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Abstract With the trend of cloud computing, outsourcing databases to third party
service providers is becoming a common practice for data owners to decrease the cost
of managing and maintaining databases in-house. In conjunction, due to the popu-
larity of location-based-services (LBS), the need for spatial data (e.g., gazetteers,
vector data) is increasing dramatically. Consequently, there is a noticeably new
tendency of outsourcing spatial datasets by data collectors. Two main challenges
with outsourcing datasets are to keep the data private (from the data provider)
and to ensure the integrity of the query result (for the clients). Unfortunately, most
of the techniques proposed for privacy and integrity do not extend to spatial data
in a straightforward manner. Hence, recent studies proposed various techniques to
support either privacy or integrity (but not both) on spatial datasets. In this paper, for
the first time, we propose a technique that can ensure both privacy and integrity for
outsourced spatial data. In particular, we first use a one-way spatial transformation
method based on Hilbert curves, which encrypts the spatial data before outsourcing

W.-S. Ku (B)
Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL 36849, USA
e-mail: weishinn@auburn.edu

L. Hu · C. Shahabi
Computer Science Department, University of Southern California,
Los Angeles, CA 90089, USA

L. Hu
e-mail: lingh@usc.edu

C. Shahabi
e-mail: shahabi@usc.edu

H. Wang
Microsoft Research Asia, Beijing Sigma Center, Beijing, China 100190
e-mail: haixunw@microsoft.com



98 Geoinformatica (2013) 17:97–124

and, hence, ensures its privacy. Next, by probabilistically replicating a portion of the
data and encrypting it with a different encryption key, we devise a technique for the
client to audit the trustworthiness of the query results. We show the applicability
of our approach for both k-nearest-neighbor queries and spatial range queries,
which are the building blocks of any LBS application. We also design solutions to
guarantee the freshness of outsourced spatial databases. Finally, we evaluate the
validity and performance of our algorithms with security analyses and extensive
simulations.

Keywords Outsourcing · Privacy · Query integrity · Spatial databases

1 Introduction

The cost of transmitting a terabyte of data over long distances has decreased sig-
nificantly in the past five years due to the rapid advancements in network technology.
In addition, the total cost of data management is five to ten times higher than the
initial acquisition costs, and it is likely that people costs will dominate computing
solution costs in the future [30]. Meanwhile, Cloud computing provides flexible re-
sources that can easily scale up or down (based on user demand), effectively reducing
the operational and maintenance expenses for data owners (DOs). Consequently,
there is a growing interest in outsourcing database management tasks to third parties
(Cloud service providers) who can provide these data services for a much lower cost
due to the economy of scale. This new outsourcing model has the apparent benefits
of reducing the costs for running DBMSs independently and enabling enterprises to
concentrate on their main businesses.

However, the new outsourcing model also introduced two major concerns. First,
the data owner may not want to reveal the data to the service provider due to either
the sensitivity of the data (e.g., medical records, call detail records, or military data)
or the value of the data (e.g., Navteq road vector data). For example, one of the
reasons for the failure of Google Health is that “Google Health is not trustworthy”
[6]. And patients are not willing to share their medical data with companies like
Google or Microsoft. Second, data users need to be confident that the data received
from the third party provider are still trustworthy. In fact, as the service provider
is not the real owner of the data, they might return dishonest results to query
clients out of its own interests. Additionally, the query results might be tampered
with by malicious attackers who could substitute real results with fake ones or
delete results with higher rankings. Consequently, the query results may not be
trustworthy.

To illustrate this, consider the scenario where Zagat Survey (a data owner) gives
its restaurants’ data to Google (a data provider) in order to make it available to
Zagat’s customers. First, Zagat does not want to reveal the data to Google, as
this is its main business and value-add. Second, a user asking for all restaurants
above a certain rating within three miles wants to be confident that he is indeed
receiving all the restaurants from Zagat that satisfy the query, but with no extra
ones injected by Google (e.g., paid advertisers) or missing ones deleted by Google.
Furthermore, a data provider could be compromised and provide malicious query
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results, which benefits the attacker (e.g., a competitor data provider). For example,
in April 2011, Sony PlayStation Network was broken into by hackers, exposing the
personal information of 77 million people around the world [3, 26]. In addition, in
June 2011, Dropbox temporarily allowed visitors to log in using any of its 25 million
users’ accounts due to a software glitch [3, 7]. As a result, although service providers
like Google would not provide false results to their customers in order not to harm
their own quality of service, even for some immediate benefits (e.g., advertisement
income), they still might act involuntarily and return false results, e.g., while under
attack, or the results might be tampered with while transmitting query results to
clients (e.g., network attack). Therefore, providing a mechanism that allows query
clients to verify the integrity of query results is indeed necessary. Several previous
studies [1, 9] proposed solutions for supporting encrypted queries over encrypted
databases to protect data owners’ privacy. Another set of studies [4, 20, 21, 23, 29]
focus on the problem of integrity in outsourced databases by guaranteeing that
the results returned by the service provider for a client query are both correct and
complete.

Meanwhile, due to the recent advances in wireless technology, mobile devices
(e.g., cell phones, tablets, netbooks) with wireless communication capabilities are
increasing in popularity. Hence, we are witnessing the emergence of many location-
based services (LBS) that allow users to issue spatial queries from their mobile
devices in a ubiquitous manner. Obviously, these applications are in desperate need
of quality spatial data, resulting in an exponential increase in the customers of spatial
data acquirers. The immediate consequences of this phenomenon are the recent
mergers between data providers (e.g., TomTom) and data owners (Tele Atlas).
Consequently, the outsourcing of spatial data is becoming an appealing business
model for both data owners and data providers. Unfortunately, while the exact same
concerns of privacy and integrity exist for outsourcing the spatial data, there has not
been much work in addressing these issues for spatial data except for [20, 25, 33, 34].
To the best of our knowledge none of these studies consider both privacy and
integrity at the same time. It is not clear whether the proposed approaches for either
problem could be easily extended to the other problem or, even worse, if they could
conflict with each other.

In this paper we propose an innovative approach that simultaneously ensures both
the privacy and the integrity of outsourced spatial data. This is achieved by firstly
using space encryption as the basis of our approach and then devising techniques that
enable the data users to audit the integrity of the query result for the most important
spatial query types: range queries and k-nearest-neighbor queries (kNN). This paper
is based on our earlier paper [14] which did not provide freshness guarantees for
outsourced spatial databases and lacked theoretical analysis of the proposed tech-
niques. In order to achieve a complete query integrity assurance scheme, we design
corresponding freshness auditing solutions for UPDATE, INSERT, and DELETE
operations. In addition, we formally analyze the query integrity assurance properties
of our solutions against attacks from malicious service providers. The contributions
of our work are as follows:

– We employ a one-way spatial transformation method based on the Hilbert
curve, which encrypts the spatial data before outsourcing and, hence, ensures
its privacy.
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– We devise techniques for the client to audit the trustworthiness of the query
results by probabilistically replicating a portion of the outsourced data and
encrypting it with a different encryption key.

– We design mechanisms to provide freshness guarantees for outsourced spatial
databases.

– We formally analyze the integrity assurance properties of our solutions against
attacks from malicious service providers.

– We evaluate our approaches with both synthetic and real-world datasets. Exper-
iment results show that with more than a 20% duplication of the original dataset
on the server, clients have a significantly higher probability of detecting query
result deletion attacks.

The rest of this paper is organized as follows. Section 2 surveys the related work.
We introduce the system architecture and an overview of our approach in Section 3.
The design of our space encryption based data privacy protection approach is
presented in Section 4. In Section 5, we introduce our spatial query integrity auditing
solutions for both range queries and k-nearest-neighbor queries. We propose our
solutions to guarantee the freshness of outsourced spatial databases in Section 6. In
Section 7, we formally analyze the integrity assurance properties of our techniques
against malicious attacks. The experimental validation of our design is presented in
Section 8. Finally, Section 9 concludes the paper with a discussion of future work.

2 Related work

The outsourcing of databases to a third-party service provider was first introduced
by Hacigümüs et al. [10]. Generally, there are two security concerns in database
outsourcing: data privacy and query integrity. We summarize related research as
follows.

2.1 Data privacy protection

Hacigümüs et al. [9] proposed a method to execute SQL queries over encrypted
databases. Their strategy is to process as much of a query as possible by the service
providers without having to decrypt the data. Decryption and the remainder of the
query processing are performed at the client side. Agrawal et al. [1] proposed an
order-preserving encryption scheme for numeric values that allows any comparison
operation to be directly applied on encrypted data. Their technique is able to handle
updates, and new values can be added without requiring changes in the encryption
of other values. Generally, existing methods enable direct execution of encrypted
queries on encrypted datasets and allow users to ask identity queries over data of
different encryptions. The ultimate goal of this research direction is to make queries
in encrypted databases as efficient as possible, while preventing adversaries from
learning any useful knowledge about the data. However, query integrity is not taken
into account in this field and it is assumed that mobile users trust everything returned
by a service provider.
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2.2 Query integrity assurance

In addition to data privacy, an important security concern in the database outsourc-
ing paradigm is query integrity. Query integrity examines the trustworthiness of
the hosting environment. When a client receives a query result from the service
provider, they want to be assured that the result is authentic, correct, and com-
plete. Authenticity ensures the users that returned results originally come from
the data owner; correct denotes that the query must be evaluated honestly with
the outsourced database to retrieve the result, and complete means that the result
includes all the records satisfying the query. Devanbu et al. [4] proposed employing
the Merkle hash tree [18] to authenticate data records. The technique computes a
signature based on the Merkle hash tree structure and distributes it to clients as
proof of correctness. Mykletun et al. [21] studied and compared several signature
methods, which can also be applied in data authentication. The study identifies the
problem of completeness; however, it does not propose correspondent solutions.
Pang et al. [23] utilizes an aggregated signature in order to sign each record with the
information from neighboring records by assuming that all the records are sorted
in a certain order. The method assures the completeness of a selection query by
checking the aggregated signature. The challenge token idea, introduced by Sion [29],
is for a server with outsourced databases to provide a proof of actual query exe-
cution, which is then checked at the client side for integrity verification. Compared
with [23], the mechanism supports more query types without assuming all the records
are sorted. However, the aforementioned solutions do not support spatial queries
directly.

For auditing spatial queries, Yang et al. [33] proposed the MR-tree, which is
an authenticated data structure suitable for verifying queries executed on out-
sourced spatial databases. The authors also designed a caching technique to reduce
the information sent to the client for verification purposes. In order to protect
data privacy, four spatial transformation mechanisms are presented in [34, 35] for
protecting the privacy of outsourced private spatial data. The data owner selects
transformation keys which are shared with trusted clients. It is not feasible to
reconstruct the exact original data points from the transformed points without
the key. Mouratidis et al. [20] proposed the Partially Materialized Digest scheme
which avoids unnecessary query processing costs and outperforms existing solutions
by employing separate indexes for the data and for their associated verification
information. However, research works in [20, 33, 34] did not jointly consider data
privacy protection and query integrity auditing in their design. The related work
closest to ours is presented by Wang et al. [31] which focuses on numerical data
integrity authentication. Nevertheless, the solution cannot be applied to audit spatial
queries because spatial locality information of records is destroyed after encryption.

2.3 Freshness guarantee of outsourced databases

For outsourced databases, freshness guarantee mechanisms assure that queries are
executed against the latest data records, rather than out-of-date versions. The cost of
freshness guarantee solutions is usually expensive since it takes significant resources
to monitor whether or not an outsourced database is up-to-date. Xie et al. [32]
proposed solutions for providing freshness guarantees to support outsourced
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databases. Their mechanism can be added to existing query integrity assur-
ance schemes (both authenticated data structure-based and probabilistic-based ap-
proaches). Pang et al. [24] designed a protocol for outsourced dynamic databases that
allows new data to be disseminated immediately, while ensuring that outdated values
beyond a pre-set age can be detected. However, without considering the unique
characteristics of spatial data, the techniques in [24, 32] cannot be employed directly
to guarantee the freshness of outsourced spatial databases for supporting location-
based services.

3 System overview

In this section, we introduce the architecture of our system and provide an overview
of our query integrity assurance approach.

3.1 System architecture

Figure 1 illustrates the architecture of a spatial database outsourcing environment
with four main components: mobile user, trusted gateway, location-based service
provider, and database owner. We consider mobile clients, such as cell phones,
tablets, and netbooks, instrumented with Global Positioning System (GPS) receivers
for continuous position information. The trusted gateway is a stand-alone server
between mobile users and the LBS provider. The purpose of the trusted gateway
is to coordinate spatial queries from clients and to rewrite client queries with
space encryption keys. In addition, the trusted gateway composes auditing queries
for assuring integrity of previously executed spatial queries and freshness of the
outsourced spatial database. Afterward, the trusted gateway forwards the rewritten
queries to the LBS provider. With database servers, the LBS provider is able to
store and access all the outsourced data for answering spatial queries from clients.
However, LBS providers could be malicious (e.g., returning incomplete query results
or injecting fake data records) and they are not trusted by the clients. The last
element – the database owner (e.g., possessing point of interest datasets) outsources
their data management tasks to service providers (e.g., providing location-based
services). We denote the joint component of mobile user and trusted gateway as
client hereafter in this paper.

Mobile
Users

queryRewrite(Q)

Query Results

LBS Provider

DB
dataPreprocess( )

Database Owner
Trusted
Gateway

Results

Queries

Client

D

Fig. 1 The system architecture of spatial database outsourcing
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3.2 Overview of our approach

We assume that the database owner Do can embed additional information in
the outsourced spatial dataset for query integrity verification. Let D denote the
spatial database to be outsourced. The database owner first replicates a portion
of D with randomly selected objects. Then, D and the replicated portion are
encrypted with different Hilbert curve-based encryption keys. Afterward, the two
encrypted datasets are combined and stored at the LBS provider. We employ
dataPreprocess() to denote the replication and encryption process and De =
dataPreprocess(D) to denote the spatial data stored at the service provider.
For requesting LBS based on encrypted spatial databases, the client rewrites spatial
queries against D to spatial queries against De by making use of a query rewriting
method queryRewrite(). In addition, the client also launches auditing queries
for verifying a group of previously executed spatial queries. By verifying signatures
and exploiting the replicated data, the client is able to determine that the results are
authentic, correct, and complete. The knowledge of how to differentiate a replicated
data object from an original data object is only shared between the database owner
and the trusted gateway. LBS providers cannot tell the duplicated dataset from other
encrypted data in the outsourced spatial database. Also, the client and the database
owner audit the freshness of the outsourced spatial database collaboratively through
fake database update operations. Table 1 summarizes the set of notations of this
paper.

Table 1 Symbolic notations Symbol Meaning

S Spatial object
Se Encrypted spatial object
r Data replication percentage
ti Fake operation time slot
u The total amount of time a fake record stays

in the outsourced DB
Do Database owner
D Spatial database
De Encrypted spatial database
R Query result set
|A| The number of elements in set A

VH Hilbert value
O Order of a Hilbert curve
T One-way function for space encryption
Id Dual information
Ts Update time stamp
Ur Update region of a fake update operation
� Cryptographic signature
Sk Symmetric key
SEKP Primary spatial encryption key
SEKS Secondary spatial encryption key
KP Private key of Do

Dist(p, q) The Euclidean distance between
two objects p and q
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4 Space encryption based privacy protection

In this section, we first introduce the one-way function based space encryption
solution. Next, space-filling curves are introduced and applied as one-way functions
for protecting the privacy of outsourced spatial data in our system.

4.1 Space encryption

We exploit the power of one-way functions to preserve privacy by encoding the
locations of all spatial objects in order to protect the privacy of outsourced spatial
databases. A one-way function is easy to compute but difficult to invert, meaning that
some algorithms can compute the function in polynomial time, while no probabilistic
polynomial-time algorithm can compute an inverse image of the function with better
than negligible probability. Our space transformation method is capable of mapping
each point from the original space to a point in the encrypted space in order to
prevent the service provider from obtaining the original spatial object locations.
Because we focus on managing spatial data, an ideal one-way transformation should
respect the spatial proximity of the original space. If the encrypted space is able
to maintain the distance properties of the original space, it will enable efficient
evaluation of spatial queries. Transforming spatial object locations with such a
locality-preserving one-way mapping could be viewed as encrypting the elements
of the two-dimensional (2-D) space for securing privacy and facilitating spatial
query processing. In this research, we apply the parameters of our space encryption
function as the trapdoor [5], which is only provided to the trusted gateway, to encode
queries and decode the encrypted query results for retrieving the original spatial
object positions.

4.2 Space filling curves

A space-filling curve is a continuous curve, which passes through every partition of a
closed space. The formal definition of a space-filling curve is as follows. If a mapping
f : I → En (n ≥ 2) is continuous, and f (I), the image of I under f , has a positive
Jordan content (area for n = 2 and volume for n = 3), then f (I) is called a space-
filling curve. En denotes an n-dimensional Euclidean space. An important property
of space-filling curves is that they retain the proximity and neighboring aspects of the
indexed data. Because space-filling curves can preserve the locality between objects
in the multidimensional space in the transformed linear space, we investigate the
applicability of space-filling curves as ciphers for preserving privacy of outsourced
spatial databases. Since the main goal of this research is to provide both privacy
protection and integrity assurance of location-based services with outsourced spatial
databases, we focus on the transformation of a 2-D space that covers the locations of
POIs. However, our solution can also be easily extended to high dimensional spaces.

The Hilbert curve [2, 11] is a continuous fractal space-filling curve which is
broadly used in multidimensional data management. The superior distance preserv-
ing properties [17] makes the Hilbert curve an ideal choice as a space cipher. In
addition, the Hilbert curve achieves better clustering than the Z curve [22] and the
Gray-coded curve [12]. Therefore, we apply the Hilbert curve in our system for
encrypting the original space. As in [19], we define HD

O for O ≥ 1 and D ≥ 2, as
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Fig. 2 The Hilbert curve
transforms a 2-D space into
corresponding Hilbert values

C

D

B

A

the Oth order Hilbert curve for a D-dimensional space. Consequently, HD
O maps

an integer set [0, 2OD − 1] into a D-dimensional integer space [0, 2O − 1]D. The
mapping determines the Hilbert value VH of each point in the original space based
on their coordinates where VH ∈ [0, 2OD − 1]. Accordingly, we can formulate the
relationship in a two-dimensional space as VH = T (x, y), where x and y are the
coordinates of a point in the original space, and T is the one-way transformation
function. Figure 2 illustrates an example of mapping 2-D space POIs into their
Hilbert values. In the illustration, we can retrieve the Hilbert values of the points
of interest A, B, C, and D as 0, 2, 8, and 12, respectively, with an order two
Hilbert curve. Depending on the desired resolution, more fine-grained curves can
be recursively generated based on the Hilbert curve production rules. Note that it is
possible for two or more points to have the same Hilbert value in a given curve.

Based on the aforementioned properties of the Hilbert curve, it can be employed
as a one-way function to support space encryption. The curve parameters including
the curve’s starting point (x0, y0), curve order O, and curve orientation θ make up
the Space Encryption Key (SEK) of the Hilbert curve based one-way function [13].
Consequently, adversaries who do not have the decryption key have to exhaustively
check for all possible combinations of curve parameters in order to decipher the
physical locations of interested objects. However, with reasonable curve parameters
it is computationally impossible to reverse the transformation and retrieve the
physical locations of interested points in polynomial time.

5 Spatial query integrity auditing with dual space encryption keys

5.1 Dual space encryption

We encrypt the original spatial database D with dual space encryption keys in order
to audit the integrity of query results retrieved from outsourced spatial databases.
We first encrypt D with a primary space encryption key SEKP. Then, we replicate
r percent of D and encode the duplicates with a secondary space encryption key
SEKS which possesses different curve parameters. Afterward, we combine the two
encrypted datasets as De, and then store De on the service provider. After space
encryption, a service provider can only see the Hilbert value of each spatial data
object in De instead of their original coordinates. Since T is a one-way function, for
any spatial object S in De, a service provider cannot tell whether S was encoded
by SEKP or SEKS. In addition, the Hilbert values generated by the two space
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encryption keys may overlap, which makes it even more difficult to distinguish if
an object is the original or the duplicate.

On the other hand, we need corresponding techniques to enforce query integrity
on the client side. For any spatial object S in the query result set, a client should
be able to verify if S is a valid record of D, and if S has a counterpart which is
encrypted with another SEK. For supporting object verification, we encrypt the
coordinates, non-spatial attributes, dual information Id, and time stamp Ts with a
symmetric key Sk, which is shared by the database owner and the trusted gateway.
In addition, we apply cryptographic hash functions [28] to generate a signature �

for each spatial object with the coordinates, non-spatial attributes, Id, and Ts as the
input message. Afterward � is encrypted with the private key of Do. The purpose of
the dual information field is for the client to tell if a spatial object has a duplicate in
the outsourced database. Id has three values which stand for (i) primary encryption
without duplication, (ii) primary encryption with duplication, and (iii) secondary
encryption, respectively. The structure of an encrypted spatial object stored in De

is as follows:

Se = {
VH, {x, y, non-spatial attributes, Id, Ts}Sk

, {�}Kp

}

For each server returned spatial object Se, the client first decrypts Se with the
symmetric key and executes the cryptographic hash function for verifying the object
with its attached signature, which is decrypted with Do’s public key. Any tampering
with the object will be detected, since it is computationally infeasible to forge a
cryptographic hash function generated signature. If the spatial object is valid, the
client will check its Id field to determine whether the object is an original or a
duplicate. Replicated objects are utilized to audit query result integrity, as described
in the following two subsections.

5.2 Range query

With a given range query QR, the client first identifies the Hilbert values covered by
the range query based on the parameters of SEKP. Afterward, the client queries the
service provider for retrieving the objects covered by the query range. After receiving
the query result set R, the client first filters out objects encrypted with SEKS and
verifies the validity of all the remaining objects with their attached signatures. If all
the objects in R are valid, the client generates an auditing range query QA with the
same query range size as QR and the parameters of SEKS. If the service provider
carries out queries honestly, the query result set of the auditing query must contain
counterparts of all the objects with duplicates in R. In practice, the client can launch
a single auditing query for verifying a number of regular queries from mobile users
by combining their query ranges for saving resources.

Figure 3 demonstrates an example of range query integrity auditing. The query
window of a range query QR covers three Hilbert curve segments, [17–18],
[23–24], and [27–31], based on the primary encryption key as shown in Fig. 3a. After
receiving the three curve segments, the service provider retrieves all the spatial
objects whose Hilbert values are included by the three curve sections, and then
returns the retrieved spatial object set R as the query result. Then, the client removes
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23 24 27 

18 29 28 

17 30 31 

61 50 51 

56 55 52 

57 54 53 

(a) Original range query QR. (b) Auditing range query QA.

Fig. 3 A range query QR covers three Hilbert curve segments based on SEKP as illustrated in (a).
The auditing query QA encloses two Hilbert curve segments based on SEKS as demonstrated in (b)

records encrypted with SEKS in R, verifies the remaining records, and identifies
the records which have duplicates by checking the Id filed. Subsequently, the client
creates an auditing query QA with equal query range as QR on the Hilbert curve
defined by SEKS. In this example, QA encompasses two Hilbert curve segments,
[50–57] and [61], based on the secondary encryption key. With the Id field, the
client is able to filter out the objects which are encrypted with SEKP in the result
of QA. Finally, the client checks to see if all the duplicates retrieved by QA have
counterparts in R. If there is any mismatch, the discrepancy proves that the service
provider is malicious. The complete procedure of a Query Integrity Assured Range
Query (QIARQ) is formalized in Algorithm 1.

5.3 k nearest neighbor query

We design a Query Integrity Assured k Nearest Neighbor (QIAKNN) search al-
gorithm by extending our range query solution in Section 5.2. For a given kNN
query point Q located at position (xQ, yQ), a client first employs SEKP to compute
VH = T (xQ, yQ) as the query point in the encrypted space. Because there is r percent
duplicate data in De, which should be filtered out from query results, we multiply k by
(1 + r) to get k′ and apply k′ as the query parameter. Thereafter, the client transmits
the values of VH and k′ to the service provider in order to retrieve k′ nearest
neighbors of Q. The service provider searches De in both directions (ascending
and descending) of VH until k′ closest spatial objects are found, and then returns
the query result set R to the client. On the receiving of R, the client first removes
objects encrypted with SEKS, and then checks to see if there are k objects leftover
in R. If R contains fewer than k objects, the client repeats the aforementioned
steps with a multiple of r until obtaining k valid objects. Subsequently, the client
retrieves the object s∗, which has the longest distance to Q in R. Because of the loss
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of a dimension in the encrypted space, the objects in R may not precisely match
the actual k nearest neighbors of Q. Consequently, the client utilizes the distance
between Q and s∗ (Dist(Q, s∗)) as a search upper bound and launches a range
query QR with Dist(Q, s∗) to decide the query window size. Following acquiring
R

′ as the result of QR, the client audits the range query result as described in
Section 5.2. Because Dist(Q, s∗) is the search upper bound, the client has to identify
the top k objects in R

′ based on their distance to Q to acquire the final query
result.

Figure 4 illustrates an example of k-nearest-neighbor query integrity auditing.
The client first encodes the location of the query point with SEKP and computes
that its VH = 30. Afterward, the client launches a kNN query with the numbers of
VH and k′. The service provider searches De for objects with Hilbert values ≥ 30
and < 30 in parallel until k′ objects are found, as demonstrated in Fig. 4a. Next,
the client interacts with the server until k objects encrypted in SEKP are retrieved.
Among the k valid objects, assume the one which has the longest distance to Q
has a Hilbert value 32; we can then acquire the search window edge length as five
units. Subsequently, the client launches a Query Integrity Assured Range Query for
searching k nearest objects of Q, the exact query result being shown in Fig. 4b. The
QIAKNN algorithm is formalized in Algorithm 2.
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(a) Finding the search upper bound. (b) Searching k nearest objects of Q.

Fig. 4 A query integrity assured k-nearest-neighbor query
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5.4 Attack-aware auditing query composition

The purpose of our dual space encryption design is to allow for sophisticated cross ex-
amination. The client carries out cross examination against a single spatial database
that has two different encryptions. However, negligent auditing queries launched by
the client may reveal critical information, which could allow malicious LBS providers
to detect the correspondence among the data with different encryption keys. For
example, if one assumes the client launches an auditing query after every regular
query, then a malicious service provider can easily learn the relationship between
the two queries and remove the results of both queries to jeopardize future queries
without being detected by the client.

In order to defend against the aforementioned attack, we need more advanced
solutions for composing auditing queries. Generally, we want to create a checking
query QA, which will not leak any correspondence information among the data
objects in De. In addition, QA should be hard to differentiate from other regular
queries. Consequently, the main principle is to apply a single query in order to
evaluate the integrity of multiple queries. Because queries launched by the same
mobile user usually exhibit spatial locality [15, 16], the query range overlap is
significant between successive queries from an identical user. By evaluating the
integrity of multiple queries from a few users at a time, we can improve security and
decrease the integrity auditing overhead of the trusted gateway. The trusted gateway
can decide the threshold to generate a checking query for a group of executed regular
queries Q = {q1, . . . , qn} by merging their query regions, based on the memory
capacity and maximum tolerable delay. Only queries whose results contain replicas
should be included in Q.

6 Freshness guarantee mechanism

In addition to audit query integrity, another challenging issue of supporting spatial
data outsourcing lies in providing freshness guarantees. For outsourced databases,
freshness means that all database update operations have been executed correctly by
the service provider. In this research, we focus on auditing SQL UPDATE operations
in outsourced spatial databases since point-of-interest datasets have more UPDATE
operations than INSERT or DELETE operations for supporting location-based
applications. For example, the database owner may update the gas price information
of each gas station in the outsourced spatial database everyday; however, gas station
records are rarely inserted or deleted.

6.1 Freshness auditing for UPDATE operations

The goal of freshness auditing is to assure that queries are executed with the up-to-
date database rather than some version of the database in the past. Our approach is
based on deterministic functions and time stamp information which are shared by the
database owner and the trusted gateway. Specifically, deterministic functions decide
when and where (spatial regions) to update the time stamps of records (time stamps
store the latest update time of records). For example, assume that a malicious service
provider always ignores update requests from the data owner. The client is able to
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discover the dishonesty because they know the latest update time of certain records
by running the deterministic functions.

In order to audit the integrity of UPDATE operations, the database owner
submits fake UPDATE statements to the outsourced spatial database. After the
outsourced database adopts our mechanism, which is a probabilistic guarantee of
freshness, the service provider cannot distinguish fake operations from real oper-
ations. A fake UPDATE operation renews the time stamp information (i.e., the
Ts field) of all the data records in a given update region of the search space. By
checking the Ts field of the data records in the updated region, the client is able to
audit the freshness of the outsourced spatial database and tell if the service provider
is honest. The generation of fake UPDATE operations is controlled by a group of
deterministic functions, which are employed to synchronize the auditing knowledge
of the database owner and the trusted gateway [32]. Consequently, a client can join
the system anytime and still knows when the next fake UPDATE will happen by
executing the deterministic functions.

The major advantage of utilizing deterministic functions to provide freshness
guarantees is that the client only needs to store the functions rather than all the
spatial regions, which will be updated by the database owner in the future. The
functions generate a deterministic sequence of fake UPDATEs at deterministic
points of time to renew the time stamps of selected records in the outsourced spatial
database. Specifically, the database owner and the trusted gateway share a set of
deterministic functions F and a time slot generation function P which are detailed
as follows:

– F is a deterministic function set, F = { f1, . . . , fn}, where each member function
fi is determined by a randomly chosen key (e.g., the latest update time) and fi

returns the center point and side lengths of an update region Ur (a rectangular
area). The distribution of update regions is based on the data distribution of the
outsourced spatial database. The number of functions in F is a system parameter
determined by users. The ratio between fake updated statements and real update
operations provides the confidence level of detecting malicious service providers
which skip update requests from clients.

– P is a function determined by a randomly chosen key, and it generates a
deterministic series of time slots {t1, . . . , tm, . . .} for deciding the next fake
operation launch time. In particular, let ti be the last time which the database
owner launches fake UPDATE operations. Then, the database owner will
submit fake UPDATE statements again at P(ti) = ti+1. Also, the distribution
of fake UPDATEs generated by P should be similar to the distribution of real
UPDATEs from the database owner.

When the system starts, the database owner Do executes P to figure out the next
time slot ti in order to submit fake UPDATE statements. At ti, the database owner
runs the functions in F for generating a group of update regions. For each update
region Ur, Do renews the time stamp field of all the covered data records with ti.
The size of Ur is determined by the data density, and each Ur proportionally covers a
certain number of data records. In case an updated region covers no data record, the
database owner inserts a fake record (which can be recognized by the client by setting
the Id field as f ) with the current ti value as its time stamp. For fake record deletion,
Do employs two functions, h(u) and f (u), where u is the total amount of time which a
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fake record stays in the outsourced database. h(u) is a hash function which maps to [0,
1] in uniform distribution; f (u) is a decreasing function (e.g., f (u) = 1/(u + 1)) which
starts from 1 and eventually converges to 0 when u goes to infinite. Do memorizes
the u value of each existing fake record and employs the product of the two functions
to determine the probability Pd of removing a certain fake record at each time slot
(i.e., Pd = 1 − h(u) f (u)). In addition, Do can choose any pair of functions with the
aforementioned characteristics to serve the purpose. This design makes it difficult
for malicious service providers to discover fake records in outsourced databases.

On the other hand, the trusted gateway also possesses F and P for auditing
the freshness of outsourced spatial databases. During each fake operation time
slot, the client executes the functions in F for obtaining all the update regions
valid for the current time slot. Afterward, the client submits freshness auditing
queries for retrieving the data records covered by selected update regions and
checks their time stamps. If any Ts of the retrieved data records is out of date, the
mismatch demonstrates that the service provider is malicious. In practice, auditing
queries for freshness guarantees can be combined with auditing queries for range
or kNN queries for saving resources. The steps of deterministically submitting fake
UPDATE operations by Do are formalized in Algorithm 3.

6.2 Freshness auditing for INSERT and DELETE operations

Occasionally, the database owner inserts or deletes data records in outsourced
POI databases (e.g., a newly opened gas station). Consequently, we also design
mechanisms for the database owner to audit if the service provider honestly executes
INSERT and DELETE operations. During each fake operation time slot ti, Do

launches a series of auditing range queries QA to verify whether the service provider
has indeed executed all the INSERT and DELETE statements submitted through
ti−1. The query window size of QA is randomly decided within a user defined range
(e.g., 0.1% of the search space), and the query window covers one or more executed
INSERT/DELETE operations based on their spatial distributions.
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7 Query integrity assurance analysis

We consider that a malicious server might tamper with the outsourced database
and return incorrect query results to a client. The server can modify/delete existing
data recording or inject new data records that do not belong to the data owner.
However, since the data owner signs every data object in the outsourced database,
injected or modified data records can be easily detected by a client via checking the
cryptographic signature. This is because forging or altering a signature is computa-
tional intractable for a polynomial-time adversary. Consequently, query integrity is
guaranteed in the cases of data injection and modification. However, the signature
scheme does not protect the integrity of the query result from the following two
attack models: (1) data deletion attacks: for example, a malicious server can delete
some data objects from the query result and return an incomplete set of the result to
the client. Such an attack model usually takes place when the client is not aware of the
total number of objects in the result set, such as a range query; (2) data substitution
attacks: for example, in a kNN query, a client requests for exact k objects from a
service provider (SP). A malicious SP can substitute the kNN result with objects that
are more favorable to the server. Since the replacement objects are also part of the
original database, they are authentic data objects provable by their signatures. Our
dual-encryption scheme is designed to provide protection to both aforementioned
attacks by using the dual spatial encryption technique.

We also investigate the query integrity assurance properties of our system. The
notations used in this section are summarized in Table 2. Similar to other research
works [8, 13] that employ the Hilbert curve as the space encryption technique, we
assume that Hilbert curves are secure, and the inversion of the Hilbert values to the
original coordinates is computational intractable. Interested readers can refer to [13]
for a security proof of the space encryption method using Hilbert curves. A malicious
server may perform deletion attacks on queries that do not have a known number of
results to the client. In Section 5, we propose two query auditing paradigms that
clients can choose between accordingly. In particular, for the one-to-one query and
auditing paradigm (1T1QA), a client issues an auditing query after each regular
query; for the one-to-many query and auditing paradigm (1TMQA), a client issues
one auditing query for multiple regular queries that it intends to audit. 1TMQA
requires more storage space on the client-side, i.e., caching all the query results to
be verified later. However, 1TMQA is more attack-proof against a malicious server
because it is harder to find the correspondence between data objects in the regular
query and the auditing query. Note that the algorithms are probabilistic, therefore,

Table 2 Symbolic notations Symbol Meaning

D Outsourced spatial database
QR Spatial queries
QA Auditing queries
r Database replication percentage
k Number of objects in a query result set
d Number of objects deleted/substituted by a malicious

server
m Number of queries covered by an auditing query in the

1TMQA model which is set by the trusted gateway
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false positives can be produced (i.e., some attacks can escape from being detected).
But, it never produces false negatives (i.e., an honest query result will never be
considered as dishonest).

We first consider the case of deletion attacks. Before a client sends a range query
QR to the server, it first converts QR into a sequence of Hilbert segments covered
by the query range. Then, the set of Hilbert segments are sent to the server. For
simplicity, we assume that data points are uniformly distributed in the normalized
domain space [0, 1]2. Let the number of objects that fall inside the query range be k.
The Hilbert values of the k objects are covered by the Hilbert segments requested by
the client. Note that the duplicates of the database may have the same Hilbert values,
even though they are encrypted by a different Hilbert curve (SEKS). Objects that
have the same Hilbert values but are not inside the query range (false hits) are also
returned in the query result. The expected number of these false hits is r · k. Similarly,
for the auditing query, the result contains both the objects in the query range and the
objects with the same Hilbert values but not in the query range. Clients can eliminate
these objects by their dual information, but the server cannot. The client receives
(k + k · r) objects for QR and its auditing query QA, respectively. In the result of
QR, k · r objects (C) have their counterparts in the auditing query result, k · (1 − r)
objects (S) have not, and k · r objects are false hits to be eliminated by the client.
For the auditing query QA, k · r objects (R′) are the counterparts of C, and the rest
are false hits to the query. For the server to successfully launch a deletion attack,
the objects deleted from the two result sets must agree. In other words, if an object
is deleted from C, it also has to be deleted from R

′. As the server does not know
the correspondence between objects, a random selection model is employed here.
Therefore, the probability of a successful deletion attack is:

Pr(successf ul deletion attack) =
∑d

i=0

∑d
j=0 Ck·(1−r)

i · Ck·r
j · Ck·r

d−i− j · Ck·r
d− j

(Ck·(1+r)
d )2

(1)

As indicated by the equation, the probability of a successful deletion attack is a
function of three variables: the selectivity (k) of a query, the number of deletions (d)

and the replication ratio (r) of the database. The probability function Pr(k, d, r) is
plotted in Figs. 5, 6 and 7.

The relationship between the probability of a successful attack v.s. the number of
deletions per query made by a malicious server is shown in Fig. 5. The selectivity of
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Fig. 5 The probability of one successful attack v.s. the number of deletions (k = 30)
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Fig. 6 The probability of one
successful attack v.s. the size of
result sets (d = 5)
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the query (k) is 30. To better visualize the small probability values, the part of Fig. 5a
in the grey box is magnified in Fig. 5b. The figure demonstrates that as the number of
deletions increases, the probability of launching successful attacks quickly decreases.
When r is more than 30%, the probability of a successful attack is less than 15% when
the server deletes three or four objects. When the number of deletions is close to the
total number of objects in the result set, the probability of successful attacks increases
(shown as the rising tail in Fig. 5). However, this trend disappears as the replication
ratio increases. Notice that if a malicious server returns an empty result set, the client
cannot verify whether or not the result is authentic. To solve this problem, in practice,
the client only needs to rewrite the auditing query to a kNN (k = 1) query in order
to verify the distance from the first nearest neighbor to the query point.

Figure 6 shows the relationship between the probability of a successful attack
and the selectivity of queries. The number of deletions d is set to 5. As can be
seen from the figure, higher replication percentages lead to a lower probability of
successful attacks by a malicious server. In general, with 30% replication of the
original database, a client can correctly detect more than 85% of the attacks.

Figure 7 illustrates the relationship between the probability of a successful attack
and the number of deletions per query. The replication ratio (r) is 30%. The
figure shows again that the more objects a malicious server deletes, the higher the

Fig. 7 The probability of one
successful attack v.s. the
number of deletions (r = 30%)
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probability of a client detecting corrupted results. This trend remains as the query
selectivity increases.

When a client employs the 1TMQA model, the probability of a successful attack
is:

Pr(successf ul deletion attack) =
∑d

i=0

∑d
j=0 Ck·(1−r)

i · Ck·r
j · Ck·r

d−i− j · Cm·k·r
d− j

(Ck·(1+r)
d ) · (Cm·k·(1+r)

d )
(2)

The variables k, d and r are the same as in Eq. 1. m is the number of queries
covered by one auditing query in the 1TMQA model. For substitution attacks, a
malicious server replaces objects with objects that does not belong to the query
result. For example, when a client asks for the k nearest restaurants to its current
location, the malicious server deletes restaurants that are close by and returns restau-
rants that are further away. The probability of a successful substitution attack is:
Pr(successf ul substitution attack) = (1 − r)d · Pr(successf ul deletion attack), where
(1 − r)d is the probability of all the substituting objects not having counterparts.

8 Experimental validation

In this section, Hilbert curves are used as the space encoding technique to encrypt
spatial information in outsourced databases. It has been proven in [13] that without
knowing the space encryption key, a brute force attack will need to exhaustively
search all possible key combinations. The complexity of the attack is O(24b ) where b
is the number of bits for each parameter. Hence, the Hilbert curve based encryption
method is employed as a one way encryption function in our design. Table 3
illustrates two synthetic datasets and three real-world datasets utilized in these
experiments. The two synthetic datasets of 10K data points each represent uniform
and skew distributions, respectively. Los Angeles is a dataset containing around 10K
restaurants inside a geographic area measuring 26 miles by 26 miles in the City of Los
Angeles, California. The last two datasets consist of points of interest (POI) across
California and North America, respectively. We implemented our query integrity
assurance algorithms in Java and conducted the experiments on a Windows Vista PC
with Intel Core 2 Duo 3.16GHz processor and 4GB memory. All simulation results
were recorded after the system model reached a steady state.

8.1 Encoded POI density

We first show the relationship between Hilbert curve orders and the number of POIs
encoded by one Hilbert value (POI density). Using a higher Hilbert curve order
increases the security level of the corresponding space encryption key, while a higher

Table 3 The simulation
datasets

Name Number of POIs Source

Uniform 10,163 Synthetic
Skewed 10,163 Synthetic
Los Angeles (LA) 10,163 NAVTEQ
California (CA) 62,556 US Census Bureau
North America (NA) 569,120 US Census Bureau
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Fig. 8 The relationship between curve order and POI density

curve order incurs higher computational complexity. As shown in Fig. 8, the number
of POIs per Hilbert value decreases rapidly as the curve order increases on both
synthetic and real-world datasets. The average number of POIs per Hilbert value is
close to 1 when the curve order reaches 12. Hence, we use the default curve order of
12 for space encryption unless explicitly specified.

8.2 Spatial database outsourcing initialization

There are three major operations in the initialization process for our spatial database
outsourcing approach: (1) computing Hilbert values for all data objects based on
their locations, (2) encrypting each data object with the symmetric key, and (3)
calculating the cryptographic signature for each object. There are various algorithms
for operations (2) and (3), and the cost of each may vary. We used the Blowfish
encryption algorithm [27] and MD5 (Message-Digest algorithm 5) for signature
computation. We perform the data initialization process on all the three real-world
datasets with a 40% duplication rate and a curve order of 12. The cost of each
operation in Fig. 9 shows that computing the Hilbert values is efficient and less
expensive than the other two operations.

8.3 Query translation on the client side

For range queries, a client translates the range query window to the Hilbert curve
segments and sends these segments to the service provider. A kNN query, as
described in Algorithm 2, is split into two parts: retrieving k nearest POIs simply

Fig. 9 Initialization cost of the
proposed spatial database
outsourcing approach
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Fig. 10 Query translation cost
on the client side
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based on the Hilbert value of the query point and launching a range query using the
distance of the kth point in the previous operation as the search upper bound.

The query translation cost on the client side is studied in this set of experiments.
The size of the range query window varies from 0.01 to 0.05 on the normalized dataset
and the curve order varies from 10 to 15. Figure 10 demonstrates the average cost of
50 range queries on the Los Angeles dataset. The figure shows that query translation
cost increases when we increase the order of the Hilbert curves. Furthermore, as
the range query window increases, the query translation cost also increases because
more Hilbert segments are covered by the query window. The query translation
cost is measured by computing the Hilbert segments for each query from scratch. In
practice, however, the client can maintain a local cache of the mapping from locations
to Hilbert values in order to reduce the query translation cost.

8.4 Integrity auditing

Clients employ QIARQ and QIAKNN to verify that the spatial query results are
both correct and complete when receiving query results. There are three operations
in the query result authentication process: (1) decrypt each data object, (2) verify
the signature of every retrieved object, and (3) check the counterpart existence of
each object with a duplicate. The cost of (1) and (2) are constant per object on a
chosen encryption method. Therefore, we only show the cost of (3) in Fig. 11 for
range queries at different range extents and data replication percentages. Verifying
query results is efficient when the size of objects returned is small. For location-based

Fig. 11 Cost of query
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spatial queries, clients are normally only interested in a relatively small region and
retrieve a few points of interest in the nearby neighborhoods. Therefore, most of the
spatial queries, in practice, are small queries. Figure 11 shows the query verification
cost v.s. the size of the query window. To give a better understanding of how large
the query windows are, the number of objects enclosed in the query range is also
shown in Fig. 11 as columns. The experimental results demonstrate a slow start
with a low verification cost while the query size remains small. As the query range
increases, query verification becomes costly. However, we argue that in real-world
applications, a query size of 100 objects is generally enough for most location-based
services. Therefore, our technique is practical for such queries.

8.5 Communication cost

In the next set of experiments, we study the communication cost measured by the
size of the data transferred between the client and the service provider per query.
Network delays and packet retransmission due to unstable connections are not the
focus of this research and hence they are not considered in this experiment. A round
trip of a query-and-answer process between a client and a server can be split into
two parts. The query transfer from a client to a server is composed of several Hilbert
curve segments, the size of which is determined by the Hilbert curve order of the
SEK. The result returned back from the service provider contains all the points of
interest with respect to the query; the size is determined by the distribution of POIs
in the database, the extent of the query range (or the number k for a kNN query), and
the replication percentage of the outsourced database. We assume the size of every
data object is 1KB. In Fig. 12a, the communication cost is measured by the number
of segments transmitted from a query client to the server. In Fig. 12b, the cost is
measured by the number of objects returned to the query client. The experiments
were performed on the Los Angeles dataset and the trend was similar in the other
datasets. It is shown that the communication cost increases linearly as the query
window increases on both figures. Furthermore, the results show that the client-to-
server communication cost rises as the order of the Hilbert curve chosen increases.
However, the server-to-client communication cost is not related to the curve order,
as it is dominated by the size of the query.

0

10

20

30

40

50

0.01 0.02 0.03 0.04 0.05

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

K
B

)

0

10

20

30

40

50

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

K
B

)

Query window extent
0.01 0.02 0.03 0.04 0.05

Query window extent

10
11
12
13
14

10
11
12
13
14

10%
20%
30%
40%
50%

10%
20%
30%
40%
50%

(a) Client-to-server communication cost. (b) Server-to-client communication cost.

Fig. 12 The cost of communication between a client and a service provider
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Fig. 13 Probability of escaping
detection of deletion attacks

80%
10%

60%

10%
20%
30%
40%
50%

40%

10%
20%
30%
40%
50%

20%d
el

et
io

n
 a

tt
ac

k 

10%
20%
30%
40%
50%

0%
1 2 3 4 5 6 7

P
ro

b
ab

ili
ty

 o
f 

a 
su

cc
es

sf
u

l 10%
20%
30%
40%
50%

# of deletions

10%
20%
30%
40%
50%

10%
20%
30%
40%
50%

8.6 Query integrity protection against deletion attacks

We discussed in Section 7 that modifying and adding data objects to an outsourced
spatial database can be easily detected by our integrity auditing algorithms, which re-
sult in one of the two cases: an inability to perform decryption on the tampered data,
or inconsistent cryptographic signatures. Consequently, the attack model studied in
this set of experiments focuses on data objects deleted by malicious service providers.
We conducted the experiments on the Los Angeles dataset using randomly generated
queries with the extent of 0.04 on the normalized coordinates. The malicious server
launches deletion attacks on query results randomly; the number of deletions varies
from 1 to 7. Figure 13 shows the probability that the attacker can successfully escape
from being detected by the client versus the number of data objects deleted from a
query. It is shown in this figure that, with a replication rate of 30%, the probability
of a successful attack is less than 15% when the server deletes three or more objects.
Our experimental results agree with the formal analysis in Section 7.

8.7 Query freshness auditing

As discussed in Section 6, freshness guarantee is also an important factor in providing
query integrity to all query clients. We proposed a query freshness auditing algorithm
to empower clients to verify that query results from the server are up-to-date. In the
last set of experiments, we evaluate the effectiveness of the algorithm with regard
to the probability of an update attack escaping from being detected. As the update

Fig. 14 Probability of escaping
detection of skipping updates
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information are all encrypted, the service provider cannot tell real updates from
fake updates. Consequently, we assume a random attack model from the perspective
of the service provider. That is, the service provider drops update requests from
the data owner (DO) at random. In Fig. 14, we show the probability of successful
update attacks. The x-axis represents the number of updates skipped by the service
provider and y-axis shows the probability of successful update omissions without
being detected by a client using our algorithm. F is a deterministic function set
and |F | represents the number of functions contained in the set. In this set of
experiments, the update frequency from the data owner is set to 20 records per
time slot. It is shown that our algorithm can detect any update omission with a
probability greater than 75% when the number of functions in F is greater than 60.
The probability increases quickly as the number of skipped updates increases. For
example, when there are two update omissions, the probability of detecting such an
attack is increased to 95% with |F | set to 60. Moreover, as shown in Fig. 14, the more
functions F contains, the less likely that an update omission will escape from being
detected by a client.

9 Conclusion

Outsourcing of spatial databases for supporting location-based services has become a
trend in recent years due to the economy of scale. Existing solutions are designed ei-
ther for data privacy protection or for query integrity auditing instead of considering
both data privacy and query integrity in tandem. We have introduced query integrity
assured algorithms for both range queries and k-nearest-neighbor queries with
space encryption techniques to secure data privacy. In addition, we have presented
mechanisms to provide freshness guarantees for outsourced spatial databases. We
have demonstrated through theoretical analyses and simulation results that our
mechanisms perform remarkably. For future work, we plan to extend our algorithms
to support more spatial query types such as spatial join, spatial path queries, etc.
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