & (per Definition 4.3). For any ' ∈ A, if ' is contained in some class, then the tree for ' consists of a
single leaf (labeled with some such class). Otherwise an admissible tree for ' consists of any root D whose test
partitions ' into ('yes

D , 'no
D ) (the bipartition of ' into those values that satisfy D and those that don’t), with D’s

yes-subtree being any admissible tree for 'yes
D and D’s no-subtree being any admissible tree for 'no

D . So, defining
costA (') to be the minimum cost of any subtree for ' that is admissible for � ,3 the following recurrence holds:

Recurrence 1. For any ' ∈ A,

costA (') =
{
0 ((∃2 ∈ C) ' ⊆ 2)
F (') +minD

(
costA ('yes

D ) + costA ('no
D )

)
, (otherwise)

where D ranges over the allowed tests (defined in Section 1.1) for which 'yes
D and 'no

D are in A (that is, admissible). If
there are no such tests the minimum is infinite.

The algorithm returns costA (&), the minimum cost of any admissible tree for � = (&,F, C,  ). By Theorem 4.5,
this equals the minimum cost of any tree for � , so the algorithm is correct. Next we describe how to achieve the
desired running time.

There are$ (=2<) admissible query sets. (Indeed, for any admissible set ', if ' has no light holes it is determined
by the triple (min',max', :∗ (')). Otherwise, per Definition 4.3,' is determined by a tuple (min',max', :∗ ('), 1, 2),
where (1, 2) ∈ [3] × C with :∗ (') ∈ 2 .) So $ (=2<) subproblems arise in recursively evaluating costA (&). To
achieve the desired time bound, it suffices to evaluate the right-hand side of Recurrence 1 for any given ' ∈ A in
$ (=) amortized time. Next we describe how to do this.

Assume (by renaming elements in& in a preprocessing step) that& = [=]. Given a non-empty query set ' ⊆ & ,
define the signature of ' to be

g (') = (min',max', :∗ ('), � (')),
where � (') = holes(') ∩ lighter(:∗ (')) is the set of light holes in '.

For any ', its signature is easily computable in $ (=) time (for example, bucket-sort ' and then enumerate the
hole set [ℓ, A ]& \ ' to find � (')). Each signature is in the set

S = & ×& × ( ∪ {⊥}) × 2&

of potential signatures. Conversely, given any potential signature C = (ℓ, A, :, � ′) ∈ S, the set g−1 (C) with
signature C , if any, is unique and computable from C in $ (=) time. Specifically, g−1 (C) is equal to the query set
3An observant reader may notice that it can be that costA (') > cost(') (the minimum cost of any tree for) ), but if so ' cannot actually
occur as the query set of any node in an optimal tree.
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& (C ) = [ℓ, A ]& \ (( ∩heavier(:)) ∪� ′), provided that& (C ) is non-empty and has signature g (& (C ) ) = C ; otherwise
g−1 (C) is undefined. (In general, the signature of& (C ) may be different from C ; for example we may have : ∉ [ℓ, A ]& ,
or one of ℓ , A may be in � ′.)
To finish the proof we prove Lemma 5.2:

Lemma 5.2. After an $ (=3<)-time preprocessing step, given the signature g (') of ' ∈ A, the right-hand of
Recurrence 1 is computable in amortized time $ (=).

Proof. Note that the admissible sets can be enumerated in$ (=3<) time as follows. First do the$ (=3) admissible
sets without light holes: for each (ℓ, A, :) ∈ & ×& × ( ∪{⊥}), output g−1 (ℓ, A, :, ∅) if it exists. Next do the$ (=2<)
admissible sets with at least one light hole, following Definition 4.3: for each (ℓ, A, :, 1, 2) ∈ & ×& ×  × [3] × C
with : ∈ 2 , letting � ′ = heaviest1 ( [ℓ, A ] ∩ lighter(:) \ 2), if � ′ is well-defined then output g−1 (ℓ, A, :, � ′) if it
exists.
The preprocessing step initializes the dictionary for admissible query subsets and identifies the leaves. Here

are the details.

Initialize a dictionary � holding a record � [g (')] for each set ' in A. To be able to determine whether a given
query set ' is in A, and to store information (including the memoized cost) for each admissible set ', build a
dictionary � that holds a record � [g (')] for each ' ∈ A, indexed by the signature g ('). For now, assume the
dictionary � supports constant-time access to the record � [g (')] for each ' ∈ A given the signature g (') of '.
(We describe a suitable implementation later.) Initialize � to hold an empty record � [g (')] for each ' ∈ A by
enumerating all ' ∈ A as described above. This takes $ (=3<) time.

Identify the leaves. To identify the sets ' ∈ A that are leaves (that is, such that (∃2 ∈ C) ' ⊆ 2) in $ (=3<) time,
for each triple (ℓ, A, :) ∈ & ×& × ( ∪ {⊥}), do the following two steps.

(1) Let R ⊆ A contain the admissible sets ' such that g (') = (ℓ, A, :, � ′) for some� ′. Assume R is non-empty
(otherwise move on to the next triple). Let '∅ be the set with signature (ℓ, A, :, ∅), so that each ' ∈ R is a
subset of '∅ and can be written as '∅ \ � ('). Let Cℓ contain the classes 2 ∈ C such that ℓ ∈ 2 . Observe
that |R | ≤ 4|Cℓ |, because '∅ is unique for the triple (ℓ, A, :), and then each ' ∈ R is determined from '∅
by the class 2 ∈ C and the number 1 ∈ [3] of light holes, per Definition 4.3.

(2) Each set ' ∈ R contains ℓ , so ' is a leaf if and only if ' ⊆ 2 for some 2 ∈ Cℓ . The condition ' ⊆ 2
is equivalent to '∅ \ � (') ⊆ 2 , which is equivalent to '∅ \ 2 ⊆ � ('). So, any given set ' ∈ R is
a leaf if and only if some subset of � (') equals '∅ \ 2 for some 2 ∈ Cℓ . Identify all such ' in time
$ (= |R | += |Cℓ |). (Recalling that |� (') | ≤ 3 for each ' ∈ R, this is straightforward. One way is to construct
the collectionH =

⋃
'∈R 2

� (') of subsets of the light-hole sets. Order the elements within each subset
in H by increasing value, then radix sort H into lexicographic order. Do the same for the collection
L = {'∅ \ 2 : 2 ∈ Cℓ , |'∅ \ 2 | ≤ 3}. Then merge the two collections to find the elements common to both.
A given ' ∈ R is a leaf if and only if some subset of � (') inH also occurs in L.)

As noted above, we have |R | ≤ 4|Cℓ |, so the time spent above on a given triple (ℓ, A, :) is $ (= |R | + = |Cℓ |) =
$ (= |Cℓ |). Summing over all triples (ℓ, A, :), the total time is $ (=2 ∑ℓ∈& = |Cℓ |) = $ (=3<).

In $ (=3<) time, identify the $ (=2<) leaves ' ∈ A as described above. For each, record in its entry � [g (')]
that ' is a leaf and that costA (') = 0.

How to implement Recurrence 1.Next we describe how to compute costA ('), given the signature g (') = (ℓ, A, :, � ′)
of any set ' ∈ A, in $ (=) time.
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If the record � [g (')] already holds a memoized cost for ', then we are done, so assume otherwise. (This
implies that ' is not a leaf.) In $ (=) time, build ' from g (') and calculate the sumF ('). Let ' = (@1, @2, . . . , @I)
be ' in increasing order, computed using bucket sort. For every possible test node D, precompute the signatures
g ('yes

D ) and g ('no
D ). Do this in two $ (=)-time stages: one stage for all possible less-than tests, the other stage for

all possible equality tests:

Stage 1: Precompute the pair of signatures g ('yes
〈<ℎ〉) and g ('

no
〈<ℎ〉) for every ℎ ∈  as follows:

1.1. For 8 ∈ {0, 1, . . . , I}, define '8 = (@1, @2, . . . , @8 ) and '8 = (@8+1, @8+2, . . . , @I). For ℎ ∈ & = [=], define
8 (ℎ) to be the index such that 'yes

〈<ℎ〉 is '8 (ℎ) and '
no
〈<ℎ〉 is '8 (ℎ) . Precompute 8 (ℎ) for all ℎ ∈ & in $ (=)

total time. (Note that 8 (ℎ) = max {0}∪{8 ∈ [I] : @8 < ℎ}. Take 8 (1) = 0, then for 8 ← 2, 3, . . . , = take
8 (ℎ) = 8 (ℎ − 1) + 1 if @8 (ℎ−1)+1 < ℎ; otherwise take 8 (ℎ) = 8 (ℎ − 1).)

1.2. Compute :∗ ('8 ) and :∗ ('8 ) for all 8 . (These are the heaviest keys in '8 and in '8 , respectively. First
take :∗ ('0) = ⊥, then, for 8 ← 1, . . . , I, take :∗ ('8 ) = @8 if @8 ∈  and @8 is heavier than :∗ ('8−1),
and otherwise :∗ ('8 ) = :∗ ('8−1). Take :∗ ('8 ) = :∗ (') if 8 < I and :∗ (') ≥ @8+1; otherwise take
:∗ ('8 ) = ⊥.)

1.3. Compute the light-hole sets � ('8 ) = {ℎ ∈ � ′ : ℎ ≤ @8 } and � ('8 ) = {ℎ ∈ � ′ : ℎ ≥ @8+1}. (Each such
set can be computed in constant time from � ′, as |� ′ | ≤ 3.)

1.4. Finally, enumerate all ℎ ∈  . For each, compute the pair of signatures g ('yes
〈<ℎ〉) and g ('

no
〈<ℎ〉),

using 'yes
〈<ℎ〉 = '8 (ℎ) , 'no

〈<ℎ〉 = '8 (ℎ) , and (for 8 = 8 (ℎ)), g ('8 ) = (@1, @8 , :∗ ('8 ), � ('8 )) and g ('8 ) =
(@8+1, @I, :∗ ('8 ), � ('8 )). (Given the results of the previous three steps, this takes constant time per ℎ.)

Stage 2: Precompute the pair of signatures g ('yes
〈=ℎ〉) and g ('

no
〈=ℎ〉) for every ℎ ∈  ∩ '. For each such ℎ, we have

'
yes
〈=ℎ〉 = {ℎ}, so g ('

yes
〈=ℎ〉) = (ℎ,ℎ, ℎ, ∅), and g ('

no
〈=ℎ〉) can be computed as follows:

2.1. If ℎ ∉ {min',max', :∗ (')} (using that |' | ≥ 2, as ' is not a leaf, so 'no
〈=ℎ〉 ≠ ∅) the signature g ('

no
〈=ℎ〉)

is (min',max', :∗ ('), � ′ ∪ {ℎ}), which (as |� ′ | ≤ 3) is computable from g (') in constant time.
2.2. Otherwise (ℎ is one of the three values in {min',max', :∗ (')}), using 'no

〈=ℎ〉 = ' \ {ℎ}, explicitly
compute 'no

〈=ℎ〉 and its signature in $ (=) time.

Finally, for each pair of signatures g ('yes
D ) and g ('no

D ) enumerated above (in Step 1.4 or Stage 2), check whether
'

yes
D and 'no

D are admissible (by checking, in constant time, whether their signatures have entries in �). If so,
compute the values of costA ('yes

D ) and costA ('no
D ) recursively from their signatures. Then, for costA ('), returns

(and memoize in � [g (')]) the value from the recurrence, namelyF (') +minD (costA ('yes
D ) + costA ('no

D )), with
the minimum taken over all such D.
In this way, for each ' ∈ A, the time to evaluate the right-hand side of the recurrence is $ (=). There are

$ (=2<) sets in A, so the total time is $ (=3<).

How to implement the dictionary � . For each admissible query set ' ∈ A, the set � (') of light holes has size
at most three. It follows that the signature g (') = (ℓ, A, :, � (')) has size $ (1) and one way to implement the
dictionary � (to support constant-time lookup) is to use a hash table with universal hashing. Then the algorithm
uses space $ (=2<), but is randomized. If a deterministic implementation is needed, one can implement the
dictionary by storing an = × = × = matrix " of buckets It follows that the signature g (') = (ℓ, A, :, � (')) has
size $ (1) such that a given bucket " [ℓ, A, :] holds the records for the admissible query sets ' with signatures of
the form g (') = (ℓ, A, :, � ′) for some � ′. Organize the records in this bucket using a trie (prefix tree) of depth
3 keyed by the (sorted) keys in � ′. This still supports constant-time access, but increases the space to $ (=3<).
More generally, for any 3 ≥ 1, one can represent each element : ∈ [=] within each set � ′ as a sequence of
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dlog2 (=)/3e 3-bit words, then use a trie with alphabet {0, 1, . . . , 23 − 1} and depth at most 3dlog2 (=)/3e. Then
space is Θ(23=2<) while the access time is Θ(log(=)/3). For example, we can take 3 = dn log2 =e for any constant
n to achieve space $ (=2+n<) and access time Θ(1/n) = Θ(1). Or we can take 3 = 1 and achieve space $ (=2<)
and access time Θ(log=), increasing the total time to $ (=3< log=). �

Per Lemma 5.2, the preprocessing takes time $ (=3<), and for each of $ (=2<) sets ' ∈ A Recurrence 1 can be
evaluated in time $ (=). This proves Theorem 5.1. �

Remarks. In the common case that C partitions & , each query @ ∈ & is contained in just one class 2 ∈ C
(so < = = and the algorithm runs in time $ (=4)), and then the algorithm can be implemented to use space
$ (=2<) = $ (=3). To do this, in the above implementation of the dictionary using a matrix " of buckets, each
bucket " [ℓ, A, :] stores the records of at most four sets, so no prefix tree is needed to achieve constant access
time and space.

We note without proof that there is a deterministic variant of the algorithm that uses space $ (=2<) and time
$ (=3<). This variant is more complicated, so we chose not to present it.

Extending the algorithm to other inequality tests. Our model considers decision trees that use less-than and
equality tests. Allowing the negations of these tests is a trivial extension. (E.g., every greater-than-or-equal test
〈 ≥ :〉 is equivalent by swapping the children to the less-than test 〈 < :〉.) We note without proof that our results
also extend easily to the model that allows less-than-or-equal tests (of the form 〈 ≤ :〉). Such tests only need to
be accounted for in the proof of Theorem 3.1; the extended algorithm then allows such tests in Recurrence 1.

Acknowledgements. Thanks to Mordecai Golin and Ian Munro for introducing us to the problem and for useful
discussions.
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