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ABSTRACT: CRISPR-Cas systems have transformed the field of
synthetic biology by providing a versatile method for genome
editing. The efficiency of CRISPR systems is largely dependent on
the sequence of the constituent sgRNA, necessitating the
development of computational methods for designing active
sgRNAs. While deep learning-based models have shown promise
in predicting sgRNA activity, the accuracy of prediction is primarily
governed by the data set used in model training. Here, we trained a
convolutional neural network (CNN) model and a large language
model (LLM) on balanced and imbalanced data sets generated
from CRISPR-Cas12a screening data for the yeast Yarrowia lipolytica and evaluated their ability to predict high- and low-activity
sgRNAs. We further tested whether prediction performance can be improved by training on imbalanced data sets augmented with
synthetic sgRNAs. Lastly, we demonstrated that adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 data sets from Y.
lipolytica and Komagataella phaf f ii leads to improved performance in predicting sgRNA activity, thus underscoring the importance of
employing balanced training sets for accurate sgRNA activity prediction.
KEYWORDS: sgRNA activity prediction, balanced training data sets, training set composition, deep learning, CRISPR genome editing

■ INTRODUCTION
CRISPR systems are a potent tool for targeted genome editing
in assays ranging from individual genetic perturbation
experiments to high-throughput functional genetic screens.1−4

CRISPR systems achieve efficient targeted editing by utilizing
two components, a Cas endonuclease that creates a double-
stranded break and a single guide RNA (sgRNA) that guides
the Cas enzyme to the targeted genomic locus.5,6 Genome
editing efficacy depends on several factors such as the sequence
and nucleotide composition of the sgRNA, propensity of the
sgRNA to form secondary structure, genomic context, and
epigenetic features like chromatin accessibility and DNA
methylation.7−10 As a result, CRISPR systems often have a
broad spectrum of activity, with only a limited fraction of
sgRNA successfully generating a desired genetic manipulation,
thus emphasizing the need for computational approaches to
design sgRNAs.
A host of computational tools for CRISPR sgRNA design

have been developed that possess the ability to predict sgRNA
activity in prokaryotic and eukaryotic organisms using machine
learning and deep learning approaches.11−14 These methods
use large data sets that link sgRNA sequence with Cas activity
as training sets to capture generalizable patterns and features of
sgRNAs, and in doing so generate design rules for maximizing
sgRNA activity.15,16 The composition of the training data sets
used as input to these methods thus plays a critical role in
determining the accuracy of activity predictions. Training data

sets consisting of a large number of sgRNAs with a wide
distribution of activity lead to more accurate predictions of
activity compared to skewed data sets.12

In this work, we evaluated the effect of training set
composition on the performance of deep learning methods
for sgRNA activity prediction. We trained a deep CNN model,
DeepGuide,12 and an LLM architecture, HyenaDNA,18 on
previously reported CRISPR-Cas12a data from Y. lipolyti-
ca,12,17 and found the activity prediction accuracy with training
sets skewed toward high- and low-activity sgRNAs to be lower
relative to that with a balanced training set. Upon augmenting
imbalanced training data sets with synthetic sgRNAs and
retraining the models, we observed a partial recovery in
predictive power lost during training on imbalanced data sets.

■ RESULTS AND DISCUSSION
Balanced Training Sets Enable Accurate Predictions

of sgRNA Activity. The CRISPR-Cas12a sgRNA data set in
Y. lipolytica, previously reported in refs 12 and 17, is an 8-fold
coverage library containing 57018 sgRNA targeting ∼98% of
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the protein-coding genes in the PO 1f strain. Unbiased design
and screening of this library produced a data set containing a
well-balanced representation of high- and low-activity sgRNAs.
The activity of each guide was determined using an
experimental cutting score (CS), computed as the log2 ratio
of sgRNA abundance in a strain deficient in nonhomologous
end joining (NHEJ) to that in a Cas12a-expressing strain
deficient in NHEJ.12,19 Using this CS data set, we trained
DeepGuide12 to predict CRISPR-Cas12a activity based on
sgRNA sequence. The data was split into training and test sets
in the ratio 90:10, with the training set consisting of 50731
sgRNAs, comprising ∼41% high-activity sgRNA and ∼59%
low-activity sgRNA (Figure S1). Model training resulted in a
mean Pearson’s r of 0.596 (experimental CS vs DeepGuide-
predicted CS), thus, establishing a baseline of model
performance for sgRNA activity predictions.
Imbalanced Training Sets Result in Poor Prediction

of sgRNA Activity. In this experiment, we sought to quantify
the impact of a skewed training set on model performance by
randomly removing or adding high- or low-activity sgRNAs
from a balanced training set and evaluating the performance of
DeepGuide when trained on the imbalanced data sets. While
Pearson’s r computed for the test set captures the overall
accuracy of the model in predicting the CS of each sgRNA, it
does not gauge the model’s ability to correctly predict high-
and low-activity sgRNAs as measured in experimental

assays.20−22 For this reason, we evaluated the performance of
DeepGuide to accurately classify a set of experimentally
validated high- and low-activity sgRNAs identified from
individual phenotype screening experiments.12

We first generated imbalanced training data sets biased
toward low-activity sgRNAs by removing 25, 50, 75, and 90%
high-activity sgRNAs from the original training set (Figure 1a).
DeepGuide’s performance on the test set was found to
decrease slightly as more high-activity sgRNAs were removed
(Figure 1b). Given that the Pearson’s r for a balanced training
set of 30000 sgRNA was found to be higher (r = 0.588; Figure
S2) than that when 90% high-activity sgRNA were removed (r
= 0.579; training set size ∼ 32000), the drop in Pearson’s r can
be attributed to a decrease in the share of high-activity sgRNAs
in the training set. The True Positive Rate (TPR) was found to
decline sharply as the percentage of high-activity sgRNAs
removed increased, indicating a reduced ability to predict high-
activity sgRNAs when the data set is skewed toward low-
activity guides (Figure 1b). The decrease in TPR was
accompanied by increases in 1 - False Positive Rate (1-FPR).
As the training data sets become more biased toward low-
activity sgRNAs, the DeepGuide-predicted CS of experimental
sgRNAs shift to lower values leading to fewer sgRNAs being
predicted as high-activity (Figures 1c and S3a,b).
Similar to the results with data sets biased toward low-

activity sgRNAs, DeepGuide’s performance decreased as the

Figure 1. DeepGuide performance with imbalanced CRISPR-Cas12a training data sets. (a, d) Normalized cutting score (CSnorm) distributions of
the Cas12a training data set imbalanced by removing 0, 25, 50, 75, and 90% high- and low-activity sgRNAs along with the total number of sgRNAs
(n) in every training set. (b, e) Performance of DeepGuide models on the sgRNA test sets (Pearson’s r), and high- and low-activity Cas12a sgRNAs
from individual phenotype screening experiments (TPR, 1-FPR). Bars represent mean values of Pearson’s r, TPR, and 1-FPR across five
independent runs (n = 5). Error bars indicate one standard deviation, and data points represent values from each individual run. (c, f) Mean
predicted CS of high-activity (KO efficiency ≥ 50%) and low-activity (KO efficiency < 50%) sgRNAs from individual phenotype screening
experiments in Y. lipolytica when DeepGuide was trained on imbalanced data sets with 90% high-activity and 90% low-activity sgRNA removed.
Data points represent mean values of predicted CS for experimental sgRNA with a given KO efficiency across five independent runs (n = 5), and
error bars indicate one standard deviation. Dashed line represents average predicted CS threshold for high-activity, and dotted lines represent one
standard deviation of the high-activity threshold.
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population was skewed toward high-activity (Figure 1d,e). As
fewer low-activity sgRNA were retained in the training set,
DeepGuide gradually lost the ability to accurately predict low-
activity experimental data (Figure 1e). Figures 1f and S3a,c
show that the predicted CS of experimental sgRNAs shift to
higher values with respect to the predicted CS obtained by
training DeepGuide on the original data set, ultimately causing
fewer sgRNA to be predicted as low-activity.
We also generated imbalanced data sets by adding guides to

a balanced data set containing 50% high- and low-activity
sgRNA from the original training set. To generate data sets
biased toward low-activity sgRNA, we added 25% (7495) and
50% (14991) low-activity sgRNA to the balanced training set.
DeepGuide training on these data sets resulted in a slight
increase in performance on the test set as more low-activity
guides were added, likely due to an increase in training set size
(Figure S4a). The TPR, however, was found to decrease as the
fraction of high-activity sgRNA in the training data decreased,
accompanied by small increases in 1-FPR, a result similar to
that obtained with the previous method of creating imbalance
by removing guides (Figure S4a). We also generated data sets
skewed toward high-activity sgRNA by adding 25% (5187) and
50% (10374) high-activity sgRNA to the balanced training set.
As expected, the decrease in proportion of low-activity sgRNA

resulted in a decrease in 1-FPR, indicating reduced ability of
the model to predict low-activity guides (Figure S4b).
To test whether other model frameworks exhibit similar

behavior in predicting sgRNA activity when trained on
imbalanced data sets, we evaluated the performance of
HyenaDNA,18 a large language model (LLM), trained on
various data sets. For this analysis, we used the balanced
training data set and the skewed data sets with 50% and 90%
high- and low-activity sgRNAs removed. Similar to the
DeepGuide results, Pearson’s r slightly decreased as more
high- and low-activity sgRNAs were removed (Figure S5a).
Likewise, the TPR and 1-FPR decreased when the data sets
were skewed toward low- and high-activity guides, respectively
(Figure S5b). These results substantiate the importance of the
training set composition in influencing sgRNA activity
prediction accuracy, independent of the prediction model.
Augmenting Imbalanced Training Sets with Syn-

thetic sgRNAs Helps Recover Activity Prediction Power.
To examine whether artificially rebalancing training sets
improves prediction performance, we augmented imbalanced
CRISPR-Cas12a training sets with synthetic high- or low-
activity sgRNA. CRISPR-Cas activity is less sensitive to
mismatches between the sgRNA and target DNA in the
PAM-distal region of the sgRNA compared to the PAM-

Figure 2. DeepGuide performance with imbalanced CRISPR-Cas12a training data sets augmented with synthetic sgRNAs. (a, d) Pie charts
showing change in composition of imbalanced training sets skewed toward low- and high-activity sgRNAs after adding synthetic (a) high-activity
and (d) low-activity sgRNAs. (b, e) Performance of DeepGuide models on the test set of sgRNAs (Pearson’s r), and high-activity and low-activity
Cas12a sgRNAs from individual phenotype screening experiments (TPR, 1-FPR), when trained using the original training set, imbalanced training
sets obtained after removing 50% and 90% (b) high- and (e) low-activity sgRNAs, and rebalanced training sets obtained after adding synthetic (b)
high- and (e) low-activity sgRNAs. Bars represent mean values of Pearson’s r, TPR and 1-FPR across five independent runs (n = 5), error bars
indicate one standard deviation, and data points represent values from each individual run. (c, f) Mean predicted CS of high-activity (KO efficiency
≥ 50%) and low-activity (KO efficiency < 50%) sgRNA from individual phenotype screening experiments in Y. lipolytica when DeepGuide was
trained on balanced data sets containing synthetic (c) high- and (f) low-activity sgRNAs, with respect to the mean predicted CS of the same guides
obtained upon training DeepGuide on the corresponding imbalanced data sets with 50% high-activity and 90% low-activity sgRNA removed. Data
points represent mean values of predicted CS for experimental sgRNA with a given KO efficiency across five independent runs (n = 5), and error
bars indicate one standard deviation. Dashed line represents average predicted CS threshold for high-activity and dotted lines represent one
standard deviation of the high-activity threshold.
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proximal or seed region.23−25 For CRISPR-Cas12a, the first 14
bp of a sgRNA from the 5′ end comprise the seed region.23,26
We thus generated synthetic sgRNAs by randomly sampling
guides from the minority class in a given imbalanced training
set (for a training set biased toward low-activity sgRNA, the
minority class constitutes all high-activity sgRNAs within the
training set, and vice versa) and created new guides with
random one nucleotide substitution in the nonseed region
(base positions 15−25 from the 5′ end) of the selected guide.
Since the CRISPR-Cas12a library was designed by ensuring
the uniqueness of the 14 bp sgRNA seed region in the
genome,12,17 the generated synthetic sgRNA would always
target the same genomic locus as the original sgRNA it was
created from.
To rebalance training sets biased toward low-activity sgRNA,

we augmented the data sets consisting of 50% and 90% high-
activity sgRNAs removed with 20000 and 28000 synthetic
high-activity sgRNA, respectively (Figure 2a), that were
generated by sampling high-activity sgRNA from the
corresponding imbalanced data sets. DeepGuide training on
these rebalanced data sets resulted in a small decrease in
performance (Pearson’s r) on the test set compared to that for
the corresponding imbalanced training sets (Figure 2b). The
TPR for experimental high-activity sgRNAs, however, ex-
hibited an increase when synthetic high-activity sgRNAs were
added to the training sets. For the data set with 50% high-
activity sgRNA removed, the recovery in performance yields
predictions that closely match those achieved using the original
training set (Figure 2b). The 1-FPR value, meanwhile, showed
a small decrease when synthetic high-activity sgRNA were
appended to the training sets, while still remaining above 0.85
for all data sets. Figure 2c shows that the addition of synthetic
high-activity sgRNAs to imbalanced training sets causes the
predicted CS of experimental sgRNAs to shift to higher values,

illustrating the recovery in the high-activity guide prediction
accuracy. The data set containing 50% low-activity sgRNA
added was augmented with 20000 synthetic high-activity
sgRNA (resulting in a data set containing 50.3% high-activity
sgRNA and 49.7% low-activity sgRNA), and once again,
training on this rebalanced data set led to an increase in TPR
compared to the imbalanced data set (Figure S6a).
We next rebalanced training data sets with 50% and 90%

low-activity sgRNAs removed by augmenting them with 6000
and 18000 synthetic low-activity sgRNAs, respectively (Figure
2d). We also augmented the data set containing 50% high-
activity sgRNA added with 6000 synthetic low-activity sgRNA
(resulting in a data set containing 50.3% low-activity sgRNA
and 49.7% high-activity sgRNA). This resulted in minimal
change in Pearson’s r for DeepGuide predictions on the test set
(Figures 2e and S6b). More importantly, the addition of
synthetic sgRNAs led to an increase in 1-FPR for both data
sets. It is noteworthy here that model performance for the data
set supplemented with synthetic sgRNAs after removing 90%
of the low-activity population is inferior to that for the original
data set only by a small margin. Figure 2f illustrates the shift in
predicted CS of experimental sgRNAs to lower values upon
addition of synthetic low-activity sgRNA to imbalanced
training data sets.
We also explored variations of the approach to generate

synthetic sgRNA, and we investigated their ability to improve
prediction performance. Addition of synthetic sgRNA
generated using the different methods (double mutants, CS
penalty, and others; see Methods) resulted in a similar
performance on the test set and were not an improvement over
the method shown in Figure 2 (Figure S7). Overall, the similar
performance of variant methods implies that the method used
for generating synthetic sgRNA has no effect on the
improvement in model performance.

Figure 3. Composition of the Y. lipolytica (top) and K. phaf f ii (bottom) CRISPR-Cas9 training sets and DeepGuide performance with the two data
sets. (a, e) Normalized cutting score (CSnorm) distributions of the original Cas9 training data sets for Y. lipolytica and K. phaf f ii. (b, f) Pie charts
showing the proportion of high- and low-activity sgRNAs in the original Cas9 training sets containing a total of 19953 sgRNA for Y. lipolytica and
27821 sgRNA for K. phaf f ii. (c, g) Performance of DeepGuide on the test set of sgRNA for Y. lipolytica and K. phaf f ii when trained on the
respective original training sets and rebalanced training sets obtained after adding synthetic low-activity sgRNA to the original sets. Bars represent
mean Pearson’s r across five independent runs (n = 5), error bars indicate one standard deviation, and data points represent values from each
individual run. (d, h) DeepGuide performance on high- and low-activity Cas9 sgRNAs from individual experiments for Y. lipolytica and K. phaf f ii.
Bars represent mean values of TPR and 1-FPR across five independent runs (n = 5), error bars indicate one standard deviation, and data points
represent values from each individual run.
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Adding Synthetic sgRNA to Imbalanced CRISPR-Cas9
Data Sets Improves Low-Activity sgRNA Prediction. To
assess the capability of the synthetic sgRNA-based approach in
improving activity prediction on imbalanced training sets from
other species and endonucleases, we implemented DeepGuide
on CRISPR-Cas9 data sets from Y. lipolytica and K. phaf f ii
previously reported in refs 27 and 28. The Y. lipolytica Cas9
data set is biased toward high-activity sgRNA; the set includes
67.3% high-activity sgRNA with a training set size of 19953
(Figure 3a,b). To alleviate this imbalance, we augmented the
training set with 6500 synthetic low-activity sgRNA by creating
a 1 bp substitution in the nonseed region. Since DeepGuide
improves Cas9 activity predictions using nucleosome occu-
pancy information,12 we provided occupancy scores for every
sgRNA in addition to sgRNA sequence as input for training on
the Cas9 data sets. When trained on the original and
rebalanced training sets, DeepGuide was found to yield nearly
similar values of Pearson’s r on the test set of sgRNA (Figure
3c). Addition of synthetic sgRNA also resulted in an increase
in 1-FPR from 0.053 to 0.493 for the original and rebalanced
data sets, respectively, but at the cost of a decrease in TPR
from 1 to 0.656, Figure 3d. Figure S8a shows the predicted CS
of experimental high- and low-activity sgRNA before and after
the addition of synthetic sgRNA to the original training set.
The K. phaf f ii training set contains a disproportionately

large number of high-activity sgRNA (73.7% high-activity
sgRNA in a training set of 27821 sgRNA, Figure 3e,f) and was,
hence, rebalanced by adding 13000 synthetic low-activity
sgRNA. DeepGuide implementation on the training sets
resulted in similar values of Pearson’s r (Figure 3g). More
prominently, when measuring performance on experimentally
validated high- and low-activity sgRNA from individual
experiments,28 the addition of synthetic low-activity sgRNA
led to an jump in 1-FPR from 0.042 to 0.232, accompanied by
a small decrease in TPR from 1 to 0.815 (Figures 3h and S8b).
Deep learning models, while having been shown to be

effective in designing sgRNAs, depend significantly on the
training set composition for accurate prediction of activity.
Implementation of deep learning models on CRISPR-Cas data
sets in this study shows that adding synthetic sgRNAs can
improve performance with imbalanced data sets, but not to the
level of balanced data sets. Ultimately, AI models result in best
prediction performance when trained on data sets evenly
representing both positive and negative biological outcomes, or
well-balanced data sets.

■ METHODS
Processing Y. lipolytica and K. phaff ii CRISPR-Cas12a

and CRISPR-Cas9 sgRNA-CS Data. Y. lipolytica sgRNA
sequence and CS data for the CRISPR-Cas12a library was
obtained from ref 12, while CRISPR-Cas9 data sets for Y.
lipolytica and K. phaf f ii were obtained from refs 27 and 28,
respectively. For all data sets, raw CS values of sgRNA were
converted to normalized CS by subtracting the average CS of
all nontargeting sgRNA in the respective libraries from the raw
CS values of every sgRNA. For Cas12a data, the 25 bp
sequences of sgRNA were extended to 32 bp sequences (25 bp
spacer +4 bp PAM + 1 bp context upstream of the PAM + 2 bp
context downstream of the spacer) using custom Python
scripts to map sgRNA to the Y. lipolytica CLIB89 genome
(https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.
1)29 and obtain the upstream and downstream nucleotides. In
case of the Cas9 data sets, the 20 bp sequences of sgRNA were

extended to 28 bp sequences (20 bp spacer +3 bp PAM + 2 bp
context upstream of the spacer +3 bp context downstream of
the PAM) by mapping sgRNA to Y. lipolytica CLIB89 and K.
phaf f ii GS115 (https://www.ncbi.nlm.nih.gov/assembly/
GCA_000027005.1)30 genomes.
For each data set, the “sgRNA + PAM + upstream/

downstream context” sequences and normalized CS data were
then randomly split into training and test sets for the sgRNA
activity prediction tools in the ratio 90:10. For Y. lipolytica
CRISPR-Cas12a data, the original training set consisted of
50731 sgRNA, while the test set comprised 5637 sgRNA.
Guides in the original training set were classified as high-
activity and low-activity based on a high-activity threshold
defined in ref 17, equivalent to a normalized CS of 3.10. The
training and test sets for Y. lipolytica CRISPR-Cas9 data
consisted of 19953 and 2217 sgRNA, respectively, with a high-
activity threshold equivalent to normalized CS of 5.30, as
defined in ref 27. Similarly, for K. phaf f ii Cas9 data, the
training and test set sizes were 27821 and 3093 sgRNA,
respectively, with sgRNA having normalized CS greater than
11.66 deemed as high-activity sgRNA, based on the threshold
defined in ref 28.
DeepGuide Implementation. For Y. lipolytica data sets,

DeepGuide (https://github.com/ucrbioinfo/deepguide_
reborn)12 was first pretrained on the Y. lipolytica CLIB89
genome using a sequence length of 32 bp for Cas12a
(guide_length: 32) and 28 bp (guide_length: 28) for Cas9
with 6 epochs (dg_one_pretrain_epochs: 6), followed by
training on the Y. lipolytica Cas12a/Cas9 data with 10 epochs
(dg_one_epochs: 10). For the K. phaf f ii Cas9 data set, the
pretraining was performed on the K. phaf f ii GS115 genome
using 28 bp as the sequence length (guide_length: 28).
Both the pretraining and training steps were performed

using a batch size of 64 (dg_one_pretrain_batch_size: 64, and
dg_one_batch_size: 64) and a train/validation split of 70:30
(dg_one_pretrain_train_test_ratio: 0.7, and dg_one_train_-
test_ratio: 0.7). For Cas12a, the “cas” parameter was set to
‘cas9_seq’, since only sgRNA sequence data was used for
training. For Cas9 data sets, the value of the “cas” parameter
was changed to ‘cas9_nucleosome’, since sgRNA nucleosome
occupancy scores were used for training in addition to
sequence data. Five independent runs were performed for
each experiment.
HyenaDNA Implementation. HyenaDNA (https://

github.com/HazyResearch/hyena-dna)18 was pretrained on
the Y. lipolytica CLIB89 genome using a sequence length of
32 bp (max_length: 32), train/val/test split of 80:10:10, model
width of 32 (d_model: 32), depth of 2 layers (n_layer: 2), a
learning rate of 6 × 10−4 (lr: 6e-4), and a global batch size of
1024 (global_batch_size: 1024) with 100 epochs (max_-
epochs: 100). Default values of all other parameters were used.
Pretraining was carried out on 4 Nvidia A100 80GB GPUs
(devices: 4).
For fine-tuning the model, the Cas12a training data was split

into training and validation sets in the ratio 80:10 (train_len:
45094 for the original training set), and a global batch size of
256 (global_batch_size: 256) was used. The model config-
uration, sequence length, and learning rate were kept
unchanged from the pretraining step (d_model: 32, n_layer:
2, max_length: 32, lr: 6e-4). The fine-tuning step was also
performed with 100 epochs (max_epochs: 100) using one
Nvidia A100 80GB GPU (devices: 1), and the entire model
was fine-tuned rather than freezing the weights of the
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pretrained backbone (freeze_backbone: false). Default values
of all other parameters were used. Five independent runs were
performed for each experiment.
Generating Imbalanced Data Sets by Adding High/

Low-Activity sgRNA. A reduced balanced data set containing
50% high-activity and low-activity sgRNA from the original
Cas12a training set (50731 sgRNA) was first created. This data
set thus contains 25366 sgRNA, constituting 10375 high-
activity sgRNA and 14991 low-activity sgRNA. To skew this
balanced data set toward low-activity sgRNA, 25% (7495) and
50% (14991) low-activity sgRNA were added by sampling
from the pool of sgRNA not present in the balanced training
set, resulting in data sets containing 75% and 100% of all low-
activity training guides, respectively. Similarly, the balanced
training set was skewed toward high-activity sgRNA by adding
25% (5187) and 50% (10374) high-activity sgRNA to generate
data sets containing 75% and 100% of all high-activity training
guides, respectively.
Generating Synthetic sgRNA. Custom Python scripts

were used to generate synthetic sgRNA by randomly sampling
appropriate number of sgRNA from the pool of high-/low-
activity sgRNA in the imbalanced training sets, and creating a 1
bp substitution for four of the five simulation methods, and 2
bp substitutions for one method, in the nonseed region (base
positions 15−25 from the 5′ end on the 25 bp spacer sequence
for Cas12a sgRNA and positions 1−8 from the 5′ end of the
20 bp spacer for Cas9 sgRNA31,32) of the sampled sgRNA.
In the case of unbiased sampling with penalized CS for

Cas12a sgRNA, the normalized CS of the synthetic guides was
reduced by 1/25th, or 4% compared to that of the original
sgRNA to account for a possible reduction in sgRNA activity
due to a 1 bp mismatch.
For biased sampling toward sgRNA with extremely high/low

CS values, positive and negative exponential distributions were
created for the range of normalized CS values for high-activity
and low-activity guides, respectively. For every simulated
guide, a random value was sampled from this exponential
distribution, and the normalized CS value closest to this
sampled value and the corresponding sgRNA sequence were
used to generate the synthetic guide.
For creating substitutions by biasing toward terminal

positions on the sgRNA, the position for creating a substitution
was sampled from an exponential distribution so that the
probability of sampling terminal positions is higher compared
to relatively central positions.
Computing Nucleosome Occupancy Scores. Genome-

wide nucleosome occupancy data for Y. lipolytica CLIB89 and
K. phaf f ii GS115 genomes were obtained from MNase-seq
data sets previously reported in refs 33 and 34, respectively.
For every Cas9 sgRNA, an average occupancy score of the
corresponding target locus was first computed by averaging the
occupancy scores across all target bases, followed by
normalizing the scores to values between 0 and 1 by dividing
each average score by the highest average score in the
respective data set (Y. lipolytica/K. phaf f ii). The average
normalized occupancy scores obtained for each sgRNA were
then used to train DeepGuide alongside the sgRNA sequence
information.
Calculation of TPR and 1-FPR. Based on the predicted

CS of sgRNA from individual phenotype screening experi-
ments, every sgRNA was classified as high-activity or low-
activity, which was different from the high/low-activity
classification based on experimental knockout efficiency. The

predicted high/low-activity classification was based on a p-
value derived from a z-test of significance. Briefly, predicted CS
values of experimental high-activity sgRNA (i.e., sgRNA having
knockout efficiency ≥ 50%) obtained from the models trained
on the original training sets were used to create a population of
predicted CS of high-activity sgRNA for the respective data
sets. Predicted CS values of experimental low-activity sgRNA
obtained from the models trained on the original training sets,
as well as predicted CS values of all (i.e., experimental high-
activity and low-activity) sgRNA in every subsequent activity
prediction trial were compared to this population in a z-test of
significance to determine if a given predicted CS value belongs
to this population (p > 0.05; predicted high-activity sgRNA) or
is significantly different from the population (p < 0.05;
predicted low-activity sgRNA). The ability of a model to
accurately predict sgRNA from individual experiments as high-
activity and low-activity was measured using two metrics, True
Positive Rate (TPR) and 1-False Positive Rate (FPR),
respectively. TPR is defined as

i
k
jjjjj

y
{
zzzzz=TPR

No. of exptl high activity sgRNA predicted to have high activity
total No. of exptl high activity sgRNA

(1)

Similarly, 1-FPR is calculated as

i
k
jjjjj

y
{
zzzzz=1 FPR

No. of exptl low activity sgRNA predicted to have low activity
total No. of exptl low activity sgRNA

(2)

Since the predicted CS values of experimental high-activity
sgRNA from the model trained on the original set were used to
generate the predicted high-activity population, all of these
sgRNA were deemed to have high predicted activity, resulting
in a TPR of 1 for the original training sets.
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