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Abstract In this paper we propose a fundamental approach to perform the class
of Range and Nearest Neighbor (NN) queries, the core class of spatial queries
used in location-based services, without revealing any location information about
the query in order to preserve users’ private location information. The idea behind
our approach is to utilize the power of one-way transformations to map the space
of all objects and queries to another space and resolve spatial queries blindly in
the transformed space. Traditional encryption based techniques, solutions based on
the theory of private information retrieval, or the recently proposed anonymity and
cloaking based approaches cannot provide stringent privacy guarantees without in-
curring costly computation and/or communication overhead. In contrast, we propose
efficient algorithms to evaluate KNN and range queries privately in the Hilbert
transformed space. We also propose a dual curve query resolution technique which
further reduces the costs of performing range and KNN queries using a single Hilbert
curve. We experimentally evaluate the performance of our proposed range and KNN
query processing techniques and verify the strong level of privacy achieved with
acceptable computation and communication overhead.
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1 Introduction

The most fundamental classes of location queries predominantly used in location-
based services (LBS) are K-nearest-neighbor (KNN) and range queries where a
group of mobile users want to find the location of their K closest objects from a query
point (KNN) or all objects located in a certain area of interest (range). An obvious
requirement for evaluating KNN (range) queries is that the location of the query
point (query window) needs to be shared with the location server (server for short)
responding to user queries. However, a user’s location is highly sensitive information
that once compromised, can expose her to various threats such as stalking and
inference about her health problems or political/religious affiliations. Therefore, with
many LBS applications a user may not want to reveal her location to untrusted and
potentially malicious entities (such as the server) in order to preserve her privacy.
Such growing concerns about users’ privacy in LBS is considered to be the biggest
impediment to the explosive growth and popularity of location-based services.

Protecting users’ locations while responding to their location-dependant queries
is challenging due to an interesting dilemma in resolving such queries: while precise
information about query location is needed to generate the result set for a spatial
query, the privacy constraints of the problem does not allow revealing users’ location
information to the potentially untrusted server responding to such queries. In order
to resolve this dilemma, we propose a fundamental approach based on utilizing
the power of one-way functions and locality-preserving transformations to preserve
users’ location privacy by encoding the space of all objects and queries and processing
spatial queries blindly in the transformed space.

There is an inherent limitation in using traditional encryption techniques for blind
evaluation of spatial queries. To illustrate, assume that the server uses recently
proposed encryption techniques to compute the encryption of the Euclidean distance
between an encrypted point (i.e., the query origin) and each point of interest [14].
These encrypted distances can then be sent back to the client who can decrypt them
and find the top K results. Trivially, this protocol satisfies our definition of blind
query evaluation (see Section 3) since the location of neither the query point nor
the result set is revealed to the server. However, the main limitation here is that
distance between query point and each and every point of interest must both be
computed and transferred to the client, i.e., O(n) computation and communication
complexity where n is the size of the database. There are cryptographic binary
search communication protocols that may reduce the communication complexity to
logarithmic; however, the computation complexity at the server cannot be further
reduced. This is because the points of interest are treated as vectors with no
exploitation of the fact that they are points in space.

Another set of approaches to location privacy are K-anonymity and cloaking-
based techniques where a user’s location becomes indistinguishable among K − 1
other users or is hidden in a larger cloaked region by a trusted anonymizer before
sending the query to the server. The cloaking and anonymity-based techniques suffer
from several drawbacks: (i) By design, these approaches mostly rely on a trusted
entity to “anonymize” users’ locations which means all user queries are first sent
to an anonymizer before reaching the server during the system’s normal mode of
operation. (ii) Users have to extensively trade-off their privacy to achieve higher
quality of service or better response time. (iii) The concept of K-anonymity does not
protect the user privacy in all scenarios. These issues are discussed in Section 2.
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Finally, the solutions based on the theory of private information retrieval achieve
strong levels of privacy by ensuring no information about user queries are exposed
to the untrusted server. However, private information retrieval is very costly to be
employed in practice (see Section 2). Perfect secrecy is achieved at the cost of a
linear scan and/or transfer of all database items, or reliance to a hardware device
with severely limited computation and storage resources.

In this paper, we utilize space filling curves and one-way hash functions to
transform the locations of both user(s) and points of interest into an encoded space
and to evaluate a query in that space. The transformed space maintains some of the
distance properties of the original space which enables efficient evaluation of loca-
tion queries while remaining irreversible without the knowledge of a transformation
key. Subsequently, the client can encode the query using its key before transferring
it to the server and the server blindly responds to the query in the transformed space
and returns back to client the encoded answers which are transformed back to the
original space using the knowledge of the key at the client side. Consequently, similar
to conventional encryption schemes, we do not need any intermediator between the
client and server to evaluate the spatial queries blindly.

We propose an approximate KNN query algorithm that guarantees constant
computation and communication complexity while providing a very close approxi-
mation of the original query results and an exact range query algorithm which takes
O(nl log T) + |R| time where nl = max(n1, n2) for a rectangular range query of size
n1 × n2, T = 2N for N being the Hilbert curve order and |R| denoting the number of
objects in the query window. Building on the above two algorithms, we also propose
an exact KNN algorithm. Our exact KNN algorithm first computes a candidate result
set using the approximate KNN algorithm and uses the results to form a region
around the query point guaranteed to include the exact results to the KNN query. It
then employs the range query algorithm to retrieve all objects within the computed
region.

A preliminary version of this work appeared in [18]. This paper subsumes [18] by

– Utilizing cryptographic hash functions in combination with locality-preserving
space filling curves to achieve more stringent privacy guarantees in the presence
of sophisticated adversaries with strong prior knowledge about object distribu-
tions (Sections 3 and 4).

– Reducing the approximate KNN query complexity from O(K × 22N

n ) to θ(K) for
N and n being the Hilbert curve order and total number of objects, respectively
(Section 5).

– Proposing blind evaluation of range queries as another important class of spatial
queries by breaking a 2-D range query into a set of 1-D ranges in the Hilbert
transformed space and privately querying the server for the objects in each set
(Section 6).

– Employing our approximate KNN algorithm and the proposed range algorithm
to enable an exact KNN algorithm (Section 7).

We have experimentally verified the efficiency of our proposed approaches on
both synthetic and real datasets. As detailed in Section 10, we show that our
approximate KNN algorithm returns a close approximation of the query result in
the original space by generating a result set whose elements on average have less
than 0.09 mile displacement to the elements of the actual result set in a 26 mile
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by 26 mile area containing more than 10,000 points of interest. We also show that
with acceptable extra overhead, exact KNN results can be computed using our range
query algorithm to retrieve all objects in a region around the query point computed
from the results of the approximate KNN algorithm.

The reminder of the paper is organized as follows. We discuss related work
in Section 2 and formally define our problem in Section 3. We describe space
transformation in Section 4 and subsequently, approximate kNN and exact range
query processing in Sections 5 and 6, respectively. Online query processing for
exact kNN is presented in Section 7. We introduce our dual curve query processing
approach in Section 8 to improve the computation and communication cost of query
processing by encoding the space based on two space filling curves instead of one. In
Section 9, the end-to-end architecture of query processing is presented. We present
our experimental results in Sections 10 and 11 concludes the paper and presents some
future directions.

2 Related work

A large body of work in location privacy preserves user location using cloaking
and K-anonymization techniques [2, 10, 12, 22]. Cloaking and K-anonymity ap-
proaches have some limitations. First, by design they rely on a trusted entity to
“anonymize” users’ locations which means all users posting queries to the location
server should trust the anonymizer during the system’s normal mode of operation.
Another limitation of cloaking techniques in general is that either the quality of
service or overall system performance degrades significantly as users choose to
have more strict privacy preferences. For example, if the user requires a better K-
anonymity, the system needs to increase K for that user which would result in a larger
cloaked area and hence less accurate query response. Alternatively, if one requires
to maintain the quality of service the location server has to resolve the spatial query
for each and every point in the cloaked region and send the entire bulky result
to the anonymizer to be filtered out. This will obviously affect the overall system
performance, communication bandwidth and server throughput and results in more
sophisticated query processing. Finally, the concept of K-anonymity does not work
in all scenarios. For example, in a less populated area, the size of the extended area
can be prohibitively large in order to include K − 1 other users. Some studies try
to address this limitation by proposing more robust ways of determining the area
of cloaking [17]. However, they would still need a trusted anonymizer to be able to
respond to user queries and in the most optimistic scenario will reveal the region a
user is located in, to an untrusted location server. In Section 9, we explain how our
proposed approach eliminates the need for an anonymizer.

Recently, Private Information Retrieval (PIR) techniques have been proposed to
achieve high degrees of privacy while responding to location-dependant queries.
Briefly, PIR is defined as follows. A server S holds a database with n bits (or
objects), X = (X1, . . . , Xn). A user u has a particular index i and wishes to retrieve
the value of Xi, without reveling to S the value of i. A PIR algorithm enables u
to achieve this goal and secretly retrieve the desired object. The PIR concept was
introduced in [5] in an information theoretic setting, requiring that even if S had
infinite computational power, it could not find i. PIR can be used to achieve location
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privacy by entirely blinding the server from learning any information about what
records are being accessed. To employ PIR for privately processing spatial queries,
one needs to first organize objects of a dataset into an array of some sort and then
replace each traditional retrieval operation needed to process the spatial query with
a PIR request. However, PIR is very costly. Using information theoretic PIR, one
can achieve perfect secrecy at the cost of a linear client server communication.
To reduce this prohibitively expensive cost, computational PIR schemes bring the
communication cost down to O(

√
n) by assuming a computationally bounded server

where the security of the approaches relies on the intractability of a computationally
complex mathematical problem, such as Quadratic Residuosity Assumption [20].
However, similar to information-theoretic PIR, this class of approaches cannot avoid
a linear scan of all database items per query. Ultimately, the class of Hardware-
based PIR approaches places trust on a tamper-resistent hardware device [1]. These
techniques achieve almost optimal computation and communication overhead at the
cost of relying on a hardware device (with severe computing and storage resources)
to provide perfect secrecy. Therefore, the PIR-based approaches to location privacy
[11, 19] are still relatively costly to be employed in practice despite achieving strong
user confidentiality.

Space filling curves in general and Hilbert curves in particular have been pro-
posed for range and nearest neighbor query evaluation. For example, Faloutsos
and Roseman [9] evaluates the efficiency of Hilbert curves in terms of number of
disk accesses for range and nearest neighbor queries. Range query on the images
encoded by Hilbert curve is also studied in the image processing community. Chung
et al. [6] studied the problem of answering range queries on the Hilbert-scan-based
compressed images. However, what distinguishes us from the above studies is our
stringent privacy constraints; we want to evaluate spatial queries blindly (Section 3).
In other words, our main challenge is protecting the very same piece of information
(i.e., location information) that is needed by a potentially adversarial entity (e.g., the
location server) to effectively respond to location queries.

3 Preliminaries

In this section, we first formally define the problem of blindly evaluating a KNN or a
range query and briefly discuss our approach and its use of one-way transformations.
We also study the challenges associated with finding the right transformations and
review an important class of many-to-one dimensional mappings called space f illing
curves which are used in our approach to achieve location privacy.

3.1 Formal problem definition

Given a set of static objects S = {o1, o2, . . . , on} in 2-D space stored at the location
server LS and a set of users U = {u1, u2, . . . , uM} in an area A which can be
represented as a set of discrete locations A = {l1, l2, . . . , l22N } (we discretize A into
a grid of 2N × 2N cells), the KNN query with respect to query point qi finds a set
S′ ⊂ S of K objects where for any object o′ ∈ S′ and o ∈ S − S′, D(o′, qi) ≤ D(o, qi)

where D is the Euclidean distance function. Similarly, a range query returns all
objects that fall inside a rectangular query window represented as w(x, y, n1, n2)



604 Geoinformatica (2013) 17:599–634

where x and y are the coordinates of the lower left corner of the window and n1

and n2 are the height and width of the window query, respectively. As range and
KNN queries constitute the dominant spatial queries performed in location-based
services, we focus on blind evaluation of these two types of queries and refer to them
as Spatial Queries hereafter. In a typical spatial query scenario, the static objects
represent points of interest (POI) and the query points represent user locations.

Users subscribe to LS to provide them with its location based services. To enable
location privacy, a user ui’s location should not be revealed to LS while responding to
ui’s queries. Location information can be exposed to LS through a spatial query or its
result set. A conventional range or KNN query sent to the server includes location
information that can be exploited by the server to pinpoint a user’s location. For
instance, if ui is searching for her nearest gas station, her precise location information
is needed to find the closest POI. Similarly, LS can deduce ui’s location from the
result of a spatial query. For instance, suppose ui manages to secretly receive the gas
station o j as the result of her 1NN query from LS without revealing her location.
Here, the server learns that ui is located somewhere in the voronoi cell of o j.
Therefore, our goal is to prevent LS from learning user locations through a query
or its result set. We refer to this as the blind evaluation criteria.

Definition 1 Blind evaluation of spatial queries: Suppose the result of a spatial query
q, issued by user ui located at point li evaluates to R = (o1, o2, . . . , oK) by the server
LS. We say q is blindly evaluated if li is not revealed to LS via q or R and LS is
unable to narrow down ui’s location to a region or among a subset of users.

Note that Definition 1 imposes stronger privacy requirements than the commonly
used K-anonymity or cloaking [2, 10, 12, 17, 22, 26] criteria, in which a user is
indistinguishable among K other users (where K is usually a very small number)
or his location is blurred in a small cloaked region. We note that to the best of
our knowledge, achieving perfect secrecy without the usage of PIR is still an open
problem. In this paper we avoid the privacy implications of anonymity/cloaking ap-
proaches (and their reliance on an anonymizer) and the expensive cost of PIR-based
approaches by proposing a fundamental approach of processing queries blindly in a
transformed space.

For the rest of the paper, unless otherwise stated, we use the term user to refer
to a client subscribed to a location-based service located at point li issuing the query
q. While we always encrypt client/server communications to protect the content of
information, anonymous communication is orthogonal to our problem and constructs
such as Onion Router (Tor) [7] can be used to protect users against traffic analysis
or eavesdropping attacks. Based on the above properties, we term a location server
privacy aware if it is capable of blindly evaluating spatial queries. The challenge in
blind evaluation of spatial queries is protecting the very piece of information (i.e.,
user location) that is needed to process spacial queries and form a result set. We now
show how our notion of encoding the space protects users privacy while responding
to location-based queries.

3.2 Space encoding

In this section, we introduce our novel approach for protecting user’s location
from the malicious location servers by transforming the static objects to a new
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space using a locality-preserving one-way transformation and also addressing the
(transformed) query in this new space. As mentioned earlier, we address the issue
of location privacy in the context of location-based services and thus focus on the 2-
D space of static objects (i.e., points of interest) and dynamic query points (i.e., user
locations). We need a one-way function to map each point from the original space to
a point in the transformed space to prevent the server from obtaining the original
results by reversing the transformation. A transformation is one-way if it can be
easily calculated in one direction (i.e., the forward direction) and is computationally
impossible to calculate in the other (i.e., backward) direction. Identifying the right
one-way transformation is very challenging because many such mappings do not
respect the notion of distance and proximity. The transformations that respect
such properties are the only candidates enabling efficient query processing in an
encoded space. Therefore, as depicted in Fig. 1, any one-way transformation which
respects the proximity of the original space can replace the black boxes in Fig. 1
to make the location server privacy aware. Transforming the original space with
such a locality-preserving one-way mapping can be viewed as spatially encrypting
the elements of the 2-D space using a one-way transformation. In practice, many
one-way transformations may be reversible even without the knowledge of the
trapdoor but the process must be too complex (equivalent to exhaustive try) to make
such transformation computationally secure. In this paper we use the properties of
our mapping function as the trapdoor only provided to client devices to reverse
the encoded results back to their original format while giving the server enough
information to process user queries in the encoded space. In a typical LBS setup,
the server acts as a service provider and responds to user queries by computing the
response in the original 2-D space. However, with our setup, we replace server’s data
of the original 2-D space with its equivalent encoded data in the transformed space
and provide the server with means to receive an encoded query information and
process it in the transformed space instead. Later in Section 9 we present more details
about our overall architecture and show on how careful distribution of this process
between client and server helps us achieve private query processing. In the following
two sections, we first study the locality-preserving characteristics of space filling
curves and proceed to detail our mapping function which uses space filling curves
to preserve locality among objects and one-way hashing to make the transformation
irreversible.

Fig. 1 Space encoding



606 Geoinformatica (2013) 17:599–634

3.3 Locality preserving space filling curves

We now study an important class of transformations called space f illing curves as
candidate space encoders for our framework and show how they can be treated as
space encoders if certain properties of these curves are kept secret from malicious
attackers. Introduced in 1890 by an Italian mathematician Peano [25], space filling
curves belong to a family of curves which pass through all points in space without
crossing themselves. In this way, each point in a multi-dimensional space is assigned
to a single point in a one-dimensional space. Some examples of space filling curves
are z-curves, Gray-coded curves and Hilbert curves. Examples of these curves are
shown in Fig. 2 for a 4 × 4 grid. The important property of these curves is that they
retain the proximity and neighboring aspects of the data. Consequently, points which
lie close to one another in the original space mostly remain close to each other in the
transformed space. Examples of space filling One of the most popular members of
this class is Hilbert curves [13] since several studies show the superior clustering and
distance preserving properties of these curves [9, 15, 21, 23].

Similar to [23], we define HN
d for N ≥ 1 and d ≥ 2, as the Nth order Hilbert

curve for a d-dimensional space. HN
d is therefore, a linear ordering which maps a

d-dimensional integer space [0, 2N − 1]d into an integer set [0, 2Nd − 1] as follows:
H = ν(P) for H ∈ [0, 2Nd − 1], where P is the coordinate of each point in the d-

dimensional space. We call the output of this function its H-value throughout the
paper. Note that it is possible for two or more points to have the same H-value in a
given curve.

As mentioned above, our motivating application is location privacy and therefore,
we are particularly interested in 2-D space (and hence 2-D curves). Therefore,
H = ν(X, Y) where X and Y are the coordinates of each point in the 2-D space.
Figure 3a illustrates a sample scenario showing how a Hilbert curve can be used
to transform a 2-D space into H-values. In this example, points of interest (POI)
are traversed by a second order Hilbert curve and are indexed (transformed to the
Hilbert space) based on the order they are visited by the curve (i.e., H in the above
formula). Therefore, in our example the points a, b , c, d and e are represented by
their H-values 7, 14, 5, 9 and 4, respectively. For any desired resolution, more fine-
grained curves can be recursively constructed (Fig. 3b).

Fig. 2 Space filling curves: z-curve (a), Gray-coded (b) and Hilbert curve (c) [23]
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Fig. 3 (a) A H2
2 pass of the 2-D space (b) recursive Hilbert curve construction

The key benefit of employing Hilbert curves in our approach is how they can
act as locality preserving transformations when used in location-based services. This
property suits our approach as our goal is to address spatial queries efficiently in a
transformed space. However, as we discussed in Section 3.2 we still need to prevent a
hostile entity from reversing such transformations to protect original user locations.
We now discuss how we use cryptographic hash functions to achieve this.

3.4 Making Hilbert mapping irreversible

To index objects with a Hilbert curve, one should first choose various curve para-
meters such as the curve’s order (i.e., granularity), starting point, orientation, and
scale factor. Let us denote these parameters with N, X0, Y0, θ and �, respectively.
Knowing these parameters, one can effectively compute the H-value of an object
with linear complexity (see Section 4.1). However, if these parameters are not known,
a substantial brute force effort is required to exhaust all potential combinations to
find the right curve parameters. Therefore, protecting the server from learning curve
values prevents it from reversing the transformation and obtaining original query
parameters using the location information received from the clients. However, this
scheme is still susceptible to more sophisticated attacks that employ the untrusted
server’s prior knowledge of original object distributions. For instance, even without
the knowledge of curve parameters, the server can identify a dense area in the
transformed space by counting the number of points with similar (or nearby) Hilbert-
values. This problem arises from the locality-preserving properties of Hilbert curves
and the fact that the untrusted server has access to original Hilbert values and
the assignments of points to these values in the transformed space. In this paper,
we apply cryptographic hash functions [24] to our Hilbert mappings to make our
locality-preserving mapping one-way.1 With this approach, while the one-way hash

1A cryptographic hash allows fast computation of a digest in the forward direction while making it
infeasible to find the original message given the digest. Moreover, it is infeasible to find two different
messages that share the same digest.
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function blinds the server from learning any information about object locations,
the Hilbert curve ordering allows it to perform spatial queries efficiently in the
transformed space and hence satisfying the blind evaluation criteria defined in
Section 3.1. The Hilbert curve parameters, together with the hash key, form a space
decoding/encoding key (SDK) that we use to construct an encoded index for query
processing. The challenge, however, is to perform spatial queries efficiently over
such an encrypted index without revealing sensitive information to the untrusted
server hosting the index. We now elaborate on our approach to achieve privacy while
enabling the server to efficiently respond to user queries.

4 Location query processing

Making a query processing engine privacy-aware based on our idea of space trans-
formation discussed above, requires a two-step process consisting of an offline
transformation of original space (Section 4.1) followed by online query processing
(Sections 5 and 6). The notations used in this section are summarized in Table 1.

4.1 Offline space encoding

During this phase, we first choose the curve parameters (listed in Section 3.3), a
nonce ι and a secret key κ . These values together form our transformation key
SDK = {X0, Y0, θ, N, �, κ, ι}. Next, assuming the entire area covering all points of
interest is a square S1, an HN

2 Hilbert curve is constructed starting from (X0, Y0) in
a larger square S2 surrounding S1 until the entire S2 is traversed (see Fig. 3a). Let
us denote with |Crc| the number of objects in the grid cell Crc located on row r and

Table 1 Notations used in
Section 4

Notation Definition

SDK Space transformation key set
(X0, Y0) Hilbert curve starting point
θ Hilbert curve orientation
� Hilbert curve scaling factor
N Hilbert curve order
Crc Grid cell located at row r and column c
(o.x, o.y) Coordinates of the object o
ν(o.x, o.y) Returns the H-value for object o
o.t Object o’s textual attributes
ELT Encoded look up table
φ One-way cryptographic hash function
εk(x) Encrypted value of x
ρ Average number of objects with the

same H-value
prev Pointer to the previous object based on

the H-values
next Pointer to the next object based on

the H-values
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Table 2 Sample ELT for Fig. 5

Computed offline φ(9|1|ι) εκ (d.t) prev : a’s entry next : b’s entry
Stored at the server 5e107d9d. . . UZnLpmN. . . YQta+/rl. . . kjFU4Fq!. . .

column c. For each object o j ∈ Crc, 1 ≤ j ≤ |Crc| located at (o j.x, o j.y) we construct
one entry of an encoded look up table ELT defined below.

ELT ≡< φ(H| j|ι), εκ(oi.t), prev, next > ∀oi ∈ S (1)

We now discuss in more detail each part of the ELT schema. The term εκ(oi.t)
denotes the encrypted value of an object’s textual attributes such as name and
address represented by oi.t. The | symbol denotes the concatenation operator and
H = ν(o j.x, o j.y) returns the H-value for the object oi using the curve parameters.2

The φ function is a one-way cryptographic hash function such as SHA-1 or MD5
that takes H, an object rank within a cell and a nonce to compute a hash value for
each object. This allows the clients to efficiently form an object request during the
query processing using SDK. To enable navigation of the encoded index, each entry
points to the previous and next object according to the Hilbert ordering (we assign a
random order among objects belonging to the same cell). These two pointers are
denoted by prev and next in ELT. For instance, in a cell Crc with three objects
(|Crc| = 3) and Hilbert value H, the next value of the second object points to the
third object’s entry of the same cell while the next value of the third object points
to the first object’s entry from the next non-empty cell Cr′c′ with H′ > H. Finally, to
snap requests for empty cells to their closest non-empty neighbors, we store one entry
per each empty cell and link its prev and next values to its preceding and succeeding
non-empty neighbors in the Hilbert space, respectively.

This process is performed once for the entire object space and at the end of this
step, the encoded look-up table ELT is stored at the server. Algorithm 1 (see Fig. 4)
details this offline space encoding process. The result of applying Algorithm 1 (see
Fig. 4) on object d from Fig. 3a is illustrated in Table 2.

Given a set S of n static objects, let ρ represent the average number of objects
with the same H-value in ELT. For a Hilbert curve of order N, ρ = n

22N . Indexing
the objects with a lower degree curve is analogous to using a coarse-grained grid.
Therefore, using a small N (a large ρ) potentially increases the number of false
positives in a query result set. On the other hand, a very fine grained grid (large N)
results in many empty cells and hence a storage overhead. Therefore, for a given
dataset, we increase N until ρ becomes smaller than a threshold. In Section 10, we
experimentally study the effects of the curve order on evaluating range and KNN
queries.

2We use an efficient bitwise interleaving algorithm from [9] to compute the H-values for points of
interest. Depending on the implementation, the cost of performing this operation varies between
O(n) and O(n2) where n is the number of bits required to represent a Hilbert value.
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Fig. 4 Algorithms CreateIndex (top), KNN-generate (middle) and KNN-resolve (bottom)

5 Online query processing-approximate KNN

Using the encoded index ELT, we show how KNN queries are blindly evaluated
in the transformed space. Algorithm 2 (see Fig. 4) details the steps taken while
responding to a user’s KNN query. The basic idea is to first encode the static
objects once (CreateIndex) and then to calculate, during the query time, the accurate
starting point on the Hilbert curve (KNN-Generate) and to expand the search in
either direction until the candidate result set is found (KNN-Resolve). To elaborate,
for each query point q located at position (qx, qy), KNN-Generate uses SDK to
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compute H = ν(qx, qy). We then use KNN-Resolve (Algorithm 3 (see Fig. 4)) to
expand our search in the encoded space starting from the first entry φ(H|1|ι, K).
Note that since Hilbert values are hashed before being stored at the server, we cannot
compute the distance between each point in the encoded space. Therefore, the search
has to expand to K objects in each direction. While storing original Hilbert values
would allow comparisons among object distances (at least in the Hilbert space), as
we discussed in Section 3.4, it would make our scheme vulnerable to server’s prior
knowledge attacks. The computation and communication burden of searching for K
more objects is the cost we pay to achieve more stringent privacy. Next, knowing
SDK, KNN-Generate uses ε−1

κ to decrypt the response received from KNN-Resolve
result set back to the original space. To illustrate, in our example, having K = 2,
and q = (2, 2), KNN-Generate computes H = 8 = ν(2, 2) and calls KNN-Resolve
(φ(8|1|ι, 2)) to obtain R = {εκ(d), εκ(b), εκ(a), εκ(c)}. Next, ε−1

κ is applied to objects
in R to obtain their original attributes. In Section 9, we show how appropriate
placement of these modules on client and server sides enables blind evaluation of
spatial queries.

We can now derive the complexity of the KNN-Resolve module which represents
the overall KNN query processing complexity. Using ELT instead of the curve itself,
we only visit Hilbert values that contain at least one object. Therefore, Algorithm
KNN-Resolve visits at most θ(2 × K) entries in ELT. Furthermore, our communi-
cation complexity is determined by average number of objects read and transferred
to the user which is 2ρK also being constant since ρ ≈ 1 (see Section 10.1).

It is important to note that the generated query result set is approximate due to
the dimension reduction technique used. For instance, in Fig. 3a, while e is closer to q
than b , it is not included in the result of the 2NN query. Later in Section 8, we propose
an efficient technique that significantly reduces the approximation error for the
method discussed above. We also present an exact KNN algorithm in Section 7 which
is relatively more costly than our approximate results but returns the actual closest
objects. We conduct several experiments in Section 10 to evaluate the accuracy of our
approximate KNN and the cost of our exact KNN methods. While the approximate
results are fully practical in an LBS scenario, exact results can be derived with
reasonable extra overhead.

6 Online query processing-range

During the offline process described in Section 4.1, the objects in the original space
are encoded and their H-values are stored in ELT. Our general approach to answer
a 2-D range query w(x, y, n1, n2) is to transform it to a series of 1-D ranges in
the Hilbert transformed space and the challenge is how to do this transformation
efficiently and accurately. Figure 5b shows an example of a range query w(1, 2, 3, 6).
The result of this query contains the highlighted objects o1 and o2 in Fig. 5b whose
H-values are contained in w(1, 2, 3, 6). As the figure illustrates, w(1, 2, 3, 6) can be
transformed into five 1-D range queries: objects whose H-values range from 8 to 13,

equals 17, range from 30 to 33, equals 46 and finally, from 50 to 55. Each of these
1-D range queries is called a range query run or a run for short (a similar notion of
runs is also defined by Moon et al. in [23]). These runs are highlighted in Fig. 5b. The
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Fig. 5 A range query decomposed into 12 maximal blocks (a), with the underlying Hilbert curve (b)

result of the range query consists of objects whose H-values belong to any of these
two runs (o1 and o2, with H-values 12 and 50 in our running example).

6.1 Finding the range query runs

In order to find the query runs, we adopt the method proposed in [6] and show how
this method can efficiently respond to a range query. To find the range query runs,
the first step is to decompose the input range query into a set of square blocks
according to the quadtree decomposition. During this process, the grid space is
recursively divided into four equal partitions until a partition is completely contained
in the range query. For example in Fig. 5a, the square labeled c is obtained after two
recursions while acquiring the squares a and b needs a third recursion.

After decomposing the range query into a set of square blocks according to the
quadtree decomposition, the resulted square blocks are named maximal quadtree
blocks or maximal blocks for short [6]. An interesting property of maximal blocks is
that the H-values inside a maximal block form a continuously increasing sequence.
The minimum and the maximum H-values of the sequence are denoted as hb and he,

respectively (the letters b and e are used to denote the beginning and end of each
sequence). Later, we show that we can efficiently find the values of hb and he and
consequently, find all the H-values inside a maximal block. Similar to [6], we denote
a maximal block as MB(x, y, s) where (x, y) and s are the lower left coordinate and
the side length of the maximal block, respectively. For instance, as illustrated in
Fig. 5a, MB(2, 2, 2) is a maximal block of the range query w(1, 2, 3, 6) whose H-
values form a continuously increasing sequence with hb = 8 and he = 11 (hb and
he are the minimum and maximum H-values within MB(2, 2, 2)). We denote each
sequence as a pair in the form of (hb , he). Hence, the H-values inside MB(4, 2, 2) can
be denoted as (52, 55).

To find the maximal blocks of a range query, we use the strip splitting based
optimal algorithm proposed by Tsai et al. in [27]. The algorithm can find the maximal
blocks of a w(x, y, n1, n2) range query in O(nl) time where nl = max(n1, n2). The idea
is to repeatedly split a strip of maximal blocks from the sides of the range query. After
decomposing the range query into a set of maximal blocks, we need to find the values
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of hb and he for each maximal block. Calculation of these values is explained in detail
in [6] and are skipped here due to the lack of space.

The H-values obtained from the maximal blocks of a range query form a sequence
called Seq. For example, the range query in Fig. 5b results in the following sequence:

Seq = {(13, 13), (12, 12), (50, 50), (51, 51), (8, 11), (52, 55), (17, 17),

(30, 30), (31, 31), (32, 32), (33, 33), (46, 46)}.
The H-values in Seq generated by the strip-based decomposition algorithm may

not be in increasing (or decreasing) order. Therefore, we sort the H-values in Seq and
denote it as Seq∗. With Seq∗, we can merge adjacent pairs which belong to the same
run in order to decrease the total number of runs and instead, increase their length.
We can merge a pair p in Seq∗ with its successor q, if and only if the difference
between hb of q and he of p is one. The sequence obtained by merging the elements
of Seq∗ constitute the runs of the range query and we denote the sequence as runs(w).
For the above example, runs(w) is as follows:

runs(w) = {r(8, 13), r(50, 55), r(30, 33), r(17, 17), r(46, 46)}.
Each element of runs(w) is a run in the original range query consisting of H-values

from x to y denoted as r(x, y). For example, in Fig. 5b, the query has five runs:
runs(w) = {r(8, 13), r(50, 55), r(30, 33), r(17, 17), r(46, 46))}. Sorting and merging the
H-values greatly reduce the number of range query runs. For example, we achieved
a 74 % reduction in number of runs for randomly generated 200,000 range queries
with various side lengths.

We have so far showed how a range query is converted to a set of runs that consist
a continuous increasing sequence of Hilbert values. To privately query the objects
in each run, we need to convert each run to its private representation. In order to
do that, each run r(Hs, He) is first converted to r(φ(Hs|1|ι), φ(He.next|1|ι)). With
this representation, we guarantee that all objects whose H-values fall within r are
returned as part of the range query.

While evaluating a range query, we need to include all cells that overlap with
the query window. As some of these cells only partially overlap with the query, this
process might introduce some excessive objects in the query result set. However,
we show in Section 10, that excessive objects constitute a marginal fraction of the
objects retrieved from ELT and therefore can be easily filtered by the users without
affecting the client/server communication cost.

We now discuss the time complexity of the quadtree decomposition algorithm. As
mentioned above, the process to find the range query runs w(x, y, n1, n2) consists of
four parts: (1) decomposing w into its maximal blocks, (2) finding the value of hb

and he for each maximal block and forming the set Seq, (3) sorting the elements of
Seq and forming Seq∗, and (4) merging the elements of Seq∗ and forming runs(w).

The first step can be done in O(nl) as discussed earlier. The second step can be done
in O(nl log T) where T = 2N for N being the curve order [6]. The third step can be
done in O(nl log nl) using a sorting algorithm such as quick sort. Finally, the forth step
can be done in O(nl). Consequently, the total running time to find the range query
runs w(x, y, n1, n2) is O(nl log T). The last step of the range query processing is to
retrieve relevant objects from ELT. There are on average n1 × n2 × ρ many objects
in a range query of size n1 × n2 which results in equal number of reads from ELT.
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Fig. 6 Algorithms range-generate (top) and range-resolve (bottom)

6.2 Online range query processing modules

We already discussed the details of blind range query evaluation in Section 6.1.
Here, we describe Range-Generate and Range-Resolve, the two modules involved
in online range query processing (Algorithms 4 and 5 (see Fig. 6)). For each
range query w(x, y, n1, n2), Range-Generate first finds the runs of w by calling
FindRuns(x, y, n1, n2). FindRuns uses the techniques discussed in Section 6.1 to
return a set of runs corresponding to the range query. For each run, Range-Generate
privately retrieves the objects corresponding to the run using the Range-Resolve
module. The Range-Resolve module privately returns all objects that belong to a
run. Range-Generate then decrypts the objects retrieved in the response using SDK
and generates the actual query result set. Observe that mapping a range query to
its set of runs only requires the knowledge of SDK and does not depend on the
distribution of static objects. Therefore, the runs representing each range query can
be calculated without requiring any knowledge of the distribution of static objects
being queried.

7 Online query processing-exact KNN

As we already discussed in Section 5, our proposed private KNN query processing
algorithm is approximate. To illustrate how we can enable exact KNN queries using
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Fig. 7 Exact KNN query
processing

approximate KNN and range query processing modules defined in the previous
sections, consider the example in Fig. 7. Given a KNN query centered at q, we
first compute the approximate answer using Algorithms 2 and 3 (see Fig. 4). In
our running example, for K = 1 this step results in result = {a, b} or 1NN(q) = a.
However, this result is approximate since the actual nearest neighbor of q is c. Let
us denote by rk the distance between q and its Kth closest object according to the
approximate KNN Algorithm. Let us use Ck to represent the circle centered at q
with radius rk. To obtain the exact KNN result, all objects in Ck should be retrieved
as their distance to q is less than rk. Therefore, we form a 2rk × 2rk square centered
at q that is guaranteed to include all objects in Ck and use Algorithms 4 and 5 (see
Fig. 6) to retrieve its enclosing objects. In Fig. 7, this process results in retrieving
2 new objects including c as the actual nearest neighbor of q.

In summary, to achieve exact KNN results, an approximate KNN query is
followed by a range query that is guaranteed to return all objects that might be
potentially closer to q than the result set of the approximate KNN algorithm. This
process can however, be costly for two reasons. First, the approximate nature of the
KNN algorithm might result in a relatively large Ck. Secondly, such large Ck can
result in multiple query runs that need to be further processed. In the following
Section, we introduce our proposed dual curve query processing technique that
reduces both of these costs. By improving the KNN query accuracy, we first reduce
rk which results in a smaller region to be passed to our range query module. In
addition, we use our proposed technique to reduce the number of query runs in the
range query window. Therefore, our proposed technique (i) improves the accuracy of
approximate KNN results (ii) reduces the communication cost in a range query and
therefore, (iii) improves the computation and communication cost of our exact KNN
algorithm. We proceed to present the details of our approach and how to improve
the performance of our spatial query processing techniques discussed so far.

8 Dual curve query resolution

Using a single Hilbert curve as a space encoder for processing approximate KNN
and range queries discussed in Sections 5 and 6 has several drawbacks for each
algorithm. In this section, we first discuss these drawbacks and then introduce our
Dual Curve Query Resolution approach or DCQR which overcomes the weaknesses
of the former scheme and generates significantly more satisfactory results for both
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range and approximate KNN queries. As we noted before, such improvements will
directly affect the exact KNN algorithm as well. We study how DCQR improves
approximate KNN, exact range, and hence, exact KNN algorithms in Sections 8.1,
8.2 and 8.4, respectively.

8.1 Approximate KNN queries: proximity in Hilbert curves

A closer study of Hilbert curves reveals two important properties of such curves
that can significantly affect the performance of the approximate KNN algorithm
proposed in Section 5 (for ease of read, throughout the remainder of Section 8 we
simply omit the word “approximate” when referring to approximate KNN query
processing and instead explicitly use the term “exact” to refer to non-approximate
KNN algorithm). First, consider the 1st degree curve of Fig. 8a. The curve is
constructed by traversing a U-shaped pattern. Regardless of its orientation, such a
curve fills the space at a specific direction at any given time sweeping the space in
a clockwise fashion. Starting from the first degree curve of Fig. 8a, the curve misses
one side in its first traversal. As the curve order grows, the number of missed sides
grows exponentially as well so that an HN

2 curve misses M = 22N − 2N+1 + 1 sides
of a (2N − 1) × (2N − 1) grid. The above property makes H-values of certain points
farther as N increases. For instance the Euclidean distance between points a and
d is similar to the that of points b and c in the original 2-D space, however, as N
grows, due to the above property the difference between a and d’s H-values grows
exponentially larger than that of b and c. Therefore, points closer to two quadrants of
the space (i.e., the first and last quadrants filled by the curve) will be spatially furthest
from one another in the transformed space.

The second drawback of using a single Hilbert curve for KNN queries is due to
the fact that such space-filling curves essentially reduce the dimensionality of the
space from 2 (or in general case N) to 1. Naturally, each element in the 1-D space
constructed by the Hilbert curve will have two nearest neighbors compared to the
original case where each element (except those at the edges) has four (or in general
case 2N) nearest neighbors. Therefore, as [16] suggests, in the best case scenario,
only half of these nearest neighbors in 2-D space will remain a nearest neighbor of
the same point in the transformed 1-D space. It is clear to see how each of these
issues play a negative role on the quality of the result set given KNN’s sensitivity to
how the underlying index structure preserves object proximity.

(a) (b) (c)

Fig. 8 Missed sides of H1
2 and H2

2 curves (a), four strips around the range query (b), shifted range
query (c)
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8.2 Range queries: the number of query runs

In Section 6, we showed how a range query is blindly evaluated by generating the
range query runs and looking up ELT for all encoded objects whose H-values are
located inside each run. Since ELT is stored at the server side, all requests for runs
have to be transferred to the server. Therefore, it is desirable to reduce the number
of runs in a range query to minimize the communication cost of a range query request
and the server’s throughput in responding to client requests.

Consider the following example. Given a range query w(x, y, n1, n2), assume x
and y to be odd and n1 and n2 to be even numbers. The range query has four strips
each consisting of only maximal blocks of size 1 × 1 i.e., four strips intersecting in the
four corners of the range query. An example of this situation is shown in Fig. 8b for
w(1, 1, 4, 4), where strips consist of 12 1 × 1 maximal blocks. It is easy to verify that if
at least one of x and y becomes even, while n1 and n2 remain the same, the number of
maximal blocks decreases substantially as some of the strips disappear. For example
in Fig. 8c both x and y are even numbers and there are no strips in the range query.
A formal proof of the relationship between the number of quadtree blocks and the
query window location can be found in [8]. As mentioned in Section 6, range query
runs are obtained by merging the H-values resulted from maximal blocks of the range
query. This gives us the intuition that larger number of maximal blocks results in
more query runs. We experimentally investigated this and the result confirms our
intuition. Therefore, any technique that reduces the number of maximal blocks will
consequently result in less number of query runs.

Finally, it is easy to observe how the combination of the dimension reduction
properties of Hilbert curves in evaluating approximate KNN queries and the ex-
cessive number of runs generated from a range query can negatively affect the
performance of our exact KNN algorithm as well. We now present a solution to
rectify the aforementioned shortcomings.

8.3 A dual curve for query processing

Using a single curve to encode the objects in space results in a loss of precision (and
thus a negative effect on overall quality of returned results) for KNN queries and
server overhead for range queries. We mitigated both of these issues by creating a
dual curve which is a replication of the original curve rotated 90 degrees and shifted
by one unit in both x and y directions and index the objects using both curves. As
we show in this section, applying the rotation operator substantially improves KNN
query results compared to the shift operation. Conversely, applying the shift operator
to an original curve reduces the server throughput by decreasing the number of query
runs while the rotation operation does not significantly affect the efficiency of our
range query processing algorithm.

The rotation operator has a positive effect on KNN query evaluation since by
rotating the degree N curve, all lower degree curves constructing the main curve
will also be rotated. At each curve order, the curve rotation ensures that the missed
sides generated by the discontinuation of the curve (such as the missed sides between
points a and d in Fig. 8a), will be covered by the rotated curve. Therefore, the
points deemed spatially far from each other in one curve will be indexed correctly
in the other curve. This will address the first issue of using a single Hilbert curve for
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Fig. 9 Proximity in the
original curve (middle) vs. the
rotated (left) and shifted
(right) dual curves

KNN queries. A rotated dual curve also mitigates the effect of the second property
discussed above by transforming the 2-D space to two 1-D spaces. Therefore, each
point will now have two nearest neighbors in each curve note that these two neighbor
pairs can (and often do) have overlaps. However, adding the second curve results in
more accuracy for KNN query results. Although a shifted-only dual curve can also
cover many gaps in the original curve, it cannot solve the first shortcoming discussed
for KNN queries because a one unit shift cannot bring objects with large H-value
differences closer to each other in the dual curve as a shift does not change the curve
orientation (See Fig. 9).

Similar to the above discussion, it is easy to show the positive effect of a shift
operator for range query processing. Since applying the rotation operator on the
dual curve does not change the number of quadtree blocks (and thus the number of
query runs), we only need to study the effect of the shift operator on the number of
query runs. Shifting the original curve with the translation vector (1, 1), can cause the
strips with maximal blocks of size 1 × 1 to disappear. Note that, in some situations,
a shifted curve might remove some strips around the range query while introducing
new ones. One can verify that the above scheme will reduce the total number of
maximal blocks in almost 5

16 of the cases for square range queries (roughly similar
improvements can be achieved for arbitrary rectangular range queries). This ratio
can be gained by considering the 16 possible configuration of even or odd numbers
representing a window query’s x, y, n1 and n2 values. Therefore, using a shifted and
rotated dual curve, we can reduce the number of maximal blocks of a range query
which causes a decrease in the number of query runs.

8.4 Exact KNN queries: smaller regions with less runs

It is now easy to observe how exact KNN query processing benefits from DCQR.
The advantages are twofold. For one, DCQR substantially improves the probability
of finding a closer Kth nearest object (see Section 10.3) which in turns results in a
smaller region that needs to be fetched using the range query. Moreover, given a
region formed by the approximate KNN algorithm, DCQR frequently reduces the
number of runs resulted from the region by identifying the curve that results in less
number of runs. Therefore, the combination of DCQR effects on approximate KNN
and range algorithms significantly improves the overall performance of exact KNN
while avoiding a significant performance penalty. We study the performance of all
three classes of algorithms in Section 10.
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Using the DCQR approach, we need to slightly modify the offline index con-
struction 4.1 and accordingly adjust the spatial query processing logic for range and
nearest neighbor algorithms. During the offline phase, we now need a new key SDK′
for the dual curve which is computed as SDK′ = {X0 + 1, Y0 + 1, θ + 90◦, N, �, κ ′, ι}
from SDK. Consequently two Hilbert curves HN

2 and H′N
2 are constructed based on

SDK, SDK′ and visiting each point, we construct two records for ELT and ELT ′ as
detailed in Section 4.1.

The query processing also follows the logic from Sections 5, 6 and 7. While
evaluating KNN queries, for each query point q, we compute H = ν(qx, qy) and
H′ = ν ′(qx, qy) using SDK and SDK′, respectively. We then initiate two parallel
query resolution schemes using both ELT and ELT ′ simultaneously to retrieve K
closest matches for each curve separately. Similar to Section 5, we decode the two
result sets and choose the K best candidates (based on their Euclidean distance
to q). As for a range query, we generate two parallel queries one for each curve
and pick the one that results in fewer runs. Furthermore, with regard to complexity,
the DCQR query processing computation and communication cost for KNN queries
is almost twice as much as Algorithm 3 (see Fig. 4) due to traversing two curves and
returning twice as many points in the result set. For range queries, using the DCQR
approach slightly increases the computation cost (due to considerable overlap among
computing runs for two different curves) while reducing the communication cost (due
to selecting the curve resulting in fewer runs). We experimentally measure these costs
and benefits in Section 10.

9 Proposed end-to-end architecture

We are now ready to explain how our space encoding technique and careful place-
ment of KNN and range query evaluation modules in client and server sides enable
blind evaluation of spatial queries in location-based services. The client (e.g., a user’s
portable device) issues a spatial query and provides the necessary parameters for
each query type. In order to make the location server privacy-aware, we assume the
architecture of Fig. 10, which details the offline indexing and online query processing

Fig. 10 DCQR architecture for spatial query processing
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of a spatial query and use the algorithms discussed in Section 8 to modify the classic
location-based services architecture in the following three ways:

(1) A trusted entity is added to the architecture to perform the CreateIndex module
once and to create and populate ELT and ELT ′ with POI’s encoded informa-
tion. A second functionality of the trusted entity is to securely embed (SDK,
SDK′) key pair required to encrypt (decrypt) the query (results) into client
devices. Note that the key pair is the same among all users to prevent redundant
calculations at the query processing time. However, to avoid collusion attacks
among malicious users and the server, the keys are stored in inexpensive
smartcards placed in subscriber’s client devices [3] allowing encoding/decoding
of data securely without sharing the key with actual end-users. Therefore,
users generate (receive) queries (results) in plaintext while not having access
to any intermediate calculated Hilbert values. In other words, we place trust
on a tamper resistent commodity hardware as opposed to potentially malicious
users. Moreover, by applying techniques such as timestamping [4] we prevent
replay attack during query processing. With timestamping, the freshness of the
message is verified by checking the timestamp of each message. Finally, the
trusted entity provides the location server with the two encoded indexes ELT
and ELT ′ instead of the original data set and keeps the key pair secret from the
location server. Note that as opposed to anonymization and cloaking techniques
discussed in Section 2, the trusted entity performs the above actions only once
of f line and thus is not involved in the online query processing schemes.

(2) To enable blind evaluation of range and KNN queries, we let clients execute
the KNN-Generate and Range-Generate modules that require the knowledge
of SDK, SDK′ to form encrypted requests for the server. The server is in
charge of executing the KNN-Resolve and Range-Resolve modules both of
which only require access to the encrypted indexes ELT and ELT ′. Notice
that as described above, the smartcard on the client device securely transforms
a range (kNN) query into a set of query runs (Hilbert values) which are sent
to the server to enable query processing. This prevents a malicious user from
obtaining the transformation keys during query processing.

(3) To execute exact KNN queries, clients first issue an approximate KNN query
and use its results to form a subsequent range query that retrieves a set of ob-
jects guaranteed to contain the exact results to the original query (Section 8.4).
Once the results are returned to the client, it uses SDK, SDK′ to decrypt the
result to obtain original object information.

10 Experimental evaluation

We have conducted extensive sets of experiments to evaluate the performance of our
proposed approaches. The effectiveness of DCQR is determined in terms of (i) the
effect of the curve order N on range and KNN queries (ii) accuracy and efficiency
of our proposed methods for approximate KNN and range queries and (iii) the
performance of exact KNN query processing. Note that as we detailed in Sections 1
and 2, our one-way locality preserving transformation allows us to obtain more
stringent privacy guarantees compared to other approaches discussed in Section 2.
However, we were unable to empirically compare our techniques with these studies
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(a) Uniform (b) Real-world (c) Skewed

Fig. 11 Datasets

because they mostly evaluate performance based on the size of the K-anonymity set
or the cloaked region and the effectiveness of the anonymization techniques used
while these metrics are meaningless in our approach.

Our experiments are performed on three different datasets: (i) a synthetically
generated uniform dataset (ii) a real-world dataset of restaurants obtained from
NAVTEQ (www.navteq.com) covering a 26 mile by 26 mile area surrounding the
city of Los Angeles and (iii) a synthetically generated skewed dataset where 99 % of
the objects form four Gaussian clusters (with σ = 0.05 and randomly chosen centers)
and the other 1 % of the objects uniformly distributed (Fig. 11). All three datasets
contain around 10,000 objects (n =10,000). Experiments were carried out on an Intel
P4 3.20 GHz with 2 GB of RAM and are implemented in Java.

10.1 Choosing the right curve order (N)

As our first set of experiments, we evaluate the effectiveness of our proposed
indexing technique by analyzing the curve behavior for different values of N (i.e.,
curve order) and choosing the right value for the rest of our experiments. Using two
HN

2 curves for indexing objects, we measure the average number of objects which
are assigned the same H-value (i.e., ρ) for each value of N for our three datasets.
Ideally we want to have ρ ≈ 1. Figure 12 shows how ρ changes with N and quickly
approaches 1 for N ≥ 10 for all of our three datasets. Due to the extra overhead of
an unnecessary increase in N for range and KNN queries, we choose the smallest
value of N that results in ρ ≈ 1. Therefore, for the rest of our experiments, we set
N = 12 unless otherwise stated.

10.2 Evaluating query results’ quality

Suppose the ground truth result of a query q, issued by a user located at point li is
R = (o1, o2, . . . , oK) if no privacy is required. Let us denote by R′ = (o′

1, o′
2, . . . , o′

K′)

the query result obtained using our proposed techniques. Given the nature of our
approximate KNN algorithm and the fact that our range algorithm might append
extra objects to the result set, we use the following two metrics to evaluate the quality
of results.

http://www.navteq.com
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Fig. 12 Finding the right value
of curve order (N)

Precision By precision, we measure what fraction of the points retrieved are
relevant for range and approximate KNN queries. This metric is defined in Eq. 2
(|R| denotes the cardinality of the set R).

Precision = |R ∩ R′|
|R′| (2)

For our approximate KNN algorithm, we introduce an additional displacement
metric defined below (note that we do not approximate range queries).

Displacement Measuring how closely R is approximated by R′ using our KNN
algorithm:

Displacement = 1
K

⎛
⎝

K∑
j=1

||li − o′
j|| −

K∑
j=1

||li − o j||
⎞
⎠ (3)

where ||li − o j|| is the Euclidean distance between the fixed query point li and an
object o j. Obviously, since R is the ground truth, displacement ≥ 0. In the remainder
of this section, we use the above metrics to experimentally evaluate our range and
KNN algorithms.

10.3 Approximate KNN query evaluation

The next set of experiments evaluates the performance of our approximate KNN
query processing algorithm for different values of N and K for our three datasets by
comparing the single curve approach against DCQR. In the remainder of this section,
each experiment is performed for 1,000 randomly generated queries and the results
are averaged.

As illustrated in Fig. 13, DCQR results in an average 15 % improvement in
precision over the single curve approach (from 50 to 65 %). It is also clear from
the figure that for all three datasets the precision quickly reaches 70 % for N = 8
(i.e., ρ < 2) and slightly oscillates for larger values of N. Finally, as expected, the
uniform dataset achieves slightly higher precision compared to our real-world and
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(a) Uniform (b) Real-world

(c) Skewed

Fig. 13 Precision vs. curve order (N)

skewed datasets. Figure 14 also illustrates how DCQR reduces the displacement
error by 50 % for all three datasets. Also, as expected, the DCQR displacement is
slightly higher in the skewed dataset. Note that the displacement is a more reasonable
measure for KNN query evaluation compared to the precision because it shows how
close the query results are approximated rather than just showing the percentage
of exact neighbors in the result set. For instance even a 0 % precision with 0.05
mile displacement means that although no exact match for the query is found, each
approximate result is less than 0.05 mile farther from the query point than the actual
result.

Finally, we measured the DCQR overhead in overall approximate KNN query
response time. As Fig. 15 illustrates, the overhead stays around 2 milliseconds on
average for the three datasets. Also the response time stays around 6 milliseconds
for all three datasets.

The next sets of experiments are identical to what we discussed above except
that we now study how approximate KNN query processing is affected by varying
K and fixing curve order at N = 12. As Fig. 16 illustrates, DCQR improves precision
by more than 25 % for all three datasets averaging 67 %. The displacement also
increases linearly with K while DCQR results in more than 50 % error reduction
(Fig. 17). Similar to the former set of experiments, the skewed dataset results
in relatively larger displacements compared to the other datasets. Finally, Fig. 18
shows how response time linearly grows with K, confirming our query complexity
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(a) Uniform (b) Real-world

(c) Skewed

Fig. 14 Displacement vs. curve order (N)

derivation of Section 5. The overhead caused by DCQR is less than 6 milliseconds
on average for all three datasets.

10.4 Range query evaluation

We now study the performance of our range query algorithm with the single curve
and DCQR approaches. In contrast to the above experiments, our range query
evaluation is exact. However, the query result set might include some excessive
objects that should be filtered out by the client. Clearly, it is desirable to minimize the
number of these excessive objects. Here, we first demonstrate the effect of Hilbert
curve order (N) and the range query size on the number of excessive objects. We
use precision (i.e., the percentage of objects falling in the range out of all objects
retrieved) to quantify the amount of excessive objects. Figure 19 shows the effect of
Hilbert curve order on the value of precision for our real-world dataset. This effect is
evaluated for four different square range queries with the selectivity of 0.05 %, 0.1 %
and 0.5 %. Clearly increasing the value of curve order results in higher precision
values (reaching almost 1 for N = 12). Very similar trends were observed for the
other two datasets.

The second observation is that for a given N, larger range queries achieve
better precision. This is because the excessive objects can only be in the grid cells
which partially overlap with the range query. Clearly, the number of such cells is
proportional to the perimeter of the range query. On the other hand, the number of
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(a) Uniform (b) Real-world

(c) Skewed

Fig. 15 Response time vs. curve order (N)

(a) Uniform (b) Real-world

(c) Skewed

Fig. 16 Precision vs. K
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(a) Uniform (b) Real-world

(c) Skewed

Fig. 17 Displacement vs. K

(a) Uniform (b) Real-world

(c) Skewed

Fig. 18 Response time vs. K
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Fig. 19 Precision vs. curve
order for different range
query sizes

objects retrieved from the location server is on average proportional to the area of
the query. Therefore, increasing the query side length increases the total number of
retrieved objects more than the number of excessive objects.

As our second set of experiments we evaluate the effect of Hilbert curve order
on the average number of query runs. It is desirable to have a small number of runs
to reduce the communication cost as well as reducing the number of requests to the
server (and hence increasing the server throughput). Figure 20 shows the average
number of runs for 1,000 range queries over the real-world dataset with the selectivity
of 0.05 %, 0.1 % and 0.5 %. For both original and DCQR approaches, as N increases,
the average number of query runs increases as well. This is due to the fact that the
average number of query runs is linearly proportional with the query side length
in terms of the number of grid cells. Therefore, there is a trade-off in choosing the

(a) 0.05% Selectivity (b) 0.1% Selectivity

(c) 0.5% Selectivity

Fig. 20 Number of runs vs. Hilbert order for a query with different selectivity
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right curve order to minimize the number of query runs while maximizing precision.
Considering different curve orders for a specific query size in Fig. 20, we get an
average improvement of around 21 % when we use DCQR approach over original
curve. Moreover, it is clear that larger range queries have more runs. Note that the
average number of runs is independent from the dataset type and only depends on
the coordinates of the query.

In the last set of our range query experiments we study the running time of
the proposed range query algorithm. Figure 21a–d shows the running time of both
original and DCQR approaches for different Hilbert curve orders for our real
dataset with four different query sizes. For a fixed query side length, increasing the
value of curve order increases the running time. This is consistent with the range
query complexity derived in Section 6.1. Also, fortunately the overhead of DCQR
approach is marginal compared to the original approach (around 6 milliseconds on
average). This is important since it confirms the fact that we can use DCQR to
evaluate a range query without significant time overhead. Note that both approaches
retrieve the same number of objects from the location server and the difference
between DCQR and original approach is the step required to find the runs in the
dual curve. As the grid becomes more fine-grained, the time to retrieve objects from
the location server dominates the time to calculate query runs and hence increases
the overhead of DCQR. Similar trends were observed for the other two datasets.
Although the distribution of objects varies for different datasets, the number of runs
and the average number of objects retrieved for a unique query size are independent

(a) 0.05% selectivity (b) 0.01% selectivity

(c) 0.5% selectivity

Fig. 21 Running times vs. curve order (N) for different query selectivity
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from the dataset. Therefore, the running time is almost independent from the data
distribution.

10.5 Exact KNN query evaluation

In the previous sections, we empirically evaluated the performance of approximate
KNN and range algorithms and observed how DCQR improves the precision and
displacement for KNN queries and reduces the number of runs for range queries.
In this section, we use these constructs with DCQR to experimentally measure the
performance of our exact KNN algorithm from Section 7.

Similar to Section 10.3, we first study the effect of the curve order N on the quality
of results. Since our exact KNN algorithm employs the range algorithm for retrieving
all objects in a square region centered at the query point, the server’s response for this
range request includes several objects that do not belong to the actual KNN result
set. In our next experiment, we measure how the curve order affects the number
of such excessive objects that are returned to the client. As Fig. 22 suggests, the
average number of such objects quickly drops as N grows and approximately stays
constant for larger values of N (where ρ approaches 1). Moreover, relatively more
unnecessary objects are returned for the skewed dataset. This is obviously due to the
fact that the average size of the circle centered at q is larger for skewed datasets as
the approximate KNN algorithm has to expand beyond larger gaps in the Hilbert
space to obtain the approximate result set.

(a) Uniform (b) Real-world

(c) Skewed

Fig. 22 Excessive objects vs. curve order (N)
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We proceed to measure the overall response time for the exact KNN algorithm.
The results are presented in Fig. 23 where contributions of each phase for query
processing are highlighted. The Aprx piece denotes the time it takes to find the cir-
cular region that includes the K approximate results and the Exact piece represents
the time it takes to retrieve all objects within the square range that encompasses
the above region to compute the exact results. Several observations can be made
from Fig. 23. The first phase of exact KNN query processing takes significantly less
portion of the total running time for the algorithm. Moreover, as N grows, both Aprx
and Exact portions of the response time grow and so does the total query time. This
is consistent with the observations from Figs. 15 and 21. However, it stays below
20 milliseconds for our real-world and uniform datasets and below 120 milliseconds
even for the skewed dataset.

As our last set of experiments, we evaluate the effect of increasing K on the
number of excessive objects and the total time of our exact KNN algorithm. The
results are shown in Figs. 24 and 25, respectively. As expected, increasing K almost
linearly increases the number of excessive objects returned to clients as larger regions
need to be queried with the range algorithm to find the exact results. The second
observation from Fig. 24 is how the number of excessive objects for the skewed
dataset are significantly larger than that of real-world and uniform datasets. This can
be explained by revisiting Fig. 17. The skewness of data results in more displacement
errors in finding the candidate KNN results that in turn leads to a relatively larger
region to query with the range algorithm.

(a) Uniform (b) Real-world

(c) Skewed

Fig. 23 Response time vs. curve order (N)
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(a) Uniform (b) Real-world

(c) Skewed

Fig. 24 KNN excessive objects vs. K

(a) Uniform (b) Real-world

(c) Skewed

Fig. 25 KNN response time vs. K
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With regard to overall response time, as Fig. 25 illustrates how increasing K
results in an increase in overall response time. As we illustrated in Fig. 18 larger
values of K result in more time spent to find the candidate result set and in a larger
region. Querying this relatively larger region is the cause of an increase in the time
contributions for the second phase of exact KNN query processing.

11 Conclusion and future work

In this paper, we discussed the problem of location privacy in location-based services.
We studied the challenges of achieving location privacy and introduced a novel way
of blindly evaluating spatial queries by using one-way space transformations to map
objects and query points into an unknown space and addressing the query in this
new space. The major contributions of our work can be summarized as follows:
(i) We proposed blind evaluation of queries using Hilbert curves as space encoders
and introduced DCQR, our proposed Dual Curve Query Resolution approach and
showed how it improves the performance of blind range and KNN queries. (ii) We
showed how our proposed space transformation employs space filling curves and
cryptographic one-way hash functions to achieve stronger and more generalized
measures of privacy than that of commonly used K-anonymity and spatial cloaking
techniques without incurring the prohibitive costs of private information retrieval-
based approaches. (iii) We conducted extensive experiments on our range, approxi-
mate and exact KNN algorithms using real-world and synthetic datasets to evaluate
the performance of our proposed scheme.

As part of our future work, we intend to explore new privacy aware locality
preserving space mappings that provide less overhead and allow blind evaluation
of a wider class of spatial queries. Finally, in this paper we focused on the Euclidean
space, and thus we plan to extend our approach to network-based spatial queries.
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