

Student Name: ID: Section:

CS 130 - Lab 4: Texture Mapping
Introduction:
Texture mapping in GLSL consists of 3 parts

1. Uploading a texture: Handled in OpenGL program (C/C++) part. In a typical OpenGL
program, textures are read from an image file (.png,. tga etc.) and loaded in to OpenGL.
The parameters of the texture such as interpolation methods are also set in the program.

2. Computing the texture coordinate of a vertex: In GLSL, the texture coordinate
glTexCoord[i] for a texture i and a vertex is determined in the vertex shader. This is the
coordinate of the vertices corresponding texture positions in the image data of texture i,
where i is the index of a texture (in case of multiple textures – i = 0 for a single texture).

3. Getting the texture color for a fragment: The texture coordinate, glTexCoord[i], of
texture i is readily interpolated to the fragment location by opengl. A lookup function such
as texture2D is used to get the color from the texture.

Part I: Uploading a Texture

Read the tutorials about uploading a texture file in these links and answer the questions.
NOTE: This worksheet is available in the lab page in pdf, you can click on the links from there, or
google them, or type them

1. https://www.gamedev.net/articles/programming/graphics/opengl-texture-mapping-an-introd
uction-r947

2. http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/#how-to-load-t
exture-with-glfw (Until section “How to load texture with GLFW”)

Question 1: Describe briefly with your own words each one of the following functions. Look at the
OpenGL documentation for reference.
Llink: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/
Google: “opengl 3 references”

glGenTextures:

Inputs:

glBindTexture:

Inputs:

glTexParameter:

Inputs:

https://www.gamedev.net/articles/programming/graphics/opengl-texture-mapping-an-introduction-r947
https://www.gamedev.net/articles/programming/graphics/opengl-texture-mapping-an-introduction-r947
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/#how-to-load-texture-with-glfw
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/#how-to-load-texture-with-glfw
https://www.khronos.org/registry/OpenGL-Refpages/es3.0/

Student Name: ID: Section:

glTexImage2D:

Inputs:

Question 2: Answer the question below, briefly. Hint: see glTexParameter’s reference page.
a. What do minifying and magnifying mean?

b. What parameter name should be used in glTexParameter function in order to specify
minifying function?

c. What parameter name should be used in glTexParameter function in order to specify
magnifying function?

d. What are the possible minifying and magnifying functions defined by opengl?

Answer: GL_LINEAR, ______________________________________

Student Name: ID: Section:

Question 3: Read the comments and fill out the code accordingly.

===

// Inputs:

// data: a variable that stores the image data in "unsigned char*" (GL_UNSIGNED_BYTE) type

// height: an integer storing the height of the image data

// width: an integer storing the height of the image data

// Description:

// A piece of code that uploads the image "data" to opengl

// ===

GLuint texture_id = 0;
// generate an opengl texture and store in texture_id variable

// set/"bind" the active texture to texture_id

//Set the magnifying filter parameter of the active texture to linear

//Set the minifying filter parameter of the active texture to linear

//Set the wrap parameter of "S" coordinate to GL_REPEAT

//Set the wrap parameter of "T" coordinate to GL_REPEAT

//Upload the texture data, stored in variable "data" in RGBA format

Part II: Shading with Textures in GLSL

Read the tutorials below and answer the following questions

https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/texturing.php
Introduction section only
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/simple-texture/

https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/texturing.php
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/simple-texture/

Student Name: ID: Section:

1. Fill out the blanks in the vertex shader below to compute the gl_TexCoord[0] using
gl_TextureMatrix[0] and glMultiTexCoord.

vertex.glsl:

varying vec3 N;

varying vec4 position;

//create a uniform 2D texture sampler variable, with name "tex";

void main() {
 // compute the gl_TexCoord[0] using gl_TextureMatrix[0] and

 // glMultiTexCoord

 gl_TexCoord[0] = ___;
 N = gl_NormalMatrix*gl_Normal;
 gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;
 position = gl_ModelViewMatrix * gl_Vertex;
}

2. Fill out the blank in the fragment shader below to compute the gl_Frag

fragment.glsl:

// create a uniform 2D texture sampler variable, with name "tex", so that

// it will be forwarded from the vertex shader

void main() {
 //get the texture color from "tex", using a texture lookup function,

 //and s,t coordinates of gl_TexCoord[0].

 vec4 tex_color = ___
 // set gl_FragColor to tex_color

 gl_FragColor =tex_color;
}

Student Name: ID: Section:

Part III: Texture mapping coding practice

In this lab you will be practicing texture mapping with GLSL with a skeleton code.

The skeleton code has texture files (.tga images) monkey.tga and monkey_occlusion.tga, as well
as the base code for creating an opengl window, loading a monkey model and drawing it.

Follow the steps below and implement texture mapping in the skeleton.

Step 0. Download the skeleton code from the lab webpage and unzip/untar it in a local directory in
the lab machines. Please do not use cloud9 or bolt for this lab.

Step 0.1. Open the image files and observe their content.

Step 1. Uploading monkey.tga to opengl:

- Locate the TODO section towards the end of the loadTarga function in application.cpp
- Use the code in the answer to Part I Question 3, to upload “data” to opengl.

Note 1: the code at the beginning of the function reads the image file in “filename” to the
“data” variable.
Note 2: monkey.tga is in RGBA format, and the data is a pointer to UNSIGNED_BYTE
array.

Step 2. Computing texture coordinate

- Locate vertex.glsl and compare the code with the vertex shader code in Part II Question 2.
- Note that the code that computes the texture coordinate of the vertex is already computed,

and so you have nothing to do and may go to step 3.

Step 3. Computing the color of the fragment using texture color.

- Locate fragment.glsl and compare the code with the phong shader you implemented, in
the previous part. This is a phong shader without a specular part.

- Now compute the texture color just like in the fragment shader in Part II Question 3 and
store it in a tex_color variable. But, do not assign it to gl_FragColor.

- Here we would like to use the texture color instead of the material color
(glFrontMaterial.diffuse.rgb), while keeping the rest of the computation.

- So, rewrite the line that computes the gl_FragColor accordingly.

