
Geoinformatica (2008) 12:143–168
DOI 10.1007/s10707-007-0030-3

PIST: An Efficient and Practical Indexing Technique
for Historical Spatio-Temporal Point Data

Viorica Botea · Daniel Mallett ·
Mario A. Nascimento · Jörg Sander

Received: 5 October 2006 / Revised: 13 April 2007 /
Accepted: 20 April 2007 / Published online: 17 August 2007
© Springer Science + Business Media, LLC 2007

Abstract Despite pressing need, current relational database management systems
(RDBMS) support for spatio-temporal data is limited and inadequate, and most
existing spatio-temporal indices cannot be readily integrated into existing RDBMSs.
This paper proposes a practical index for spatio-temporal (PIST) data, an indexing
technique, rather than a new indexing structure, for historical spatio-temporal data
points that can be fully integrated within existing RDBMSs. PIST separates the
spatial and temporal components of the data. For the spatial component, we develop
a formal cost model and a partitioning strategy that leads to an optimal space
partitioning for uniformly distributed data and an efficient heuristic partitioning for
arbitrary data distributions. For the temporal component of the data a B+-tree is
used. We show that this layer’s performance can be maximized if an optimal maximal
temporal range is enforced, and we present a procedure to determine such an optimal
value. Being fully mapped onto a RDBMS, desirable and important properties, such
as concurrency control, are immediately inherited by PIST. Using ORACLE as
our implementation platform we perform extensive experiments with both real and
synthetic datasets comparing its performance against other RDBMS-based options,
as well as the MV3R-tree. PIST outperforms the former by at least one order of

V. Botea · D. Mallett · M. A. Nascimento (B) · J. Sander
Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada
e-mail: mn@cs.ualberta.ca

V. Botea
e-mail: viorica@cs.ualberta.ca

D. Mallett
e-mail: mallett@cs.ualberta.ca

J. Sander
e-mail: joerg@cs.ualberta.ca

144 Geoinformatica (2008) 12:143–168

magnitude, and is competitive or better with respect to the latter, with the unarguable
advantage that it can readily used on top of virtually any existing RDBMS.

Keywords relational database management system · spatio-temporal data · rdbms ·
indexing

1 Introduction

The need for spatio-temporal access methods (STAMs) integrated within a rela-
tional database management system (RDBMS) has become increasingly apparent. A
prolific number of GPS, wireless computing, and mobile phone devices are capable
of accurately reporting their position, and applications that can take advantage of
this information, e.g., traffic control, data mining, fleet monitoring, and location-
aware services, are in high demand. Managing large collections of such data demands
the convenience, reliability, and data storage capabilities that a traditional RDBMS
affords. However, little work has been done on providing spatio-temporal data
support, a STAM in particular, inside a RDBMS, [7] being an exception. Our work
fills this crucial need by proposing a spatio-temporal access technique which can be
fully integrated within any RDBMS.

There are two main types of spatio-temporal databases, those that manage his-
torical information and those that manage current information for current/predictive
query purposes [11]. This paper focuses on the first category, i.e., we assume that the
database stores the complete history of moving objects through time and must answer
queries about any time in the history of objects. We assume that each database
record has the format 〈oid, x, y, ts, te〉, where oid identifies an object, (x, y) are spatial
coordinates, and [ts, te) indicate the open-ended non-null interval during which an
object remained at position (x, y). A typical domain where such a model fits is
mobile device tracking, e.g., of GPS, PDA, or wireless phone devices. Unlike the
trajectory model [13], our data model does not assume anything about the movement
of objects between records. The model reflects a real-world application1 constraint
where assuming an object follows a linear trajectory between data points may lead
to incorrect, and unacceptable, assumptions. For example, in security/monitoring
applications, a person could be mistakenly assumed to have entered a restricted area,
instead of gone around it, because his/her movement was interpolated. Our model
can be viewed as a step-wise interpolation instead of a linear interpolation, i.e., for
a given object ok, two consecutive observations have the form 〈ok, x′, y′, t′s, t′e〉, and
〈ok, x′′, y′′, t′′s , t′′e 〉, where t′′s = t′e and (x′, y′) �= (x′′, y′′). That is, as long as the object’s
position is not updated in the database it is assumed to remain stationary in its last
observed position.

In this work a spatio-temporal range query Q takes the form Q = 〈σ, τ 〉 where σ

is a spatial region and τ is a time range. Q returns the unique oid’s of records where
(x, y) is inside σ and [ts, te) intersects with τ . An example of such a query would be
“find all people who were inside Louvre’s Salle des Etats at some point between noon
and 1 p.m. yesterday”.

1Details of which cannot be disclosed due to confidentiality reasons.

Geoinformatica (2008) 12:143–168 145

In this paper we propose an efficient spatio-temporal indexing technique fully
integrated within a RDBMS via a relational mapping. Our approach is based on a
two-layer approach. First the data space is partitioned into a grid. This can be done at
the logical or physical level of the underlying RDBMS. At query time only those grid
cells that actually intersect the query’s spatial region need be inspected. Typically this
intersection represents a relatively small portion of the total space and hence of the
database. Within each grid cell a temporal index is built in order to speedup finding
the objects that also satisfy the query’s temporal predicates.

The general framework of the practical index for spatio-temporal (PIST) data
is similar to scalable and efficient trajectory index (SETI) [3]. PIST, however,
introduces several new and important features, namely: (1) We develop a cost model
to determine the optimal number of grid partitions to use. The model suggests
the number of primary partitions so that the expected number of disk accesses is
minimized, assuming a uniform data distribution and an average expected query
size. There are no guidelines on how to partition the space within SETI’s approach.
(2) Based on this cost model, we propose a heuristic for partitioning the data space
for arbitrary data distributions, which yields very good performance in practice.
(3) We rely only on the availability of B+-trees, unlike SETI which uses a one
dimensional “sparse” R-tree for indexing temporal ranges.2 (4) We propose an
optimal splitting of temporal ranges that can speed up considerably the processing
time of the query’s temporal predicate. In SETI’s original paper there is no similar
concern. (5) We present a relational mapping which can be used to deploy PIST
using any RDBMS without requiring any modifications to the same. SETI and
its associated indices were implemented by adapting, rather than simply reusing,
SHORE [2], a prototype object storage engine.

We show in a comprehensive experimental comparison that our proposed tech-
nique dramatically outperforms other practical alternatives for spatio-temporal
indexing. Finally, we show that PIST’s performance is at least comparable to the
MV3R-tree [17], which is a specialized, and unlike SETI, parameter-free efficient
index for historical spatio-temporal data but which is not practical in the sense that
it cannot be easily implemented on top of a RDBMS. In summary, we propose,
investigate and evaluate an efficient and ready-to-use effective solution for the
problem of indexing historical spatio-temporal data.

The remainder of this paper is structured as follows. The next section reviews
related work. Section 3 details our proposed approach, and the associated cost model.
In Section 4 we describe how our approach can be implemented using ORACLE. In
Section 5 we confirm the reliability of the model and compare our approach to other
methods for indexing spatio-temporal data. Section 6 concludes the paper and offers
directions for further research.

2 Related work

A thorough overview of work on STAMs for historical and current/predictive spatio-
temporal support can be found in [11]. Predictive STAMs support queries that

2While some RBDMS do offer R-trees as a native index those are not nearly as widely available as
B+-trees.

146 Geoinformatica (2008) 12:143–168

predict a moving object’s location at a future point in time based on the current
velocity of the object. Historical STAMs support queries that can be classified as
coordinate-based (the case we are interested in) or trajectory-based [13].

The current state-of-the-art for predictive STAMs is the Bx-tree [6]. Built on top
of a B+-tree and using a space filling curve underneath it, it allows, like in our case,
the index to be used within an existing DBMS. Another recent access structure of
interest is the TPR∗-Tree [18]. It improves on the TPR-tree construction algorithms
[15], which were based on the classical R∗-tree, i.e., for static data, in order to achieve
near-optimal performance.

Many historical STAMs have been proposed [1], [3], [12], [13], [21] the majority
of which are based on the R-tree [3], [4] being a notable exception. The 3-D
R-Tree [21] treats time as a third dimension and indexes spatio-temporal data using
a 3-dimensional R-tree. The historical R-tree [12], an overlapping and multi-version
structure, adapts the R-tree for historical spatio-temporal data. The MV3R-tree [17]
improves upon these providing more efficient support for interval queries. It uses a
Multi-Version R-tree with 3D R-trees built on its leaf nodes. The MV3R-tree, like we
do, assumes step-wise interpolation of the observed positions. The trajectory bundle
tree (TB R-tree) [13] proposes a trajectory-oriented access method that can (under
certain conditions) answer trajectory-oriented queries faster than the R-tree. The
2-3TR-tree [1] suggests the use of two R-tree indices, a two-dimensional point index
representing current data, and a three-dimensional historical index.

SETI [3] is the work closest to ours, where the authors propose a grid-based
spatio-temporal indexing technique. It partitions the spatial dimension into static,
non-overlapping partitions, and within each partition it uses a sparse temporal
index—which the paper describes as a one-dimensional sparse R-trees. An in-
memory “front-line” structure keeps track of the last position of each moving object.
As detailed in Section 1, there are several aspects upon which our technique improves
on SETI’s, e.g., the use of cost models to guide the partitioning of the space, the
indexing of time ranges and the relying on only Structured Query Language (SQL)-
based mappings onto a RDBMS.

3 PIST: An indexing technique for Spatio-Temporal data

In what follows we present, PIST, a practical index for spatio-temporal (historical)
data. A technique rather than a new access structure, PIST partitions the data space
according to the spatial location of the indexed objects and then creates temporal
indices over each partition. The historical data is partitioned into a fixed number
of cells, each cell corresponding to a different partition in the RDBMS. Recall that
we are only concerned with indexing and querying historical observations, which are
completely available at index creation time. Therefore, we do not consider updates at
this point, constructing a static partitioning. The key advantage of spatial partitioning
is that of partition elimination at query time. Cells that do not intersect the spatial
component of the query window can be eliminated from consideration. For spatio-
temporal data this works extremely effectively because we can further apply a
temporal filter within all intersecting cells. The spatial discrimination is achieved
at next to no cost and the local temporal index benefits from having to manage

Geoinformatica (2008) 12:143–168 147

Fig. 1 PIST’s approach for
a 4 × 4 regular grid

ts_te ts_te ts_te

ts_te ts_te ts_te

ts_te ts_tets_te ts_te

ts_te

ts_te

ts_te ts_te ts_te ts_te

l

l

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Y

0.0
0.0 X 1.0

1.0

only a (small) subset of the data. As in [3], query processing proceeds according to
four stages:

1. coarse spatial filtering based on the grid location of tuples,
2. temporal filtering using the per grid temporal indices,
3. fine spatial refinement based the on actual spatial location of tuples, and
4. duplicate elimination.

As shown in Fig. 1, for the case of a regular grid, the cells could be numbered using a
horizontal sweep space-filling curve, giving each cell a unique identifier pid (shown
in the upper right corner of each cell in the figure). The length l refers to the length
of a grid cell in each spatial dimension. A local temporal index on 〈ts, te〉 is created
over the domain of tuples within each partition, and for that we use a B+-tree.
We considered the use of a 1-dimensional R-tree to index the temporal dimension.
However, we abandoned the idea because preliminary experiments showed that a
large degree of overlap among the temporal intervals of objects occurs. In such a
situation the performance (and index creation times) can be prohibitively expensive.
In fact, preliminary results [10] have shown this to be the case for the temporal
RI-tree [8] as well. It is important to note that not only can the B+-tree on 〈ts, te〉
be readily supported in any RDBMS, but the B+-tree index also has a performance
advantage of being able to perform an index range scan very efficiently.

We also assume that the spatio-temporal data is stored in an index-organized
table. An index-organized table is one table which is embedded within an index,
i.e., the index contains the tuples themselves in the leaf nodes of the index, e.g., a
B+-tree. Although index-organized tables are supported by existing DBMSs, e.g.,
ORACLE, their use is not mandatory for our proposal. It could be implemented
using a regular index and tables, the only difference would be some extra I/Os

148 Geoinformatica (2008) 12:143–168

Algorithm 1 st_query() function.

INPUT: 〈σ, τ 〉
OUTPUT: list of oid’s

1: pid_list := p_intersect(σ)

2: for all pid in pid_list do
3: oid_list := oid_list ∪
4: SELECT oid
5: FROM pid
6: WHERE ts BETWEEN τ.tmin − T AND τ.tmax

7: AND te BETWEEN τ.tmin AND τ.tmax + T
8: AND x between σ.xmin and σ.xmax

9: AND y between σ.ymin and σ.ymax

10: end for
11: sort oid_list and remove duplicates
12: return oid_list

required for obtaining the actual tuples from a table after traversing the index.
Finally, if the index-organized table is built on the temporal attributes, at query time
an efficient sequential range scan of the index leaves can be performed on disk over
the range where tuples intersect the temporal query interval.

Algorithm 1 provides the pseudo-code for the function st_query(), which processes
queries using the PIST model. The algorithm assumes that the function p_intersect()
exists. Its task is to simply return the identifiers pid of the grid cells that intersect
the query’s spatial component. Note that lines 4–9 assume the existence of a SQL
interface in order to retrieve matching tuples from partitions in the RDBMS. Thus,
the filtering occurs in a pipelined fashion—at each stage of the query processing only
those tuples satisfying the previous stage are further examined.

Algorithm 1 uses the fact that the largest temporal interval, denoted as T , is
known. This is a reasonable and practical assumption, e.g., in fleet monitoring it
can be safe to assume that no vehicle remains stationary for more than 2 or 3 days.
Knowledge of a dataset’s T serves to further restrict the temporal range that needs
to be inspected at query time, hence improving query processing time. In fact, given
one value of T one can easily split all records whose temporal range length exceeds
T into two or more records that adhere to the assumption. As can be easily seen in
Algorithm 1, the smaller the value of T , the smaller the range scan on the temporal
index. There is, however, a trade-off in splitting the dataset’s temporal ranges. It
increases the number of indexed temporal ranges and hence the number of records
in the database. We explore this issue in Section 3.3 in order to obtain an optimal
value of T for a given distribution of temporal ranges.

PIST was designed to handle historical spatio-temporal data, as such handling
updates, i.e., new observations is not a concern. PIST is a feasible alternative for
a scenario where data is collected to be queried at a later point in time. Given
an indexed (historical) dataset, a new dataset can be merged with the current one
using the existing partitioning or a new index could be built altogether for the newly
combined database. The former may yield sub-optimal performance, depending on
the size and spatial distribution of the new dataset. From this perspective the latter

Geoinformatica (2008) 12:143–168 149

Table 1 Notation used

Notation Meaning

N Number of tuples, i.e., observations, in the dataset
DA Number of disk I/Os to answer a query
GA Average number of accessed grid cells
DAg Number of data I/Os per accessed grid cell
I Ag Number of index I/Os per accessed grid cell
BS Block size (number of tuples) per data page
qs Average size (%) of the query in each spatial dimension wrt the modeled space
qt Average size (%) of the temporal range of the query wrt the number of observed

timestamps
l (l∗) Length (optimal length) of a grid cell per dimension
Ng (N∗

g) Total (optimal) number of cells in the grid
T (T ∗) Maximal (optimal maximal) length (%) of the indexed temporal ranges wrt the

number of observed timestamps

is a better option, and, as our experiments will show, index building times are quite
reasonable for most practical purposes. Another possibility could be to create several
indices for different time periods, e.g., one per week. In this case queries would have
to be re-written for handling the case where they span over several such indices.

3.1 Optimal partitioning of the space

We assume the average query size, on both the temporal and spatial dimensions, are
known–the robustness of PIST with respect to such an assumption is discussed in the
experimental Section 5.4. We also assume the spatial domain to be the unit square
and that the temporal domain is formed by the set of recorded timestamps. Note that
this means the temporal domain of time points is bounded by the finite number of
observations that exist in the dataset. Table 1 lists the notation we will use for the
cost model presentation.

The total number of disk accesses to answer a query can be calculated by the
average number of grid cells (partitions) that need to be accessed and the number
of I/Os performed inside each accessed grid cell, i.e., the combination of reads to
the data and reads to the temporal index structure inside each grid cell. This can be
formalized as:

DA = GA × (DAg + I Ag) (1)

As per [19], the average number of cells that will be scanned is the total number
of cells multiplied by the average space the spatial component of a query covers
extended by l, thus:

GA = Ng(l + qs)
2 (2)

Assuming a uniform data distribution, there are on average N/Ng tuples per grid
cell which take up N/Ng

BS blocks on disk to store. Because the index on 〈ts, te〉 will point
to the range of tuples in the query answer set, we only need to scan those blocks that

150 Geoinformatica (2008) 12:143–168

are within the temporal range of our query qt extended by T (recall that we assume
the maximal recorded temporal length is known), i.e.:

DAg = N/Ng

BS
× (qt + T) (3)

We assume a B+-tree on the combined key of 〈ts, te〉 and (as in the worst case) that
none of the index pages are located in buffer. The number of index accesses can be
described in terms of the fanout f and N/Ng using: I Ag = log f N/Ng. We simplify
the index access cost to I Ag = 3, which is typical for indices with f ≈ 100 and N in
the millions of tuples [9], obtaining:

DA = (l + qs)
2

(
N × (qt + T)

BS
+ 3

l2

)
(4)

One immediate observation is that the index performance it more sensitive to the
size of the spatial component than to the temporal component. This is due to the fact
that increasing the query’s area requires traversing more partitions and the indices
within them. On the other hand, increasing the query’s temporal range requires only
a larger scan on the indices, which can be done efficiently.

After some algebraic manipulation it can be shown that the grid size l∗ that will
minimize disk accesses is given by

l∗ = 3

√
3qs × BS

N × (qt + T)
(5)

Finally, the optimal number of grid cells N∗
g can be represented in terms of l∗ using

N∗
g = 1

(l∗)2
=

(
N × (qt + T)

3qs × BS

)2/3

. (6)

Thus, in order to minimize the number of disk access per query given an average
query size, we must create a regular partitioning of the data space by creating[√

N∗
g

]
equally sized partitions along each dimension. In addition note that T in

Eq. 6 is the only parameter one could fine-tune, the others are query or system
dependent. In Section 3.3 we discuss how one can explore this in order to further
improve performance.

3.2 Heuristic partioning of arbitrary distributions

It should be noted that partitioning the data space using the criteria just presented
is optimal given the assumption of a uniform data distribution. While in real life
scenarios data is seldom truly uniformly distributed, it is often the case that for some
regions of the data space such an assumption can be made. For instance in a map, it
is much more reasonable to assume that objects are uniformly distributed inside the
boundaries of a city than that they are uniformly distributed over the whole map. In
what follows we use this reasoning and the cost model above in order to provide a
partitioning heuristic for an arbitrary data distribution.

The idea is to recursively divide the space into four subspaces, as in a Quad-tree
[16], until all obtained subspaces satisfy a uniform distribution criteria. The obtained
cells are then partitioned using the cost model developed above. The uniformity of

Geoinformatica (2008) 12:143–168 151

Algorithm 2 Partition() recursive algorithm.

INPUT: An MBR containing data points
OUTPUT: A set of MBRs (each corresponding to a grid cell) and respective parti-
tionings

1: Assume a uniform distribution of the data points in the current MBR, and
partition the MBR optimally using the cost model. Using the resulting grid cells
as categories, perform Pearson’s Chi-Square test on the current MBR.

2: if the Chi-Square test is successful, i.e., the data distribution within the MBR can
be considered uniform then

3: Store the (coordinates of the) grid cells of the current MBR as partitions in the
table Partitions

4: else
5: Split each dimension of the current MBR in half, obtaining MBRi, i = 1, 2, 3, 4
6: for i=1 to 4 do
7: Partition(MBRi)
8: end for
9: end if

a data distribution can be determined using Pearson’s Chi-Square test [14]. The test
partitions the data into K equally sized cells (categories) and computes the sum (S2)
of squared differences between the actual number of objects inside each cell and
the expected number of objects under the uniformity assumption. If the value of S2

is smaller than χ2
K−1(α) then the uniformity assumption is accepted, otherwise it is

rejected. Algorithm 2 states this procedure using pseudo-code.
It should be clear that if the data is truly uniformly distributed, the heuristic

presented above yields an optimal regular grid partitioning (under the cost model
assumptions). In such a case the uniformity test would be immediately successful and
the algorithm would not recurse.

It may appear at first that the partitioning strategy may result in many small cells
with very few objects in each of them. This obviously would not be a good idea since
there is an overhead cost to access a partition, and there is a point where accessing
less data in more partitions is more expensive than accessing more data within less
partitions. Fortunately, the heuristic above identifies such situation and stops the
partitioning accordingly. Recall that, during the partitioning, q2

s is the query size
with respect to the current Minimum Bounding Rectangle (MBR), and similarly N
is the number of objects inside the current modeled space, i.e., the current MBR.
Initially the current MBR is the whole unit square, but as the partitioning progresses,
the MBRs are subdivided and the current MBRs become smaller. As an obvious
consequence, qs becomes larger with respect to the current MBR. On the other
hand, the number N of objects per MBR becomes likely smaller as the MBRs are
subdivided. Let us consider the case the when the query size becomes equal to the
current MBR, i.e., qs = 1. From Eq. 6 one can see that if qs = 1 and BS and qt are
constants, then N < 3BS

(qt+T)
yields N∗

g = 1, i.e., no further partioning is needed. This
agrees with the intuition that as the partitioning progresses, there is a point where
accessing less data in more partitions becomes more likely and more expensive than
accessing more data within a single partition. At that point the partitioning process
stops automatically.

152 Geoinformatica (2008) 12:143–168

Although only optimal for the case of uniformly distributed data, the resulting
overall performance by PIST is typically very good. Indeed, as we shall see in the
experimental section it is never worse than the best ad-hoc partitioning, i.e., the best
partitioning one could obtain by trial-and-error. More importantly, however, PIST is
able to find very good partitions of the data space autonomously, not relying on any
information but the dataset itself and an expected query size. Naturally, the better
the user can estimate the query size (which should happen with time) the better the
partitioning and therefore the query performance.

We note that since PIST is designed to handle historical data, changes in the data
distribution is not an issue of concern. Nevertheless, it remains an interesting open
problem how to be able to detect whether there has been sufficient change in the
distribution which would warrant a complete (or partial)re-partioning of the data.

3.3 Optimizing T

As mentioned earlier the size of the range scan on the B+-tree indexing the temporal
ranges depends on the length of the largest indexed range T . There is nothing
however, that prevents one to setting T “artificially” in order to optimize the index
performance. As one decreases the value of T from its so-called intrinsic value,
i.e., that inherent to the dataset, to zero, the number of temporal ranges that have
to be split increases. As a consequence the range scan on the index will become
shorter, and the number of indexed objects will increase. The former has potential
positive impact on the performance of the temporal index while the latter has a
negative effect.

In the following we show how to balance those two effects and obtain an optimal
value for T , denoted as T ∗, taking advantage of the fact that we are dealing
with historical data, i.e., the distribution of the temporal ranges is known at index
construction time.

Let C(li) be the count of the number of temporal ranges with length equal to
li, i.e., 〈C(l1), C(l2), ..., C(lM)〉 is the histogram of the distribution of the temporal
range lengths. Note that M is finite as long as one assumes a discrete time space,
otherwise it can be made so to the user’s discretion, with no loss of generality of the
argumentation that follows.

Let lk ∈ {l1, l2, ...lM−1} be one given length that is going to be set as the maximal
length. (The case where lk = lM induces no splits and therefore is not of interest.)
When splitting all ranges larger than lk the current number of indexed ranges,
originally N, will now become Nk = N + ∑M

p=k+1[C(l p) × (
l p/ lk� − 1)]. Return-
ing to Eq. 6, we want to minimize N × (qt + T), hence we set T ∗ = lk where
k = arg mink{Nk × (qt + lk)}.

The more skewed the distribution of the temporal range lengths is towards shorter
ranges, the more potential for savings exist, i.e., splitting a few long ranges has the
effect of substantially decreasing the value of T without increasing the number of
indexed ranges N noticeably.

Note that in the case a user is given or wishes to impose a storage budget
that can be used for optimizing performance, e.g., the database can grow to up
to Nmax tuples due to the splitting, the problem can be solved similarly. In this
case the (potentially sub-optimal) solution, is found by simply finding k such that
Nk × (qt + lk) is minimized subject to Nk − N ≤ Nmax.

Geoinformatica (2008) 12:143–168 153

Fig. 2 PIST’s mapping onto a RBDMS

Finally, finding the optimal T ∗ has linear complexity on the number of distinct
indexed lengths, which can be arbitrarily discretized.

4 PIST’s implementation

The PIST grid is implemented using ORACLE’s built-in table partitioning support—
each grid cell determined by our heuristic algorithm Partition() corresponds to a
single ORACLE table partition. A unique partition id (pid) along with its MBR
is stored in a table called Partitions. The ST_PIST table (whose Data Definition
Language (DDL) for an example 4×4 grid is sketched in Fig. 2(a)) stores records
along with the additional pid attribute. When inserting an object into table ST_PIST
its coordinates are checked against the Partitions table to determine in which
partition it should be inserted. ORACLE range partitioning is used to automatically
map the spatial grid to unique table partitions on disk. Note that ORACLE’s
partitioning facility is not a requirement for PIST to work. A RDBMS which does
not provide such a facility can still be used by simply creating a physical table for
each grid cell.

Given the sample query “find the objects that were within the area enclosed by the
MBR determined by vertices (0.1,0.3) and (0.2,0.4) during the time interval [0.5,0.6]”,
Fig. 2b provides the SQL query that would be issued against the ST_PIST table
created in Fig. 2a.

Line 3 of the sample query corresponds to the spatial filtering stage of PIST’s query
processing. The clause forces ORACLE to scan only table partitions corresponding

154 Geoinformatica (2008) 12:143–168

to cells (0,1,4,5)—the list is computed by performing a lookup on table Partitions.
Only 4 out of 16 partitions need be scanned, which, even for such a trivial example, is
a significant reduction in I/O cost. Lines 4 and 5 correspond to the temporal filtering
stage of PIST’s query processing. Within each partition, the combined B+-tree index
on 〈ts, te〉 will be taken advantage of as ORACLE will perform a local index range
scan of the data. The clustering of data according to 〈ts, te〉 speeds up this phase
of query processing. Lines 6 and 7 correspond to the spatial refinement stage of PIST’s
query processing. All tuples whose spatial coordinates are not inside of the spatial
query range are removed from the query result. Finally, line 1 performs the duplicate
elimination stage of PIST’s query processing.

We defined a PL/SQL function that generates dynamic SQL queries of the
form provided in Fig. 2b given a query spatial and temporal range. We choose
to implement the algorithms using PL/SQL because of the ease of integration
between PL/SQL and SQL queries in ORACLE, however, any language capable
of interacting with the RDBMS, e.g., using embedded SQL, could be used.

5 Experimental results

In order to test our proposal we used both synthetic and real datasets. One of the
synthetic data sets, denoted as UNIFORM, has the objects uniformly distributed
in the space and moving freely throughout the whole space. This satisfies the
assumptions for PIST’s cost model (v. Section 3.1). The second synthetic dataset
was generated using the GSTD tool3 [20] and shows a scenario where the objects
have an initial gaussian distribution in the center of the data space and then migrate
towards the north-east corner of the same. A sample instance of this dataset, denoted
as GSTD, is illustrated in Fig. 3a, where all observed positions for a sample of
100 objects are shown. This dataset is more realistic, e.g., it could depict a scenario
where animals are migrating from one area to another in a park. It also will serve
to show how well the heuristic partitioning approach we proposed adapts for a truly
non-uniform data distribution. The final dataset, denoted as INFATI, contains real
GPS positions of 20 cars roaming across the municipality of Aalborg, Denmark
[5]. Each car’s positions have been sampled every second, except when they were
parked, for about 6 continuous weeks over a period of 3 months. The dataset
contains approximately 1.9 million observations and is illustrated in Fig. 3b where
all observations are plotted—one can clearly see the notion of actual roads in
this case.

For each of the synthetic datasets we have three different cardinalities, namely 1,
2.5 and 5 million observation data points. Given how the data is generated it means
that each dataset has about 10, 25 and 50 thousand objects of interest, respectively.
We assume a unit two-dimensional dataspace and for query sizes we have used
0.25%, 1% and 4% of the investigated unit dataspace. Note that a query of 4%
of the unit space has selectivity of about 20% in each dimension, i.e., it is not a
small query. For the temporal query component we performed experiments using
the query range equal to 5%, 10% and 20% of all observed timestamps. Table 2
summarizes the parameters used for the experiments. Unless otherwise mentioned

3http://db.cs.ualberta.ca:8080/gstd/

http://db.cs.ualberta.ca:8080/gstd/

Geoinformatica (2008) 12:143–168 155

Fig. 3 Data distribution for
the GSTD and INFATI
datasets

whenever one parameter is being investigated, e.g., the robustness with respect to
dataset size, all other parameters are kept constant at their default values.

To investigate the average cost per query we issued 100 random queries following
the same distribution of the dataset, and measured the average number of disk I/Os
(physical accesses) per query using the system’s own internal tools. All tests were
carried out on a desktop using ORACLE 10g Enterprise for Windows Edition.
Before executing each query the DBMS’s buffers were forced clear to avoid any
influence on query performance.

We compare PIST’s performance to two other approaches that could be imple-
mented on top of ORACLE. (Recall that our main goal is to have an indexing
scheme that can be deployed upon an off-the-shelf RDBMS.) The first approach is a
simple Linear Scan which should provide the lower bound for expected performance.
The second method uses an R-tree for the spatial component along with a B+-
tree for the temporal component. We adapt the Linear Referencing System (LRS)
spatio-temporal indexing approach suggested by ORACLE [7] to our data model by
creating a 2-dimensional R-tree over point objects consisting of the 〈x, y〉 of records
and a B+-tree index on ts and on te. In what follows we refer to this scheme as
“R-tree+B+-tree”.

Note that in R-tree+B+-tree scheme, just like within PIST, the temporal ranges are
indexed using a B+-tree, meaning that it can potentially benefit from the knowledge
of T as well. However, finding an optimal value of T for this case, as opposed for
PIST (Section 3.3) is not trivial. The reason being that splitting an observation into
two or more now also affects the R-tree as the split objects modulo timestamps are, in
a sense, “replicated.” Our intuition suggests that if the number of split objects is not
very large, e.g., as in the presence of relatively few long temporal ranges, the effects
on the R-tree are not very large. On the directory level a large number of splits
would be needed to cause relevant changes in the structure. On the leaf level the
number of I/Os will increase proportionally to the increase in the number of indexed
objects, which we assume to be not very high. In addition this effect is mitigated

Table 2 Parameters and
respective values investigated Parameter Values (default in bold)

Average qs [% of data space] 0.25%, 1% and 4%
Average qt [% of timestamps] 5%, 10% and 20%
N [millions of observations] 1, 2.5 and 5

156 Geoinformatica (2008) 12:143–168

by the efficiency of the underlying range scan of the B+-tree. Considering all these
factors, we decided to use within the R-tree+B+-tree the same value of T ∗ derived
for PIST. Nonetheless, as we shall see shortly the difference in performance between
PIST and R-tree+B+-tree is so large that finding the true optimal value for T for the
latter would very unlikely improve its performance by a factor large enough to make
it a competitive approach.

We also used a scheme that indexes Z-values of each tuples’ spatial coordinates
using a B+-tree, with an additional B+-tree for the temporal component. For each
dataset, we calculated Z-values using the same number of cells in each dimension that
PIST employs. Although feasible and actually simple to implement, our preliminary
experiments have shown that this technique does not yield competitive performance
and therefore we did not consider it further.

Finally, we also compare PIST to the MV3R-tree [17] using the source code kindly
made available by its authors.4 Even though the MV3R-tree is not an index that can
be easily mapped onto an RDBMS, and therefore lacks the practical aspect that PIST
promotes, it is a well known index for historical spatio-temporal data which makes
the same assumption about discrete object movement as we do, and it has been
shown to outperform a simple 3D R-tree, which would have been another competitor
for PIST.

5.1 Partitioning effectiveness

We initially confirm the reliability of our cost model by comparing the analytical
optimal number of grid cells to the number of disk accesses reported by ORACLE
when using the Uniform data distribution (for which the model gives an optimal
partitioning). In this case the only alternative for comparing performance is an ad-
hoc partitioning where the user chooses a grid size manually.

When using all experimental default values and a block size of 8,192 bytes our cost
model determines a 13×13 grid, which indeed is the best option when compared to
several other choices for a regular partitioning of the data space as shown in Fig. 4a.

It is interesting to note that when the number of partitions is smaller than the
optimum there is increasingly sharp overhead due to reading more data per partition
than it would be necessary in the optimal case. Similarly, but not as severe, as the
number of partitions increases beyond the optimum, there is an increasing overhead
due to the cost of accessing more partitions. Even though not shown here, this is
even more clear for larger query sizes, which cover a larger number of partitions.
This behavior was also verified in [3].

As discussed earlier, for non-uniform distributions PIST uses the cost model
to obtain a non-regular partition of the dataspace. Again we compare to the ad-
hoc alternative of having the user trying several different regular grids. As can be
seen in Fig. 4b,c, for both non-uniform distributions the grid partition determined
automatically by PIST provides performance at least as good to the best ad-hoc
partitioning. (Since the resulting grid is non-uniform it does not make sense to plot
performance as a function of the number of grid cells as in the case of Uniform data
distribution, hence the flat line for the PIST performance.) Again, the additional cost

4http://www.cs.cityu.edu.hk/~taoyf/codes/mvr.zip

 http://www.cs.cityu.edu.hk/~taoyf/codes/mvr.zip

Geoinformatica (2008) 12:143–168 157

Fig. 4 Comparing I/O
performance yielded by PIST’s
partitioning against the use
of ad-hoc regular grids

 0

 200

 400

 600

 800

 1000

 40 20 13 10 5 1
D

is
k

A
cc

es
se

s
Number of grid cells per dimension

a UNIFORM

PIST's optimal

Ad-hoc

 0

 200

 400

 600

 800

 1000

 1200

 1400

 40 20 10 5 1

D
is

k
A

cc
es

se
s

Number of grid cells per dimension

b GSTD

Ad-hoc
PIST

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 40 20 10 5 1

D
is

k
A

cc
es

se
s

Number of grid cells per dimension

c INFATI

Ad-hoc
PIST

of underpartitioning is clear, but unlike in the case for Uniform data, overpartitioning
seems to be not as prejudicial.

5.2 Optimizing T

As discussed earlier, adjusting the value of T yields a trade-off between improving
query performance and enlarging the database. Our argument is that the more
skewed the temporal ranges are the more worthwhile is enforcing the optimal

158 Geoinformatica (2008) 12:143–168

Table 3 Performance improvement and storage overhead due to T

I/Os w/ T I/Os w/ T ∗ Perf. gain (%) Storage overhead (%)

UNIF 78.4 52.9 32 80
UNIF+exp(0.5) 73.5 39.5 46 16
UNIF+exp(4) 62.3 20.9 67 4
INFATI 2,267.8 533.1 77 0.5

value T ∗. In order to investigate this, we used four datasets. Three datasets are
synthetic datasets having a uniform spatial distribution (since the optimization is
on the temporal level, the spatial distribution is irrelevant), with varying degrees
of skewedness on the temporal ranges length. One is simply uniformly distributed
and the other have the range lengths following an Exponential distribution, with
parameters λ equal 0.5 and 4 (the larger λ the more skewed the distribution). Those
are denoted by UNIF+exp(0.5) and UNIF+exp(4) respectively. Finally, as the fourth
dataset we used INFATIs’ as a representative of a realistic distribution.

Table 3 shows the obtained performance when using both the dataset’s intrinsic T
and the optimal T ∗ obtained as described in Section 3.3, as well as the yielded storage
overhead. The dataset sizes as well as the query sizes used were the default values in
Table 2.

Clearly, the more skewed the distribution of the lengths of the temporal ranges
towards shorter ranges, the better the improvement in query processing time and
the smaller the storage overhead. The skewedness of the temporal ranges is in fact a
realist assumption, as evidenced by INFATI’s distribution, which not coincidentally
yielded the largest improvement with the smallest overhead. Even though figures
are not presented here, the gains are even larger when the temporal query range is
smaller. This is due to the fact the range scan on the B+-tree leaves has a length of
qt + T (Eq. 6), the smaller qt the more important T becomes, and thus the more
important it is to optimize it accordingly. Hence, this optimization is used as an
integral part of the PIST technique in the remainder of the experiments.

5.3 Query performance

Next we compare the performance of PIST against the R-tree+B+-tree approach and
a linear scan of the data. All approaches make use of the assumption that T is known
at query time.

Figure 5 shows query performance as a function of the size of the spatial compo-
nent of the query, while Fig. 6 shows the performance when varying the length of
the temporal compoment. As expected, in both cases the performance of the linear
scan is constant, as it depends only on the cardinality of the dataset. In all figures it
is easy to see that the performance of the R-tree+B+-tree approach degrades rather
quickly, unlike for the other approaches. The case of the UNIFORM dataset is the
only one where the R-tree+B+-tree remains competitive with the linear scan for up
to medium sized queries. For the GSTD and INFATI datasets the R-tree+B+-tree
is not competitive at all. This happens because for the GSTD dataset the density of
the data in the occupied portion of the space is higher, causing the underlying R-tree
to have more overlaps and, consequently require more tree traversals. The case for
the INFATI dataset is even more extreme, as even a simple linear scan performs

Geoinformatica (2008) 12:143–168 159

Fig. 5 Comparing I/O
performance as a function
of the size of the spatial
component of the query

 0

 2000

 4000

 6000

 8000

 10000

410.25
I/

O
s

Query size [% of space]

a UNIFORM

PIST
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

410.25

I/
O

s

Query size [% of space]

b GSTD

PIST
R-tree+B-tree

Linear Scan

 0

 5000

 10000

 15000

 20000

410.25

I/
O

s

Query size [% of space]

c INFATI

PIST
R-tree+B-tree

Linear Scan

relatively much better. For all datasets and query sizes PIST deliver unquestionably
much better performance.

PIST consistently provides the best performance, being up to 100 faster than the
other approaches. More importantly however, it is very robust with the increase of
the query size for all distributions. This confirms that the proposed grid partitioning
is able to cope well with variations in this parameter.

160 Geoinformatica (2008) 12:143–168

Fig. 6 Comparing I/O
performance as a function
of the length of the temporal
component of the query

 0

 2000

 4000

 6000

 8000

 10000

 20 10 5
I/

O
s

Query size [% of indexed timestamps]

a UNIFORM

PIST
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

 20 10 5

I/
O

s

Query size [% of indexed timestamps]

b GSTD

PIST
R-tree+B-tree

Linear Scan

 0

 5000

 10000

 15000

 20000

 20 10 5

I/
O

s

Query size [% of indexed timestamps]

c INFATI

PIST
R-tree+B-tree

Linear Scan

PIST is also very robust with respect to the increase in the dataset size as can
be seen in Fig. 7. (Note that the INFATI data set was not used here as the dataset
cardinality is fixed and an intrinsic part of the dataset features.) The linear scan, as
one would expect, does not scale well with the size of the dataset, and again the
R-tree+B+-tree approach is also a poor choice.

In summary, PIST’s performance is often two or more orders of magnitude faster
than the other approaches, while being quite robust with respect to all parameters

Geoinformatica (2008) 12:143–168 161

Fig. 7 Comparing I/O
performance as a function
of the dataset cardinality

 0

 2000

 4000

 6000

 8000

 10000

52.51
I/

O
s

Number of tuples [millions]

a UNIFORM

PIST
R-tree+B-tree

Linear Scan

 0

 2000

 4000

 6000

 8000

 10000

52.51

I/
O

s

Number of tuples [millions]

b GSTD

PIST
R-tree+B-tree

Linear Scan

investigated. This is due to very effective filtering of heavily populated partitions that
do not contribute to the query’s answer, leading to highly efficient query processing.

5.4 Robustness

As we discussed earlier the cost model depends on an assumed query size, both for
the temporal and the spatial component. In the next set of experiments we show how
the performance is affected when the user estimates one query size but the actual
posed queries have a different size. Ideally, one would want the performance to be
robust, i.e., to not degrade much with reasonable variances between the assumed and
actual query sizes. In all forthcoming tables the values in the first row represent the
query sizes assumed at index construction time, with S being the size percentage-
wise with respect to data space, and T being the size of the query as the number of
indexed timestamps. Following a similar notation the values on the first column are
the sizes of the issued queries. Hence, in the ideal case, the minimum values should
appear in the diagonal of the tables.

In Table 4a,b,c we can see the performance obtained when the spatial component
of the query varies, and the temporal range is fixed for all three datasets. Table 5a,b,c,
on the other hand, show the performance when the temporal range varies and the
spatial query remains fixed.

162 Geoinformatica (2008) 12:143–168

Table 4 I/O robustness of PIST for all three datasets with respect to spatial query size (temporal
query size is fixed)

S=0.25% T = 10 S=1% T = 10 S=4% T = 10

a UNIFORM dataset
S = 0.05, T = 0.1 18.82 21.22 25.58
S = 0.1, T = 0.1 39.51 37.72 42.23
S = 0.2, T = 0.1 95.25 89.38 91.03

b GSTD dataset
S = 0.05, T = 0.1 141.85 168.80 197.02
S = 0.1, T = 0.1 278.39 294.10 329.49
S = 0.2, T = 0.1 682.95 670.52 672.52

c INFATI dataset
S=0.25%, T = 10 390.53 388.75 399.94
S=1%, T = 10 545.22 533.11 552.37
S=4%, T = 10 704.64 679.09 682.77

It is interesting to note that the smallest number does not always appear in the
diagonal of the tables as in the ideal case. One reason for this is that the cost
model often suggests a non-integer number of grid cells (Eq. 6), which is obviously
not practical and has to be approximated to an integer. Another reason is the
partioning procedure is not guaranteed to deliver optimal results in the case of non-
uniform spatial distributions, which is the case of the GSTD and INFATI datasets.
Nevertheless, even in such cases, the difference between the actual minimum and
expected minimum is very small.

Overall, performance does not vary too much if one builds the dataset assuming
a “wrong” (within reasonable limits) average query as can be seen throughout the
tables. These results serve to show that PIST is indeed a robust approach with respect
to the assumed query size. That is to say that even if the user estimated query size for
building the indices is off by a factor of two or four in either the spatial or temporal
dimension, PIST is still able to deliver good performance.

Table 5 I/O robustness of PIST for all three datasets with respect to temporal query size (spatial
query size is fixed)

S=1% T = 5 S=1% T = 10 S=1% T = 20

a UNIFORM dataset
S=1%, T = 5 25.45 27.63 27.35
S=1%, T = 10 43.73 37.72 37.93
S=1%, T = 20 69.01 61.82 55.80

b GSTD dataset
S=1%, T = 5 204.82 209.87 227.94
S=1%, T = 10 322.17 294.10 281.11
S=1%, T = 20 485.95 438.41 416.83

c INFATI dataset
S=1%, T = 5 298.91 296.21 312.28
S=1%, T = 10 553.78 533.11 544.01
S=1%, T = 20 1,043.51 991.90 995.35

Geoinformatica (2008) 12:143–168 163

5.5 Comparing with the MV3R-tree

Even though our main aim in this paper is to contribute a practical technique
rather than a novel data structure for indexing spatio-temporal data, we compare
its performance to the MV3R-tree [17], which, despite not being feasible to be
implemented on top of existing RDBMSs, is arguably a good representative of
special purposed indices for spatio-temporal data. Our goal in the set of experiments
discussed next is to show that PIST can indeed offer performance at least comparable
to a leading and specialized index structure.

Figures 8 and 9 show the performance of PIST and the MV3R-tree when varying
the size of the spatial and temporal component of the queries. While all other
parameters remain at their default value as before, the GSTD dataset had to be
downsized to 1 million observations as the source code we obtained for the MV3R-
tree was somehow unable to cope with larger datasets.

As one can see for smaller queries both structures deliver nearly the same per-
formance, while for non-uniform data and larger queries there is a slight advantage
for PIST. Unfortunately, there seems to be an upper limit of indexing 30,000 distinct
timestamps on the MV3R-tree which prevented us to index the INFATI data set.

Fig. 8 Performance of PIST
vs. MV3R-tree when varying
size of the spatial component.
a UNIFORM. b GSTD

 0

 20

 40

 60

 80

 100

410.25

I/
O

s

Query size [% of space]

a UNIFORM

PIST
MV3R-tree

 0

 50

 100

 150

 200

 250

 300

410.25

I/
O

s

Query size [% of space]

b GSTD

PIST
MV3R-tree

164 Geoinformatica (2008) 12:143–168

Fig. 9 Performance of PIST
vs. MV3R-tree when varying
the length of the temporal
component of the query.
a UNIFORM. b GSTD

 0
 10
 20
 30
 40
 50
 60
 70
 80

 20 10 5
I/

O
s

Query size [% of indexed timestamps]

b UNIFORM

PIST
MV3R-tree

 0

 50

 100

 150

 200

 250

 20 10 5

I/
O

s

Query size [% of indexed timestamps]

b GSTD

PIST
MV3R-tree

In terms of scalability the inability of handling large datasets in the case of the
MV3R-tree makes a fair comparison not possible. This is because for very small
datasets, say in the order of up to a few hundred thousands of observations there is
an inherent overhead within PIST due to the underlying DBMS which is not present
within the MV3R-tree. One should note though that it is well known that for very
small datasets a trivial linear scan is often the most efficient solution.

5.6 Index creation

Our final remarks on the experiments deal with time required to create and index
the database. In this regard, the Linear Scan is obviously the most efficient since
there is no overhead associated to it. This comes at the expense of inefficient query
performance as shown above.

The times reported for index creation were obtained on a PC with an AMD
Athlon XP 3200+ running at 2.19 GHz and with 1.00 GB of RAM, and using the
GSTD dataset with 2.5 million objects. The partitioning was determined using the
default query sizes on the spatial and temporal domains. The results using other
datasets follow the same trend.

Geoinformatica (2008) 12:143–168 165

There are two main tasks that need to be performed within PIST. First, the
partitioning must be obtained using the heuristic algorithm presented in Section 3.1.
After that, the objects need to be inserted into the correct partitions, i.e., the index-
organized tables. The first parts took 76 sec. while the second required 843 sec. for a
total of 919 sec. It should be the R-tree+B+-tree approach, on the other hand, needed
only 200 sec. to insert the data on the (single) table but needed 784 sec. to build the
indices, for a total of 984 sec. It should be noted that both approaches made use of
the SQL*Loader facility available in typical ORACLE installations.

Even though PIST is overall about 7% faster we could observe that the partitions
lookup, i.e., finding in which partition an object should be inserted, poses most of the
overhead at data insertion time. We did consider the idea of using an index, e.g., an
R-tree, for the grid partitions themselves in order to speed up the partition lookup
process. However, the number of partitions was fairly low (in the order of hundreds)
for all experiments and it would not benefit from an index, as compared to a simple
linear scan of the partitions table.

6 Conclusions and future work

PIST leverages existing RDBMS technology by providing support for “out-of-the-
box” RDBMS-based management of historical spatio-temporal point data. PIST is
based on a cost model aiming at optimizing query cost (I/O). For the case of a
uniform data distribution the cost model provides an optimal partitioning of the
dataset. For arbitrary data distributions, the cost model is used to guide a heuristic
partitioning which leads to very good query performance in practice. In addition
PIST offers the possibility of pre-processing the data, splitting the temporal ranges
of some observations, in order to further improve performance. Using both real and
synthetic datasets, PIST has been shown to outperform other alternatives for spatio-
temporal data management by a large margin. We have also shown that PIST is
robust with respect to the query size assumed at index construction time.

As for directions for future work the following questions are worth considering:

• How could PIST’s partitioning be adjusted as the database size increases? Even
though some preliminary experimental results suggest that PIST is resilient to
modest increases in database size, rebuilding the index is bound to be necessary
after some point in time. It would be useful to develop a technique to automat-
ically determine such point(s) in the database lifetime. Along the same line, it
remains to be investigated how resilient a partitioning is with respect to changes
in the original distribution. A variation of this theme would be investigating
whether the RDBMS could re-configure partitions by itself, “on-the-fly”, without
having to rebuild the whole index.

• How to extend the proposed PIST approach in order to handle trajectories,
obtained, for instance, by linearly interpolating two subsequent observations?
A query of interest in such a case would be find trajectories that intersect a given
spatial range within a determined time window, where possibly no observed
data point actually falls within the queried range/time. The research question
to be investigated in this case is how to obtain a cost model to guide an optimal
partitioning given a set of trajectories.

166 Geoinformatica (2008) 12:143–168

• Finally, how to make PIST capable of indexing not only historical but current
spatio-temporal data? The topic of having indexing structures, the B+-tree
included, able to sustain very high update ratios, e.g., several millions of updates
per second, is still an open problem. Nevertheless, perhaps an approach similar
to the one used within SETI, where a memory-resident, “front index” is used to
alleviate the problem, could be adapted for use within PIST.

References

1. M. Abdelguerfi et al. “The 2-3TR-tree, a trajectory-oriented index structure for fully evolving
valid-time spatio-temporal datasets,” in Proc. of ACM GIS, pp. 29–34, 2002.

2. M.J. Carey et al. “Shoring up persistent applications,” in Proc. of the ACM SIGMOD Conf.,
pp. 383–394, 1994.

3. V.P. Chakka et al. “Indexing large trajectory data sets with SETI,” in Online Proc. of CIDR,
2003. http://www-db.cs.wisc.edu/cidr/cidr2003/program/p15.pdf

4. A. Guttman. “R-trees: a dynamic index structure for spatial searching,” in Proc. of the ACM
SIGMOD Conf., pp. 47–57, 1984.

5. C.S. Jensen et al. “The INFATI data,” Technical Report TR-79, TimeCenter, 2004.
http://arxiv.org/abs/cs.DB/0410001.

6. C.S. Jensen, D. Lin, and B.-C. Ooi. “Query and update efficient B+-Tree based indexing of
moving objects,” in Proc. of VLDB, pp. 768–779, 2004.

7. R.V. Kothuri and S. Ravada. “Spatio-temporal indexing in oracle: issues and challenges,” IEEE
TCDE Bulletin, Vol. 25(2):56–60, 2002.

8. H.-P. Kriegel, M. Pötke, and T. Seidl. “Managing intervals efficiently in object-relational data-
bases,” in Proc. of VLDB, pp. 407–418, 2000.

9. P.M. Lewis, A.B., and M. Kifer. Database and transaction processing. Addison-Wesley, 2002.
10. D. Mallett. “Relational database support for spatio-temporal data,” Technical Report TR04-21

(M.Sc. Thesis), Dept. of Computing Science, Univ. of Alberta, 2004. http://www.cs.ualberta.ca/
TechReports/2004/TR04-21/TR04-21.pdf.

11. M.F. Mokbel, T.M. Ghanem, and W.G. Aref. “Spatio-temporal access methods,” IEEE TCDE
Bulletin, Vol. 26(2):40–49, 2003.

12. M.A. Nascimento and J.R.O. Silva. “Towards historical R-trees,” in Proc. ACM SAC,
pp. 235–240, 1998.

13. D. Pfoser, C.S. Jensen, and Y. Theodoridis. “Novel approaches in query processing for moving
object trajectories,” in Proc. of VLDB, pp. 395–406, 2000.

14. S.M. Ross. Introductory statistics. McGraw-Hill, 1996.
15. S. Saltenis et al. “Indexing the positions of continuously moving objects,” in Proc. of the ACM

SIGMOD Conf., pp. 331–342, 2000.
16. H. Samet. “The quadtree and related hierarchical data structures,” ACM Comput. Surveys,

Vol. 16(2):187–260, 1984.
17. Y. Tao and D. Papadias. “MV3R-Tree: a spatio-temporal access method for timestamp and

interval queries,” in Proc. of VLDB, pp. 431–440, 2001.
18. Y. Tao, D. Papadias, and J. Sun. “The TPR*-Tree: an optimized spatio-temporal access method

for predictive queries,” in Proc. of VLDB, pp. 790–801, 2003.
19. Y. Theodoridis and T. Sellis. “A model for the prediction of R-tree rerformance,” in Proc. of

PODS, pp. 161–171, 1996.
20. Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. “On the generation of spatiotemporal

datasets,” in Proc. of SSD, pp. 147–164, 1999.
21. Y. Theodoridis, M. Vazirgiannis, and T.K. Sellis. “Spatio-temporal indexing for large multimedia

applications,” in Proc. of IEEE ICMCS, pp. 441–448, 1996.

http://www-db.cs.wisc.edu/cidr/cidr2003/program/p15.pdf
http://arxiv.org/abs/cs.DB/0410001
http://www.cs.ualberta.ca/TechReports/2004/TR04-21/TR04-21.pdf
http://www.cs.ualberta.ca/TechReports/2004/TR04-21/TR04-21.pdf

Geoinformatica (2008) 12:143–168 167

Viorica Botea obtained her B.Sc. degree in Computer Science from the University of Bucharest,
Romania in 1998 and a M.Sc. degree in Computing Science from the University of Alberta, Canada in
2006. She is currently a research programmer with the Logic and Computation Program of National
ICT Australia (NICTA).

Daniel Mallett obtained his BSc (2002) and MSc (2004) in Computing Science from the University
of Alberta. He is currently working in industry as a Database Administrator for Divestco Inc, an oil
and gas software, data, and services company based in Alberta. His main area of research interest is
spatial and temporal databases.

168 Geoinformatica (2008) 12:143–168

Mario A. Nascimento obtained his Ph.D. degree in Computer Science at Southern Methodist Univ.’s
School of Engineering in 1996. Between 1989 and 1999 he was a researcher with the Brazilian
Agency for Agricultural Research (Information Technology Center) and, between 1997 and 1999,
he was also associated with the Institute of Computing of the State Univ. of Campinas (Brazil). Since
then Mario has been with the Department of Computing Science of the Univ. of Alberta, where
he currently is an Associate Professor. In addition he has also been an IITA Invited Professor at
Chung-Ang Univ. in Korea and Visiting Professor at the National Univ. of Singapore (Associate) and
Aalborg Univ., Denmark. His main research interests lie in the areas of Indexing/Access Structures
for (Spatio/Temporal/Image) Databases and Sensor Networks. He is a member of ACM, SIGMOD
and IEEE Computer Society. (Current information can be found at http://www.cs.ualberta.ca/~mn.)

Jörg Sander is currently an Associate Professor at the University of Alberta, Canada. He received
his MS in Computer Science in 1996 and his PhD in Computer Science in 1998, both from the
University of Munich, Germany, under the supervision of Prof. Hans-Peter Kriegel. He worked one
year as a post-doctoral fellow at the University of British Columbia, Canada, under the supervision
of Prof. Raymond Ng. His research interests include spatial and spatio-temporal databases, as well
as Knowledge Discovery in Databases, especially clustering and data mining in spatial and biological
data sets. (Current information can be found at http://www.cs.ualberta.ca/~joerg.)

http://www.cs.ualberta.ca/~mn
http://www.cs.ualberta.ca/~joerg

	PIST: An Efficient and Practical Indexing Technique for Historical Spatio-Temporal Point Data
	Abstract
	Introduction
	Related work
	PIST: An indexing technique for Spatio-Temporal data
	Optimal partitioning of the space
	Heuristic partioning of arbitrary distributions
	Optimizing T

	PIST's implementation
	Experimental results
	Partitioning effectiveness
	Optimizing T
	Query performance
	Robustness
	Comparing with the MV3R-tree
	Index creation

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

