
Received: August 16, 2024. Revised: February 3, 2025. Accepted: February 18, 2025
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2025, 26(2), bbaf092

https://doi.org/10.1093/bib/bbaf092

Problem Solving Protocol

Predicting differentially methylated cytosines in TET and
DNMT3 knockout mutants via a large language model
Saleh Sereshki and Stefano Lonardi*

Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States

*Corresponding author. Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521,
United States. E-mail: stelo@cs.ucr.edu

Abstract

DNA methylation is an epigenetic marker that directly or indirectly regulates several critical cellular processes. While cytosines in
mammalian genomes generally maintain stable methylation patterns over time, other cytosines that belong to specific regulatory
regions, such as promoters and enhancers, can exhibit dynamic changes. These changes in methylation are driven by a complex cellular
machinery, in which the enzymes DNMT3 and TET play key roles. The objective of this study is to design a machine learning model
capable of accurately predicting which cytosines have a fluctuating methylation level [hereafter called differentially methylated cytosines
(DMCs)] from the surrounding DNA sequence. Here, we introduce L-MAP, a transformer-based large language model that is trained on
DNMT3-knockout and TET-knockout data in human and mouse embryonic stem cells. Our extensive experimental results demonstrate
the high accuracy of L-MAP in predicting DMCs. Our experiments also explore whether a classifier trained on human knockout data
could predict DMCs in the mouse genome (and vice versa), and whether a classifier trained on DNMT3 knockout data could predict
DMCs in TET knockouts (and vice versa). L-MAP enables the identification of sequence motifs associated with the enzymatic activity
of DNMT3 and TET, which include known motifs but also novel binding sites that could provide new insights into DNA methylation in
stem cells. L-MAP is available at https://github.com/ucrbioinfo/dmc_prediction.
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Introduction
DNA methylation is an epigenetic marker that directly or indi-
rectly regulates several critical cellular processes, including gene
expression, genome stability, transposon suppression, and gene
imprinting (see, e.g. [1–3]). The most common form of DNA methy-
lation, known as 5-methylcytosine (5mC), involves the attachment
of a methyl group to the fifth carbon of a cytosine residue.
Abnormal methylation patterns in humans have been associated
with diseases, including cancer and imprinting syndromes (see,
e.g. [4, 5]).

In mammals, DNA methylation primarily occurs in CpG dinu-
cleotides, with most of them being methylated [6]. Mammalian
genomes typically maintain consistent CpG methylation levels
over time, except in specific regulatory regions like promoters
and certain types of enhancers [7]. In these variable regions, the
dynamics of methylation and demethylation are orchestrated by
a complex cellular machinery, in which the enzymes DNMT3
(A/B) and TET play a major role. DNMT3A and DNMT3B are DNA
methyltransferases that can add a new methyl group to cytosines,
e.g. during development and cellular differentiation [8, 9]. TET is
an enzyme that catalyzes the conversion of 5-methylcytosine into
5-hydroxymethylcytosine and its oxidized derivatives. The con-
version of 5-hydroxymethylcytosine and its derivatives ultimately
leads to active DNA demethylation [10].

Knockout experiments that disrupt DNMT3 and TET have
allowed life scientists to unravel the complex dynamics of DNA
methylation changes over time and space, and across cell types.
During the pluripotent stages, DNMT3 and TET modulate the
epigenetic landscape, thus influencing cellular differentiation
[11, 12]. During postfertilization reprogramming, the embryo
undergoes a two-phase process in which it loses gamete-specific
DNA methylation patterns inherited from the oocyte and sperm,
with the initial active demethylation of the paternal genome by
TET3 followed by subsequent passive dilution of DNA methylation
during cell divisions [13].

TET and DNMT3 are crucial in regulating fetal organ develop-
ment and tissue generation, through DNA methylation and his-
tone modifications [14, 15]. Their dysregulation is linked to human
diseases, particularly cancers [16, 17]. Although the importance
of TET is well recognized, its precise mechanisms of action are
not well understood. Several studies have shown that DNMT3
and TET, both individually and in combination, influence DNA
methylation patterns in human embryonic stem cell lines (e.g.
[12]). Chao et al. [18] also studied the interactions between TET1,
DNMT3A, and DNMT3B in human embryonic stem cells, and
how these interactions collectively influence global methylation
patterns.

Given the importance of DNMT3 and TET in developmen-
tal biology and embryogenesis, there is strong interest in
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characterizing which cytosines are affected by these two classes
of enzymes. A few recent studies attempted to capture the
sequence preference for DNMT3 and TET. For instance, in [19]
the authors showed that TET has a sequence preference for CG
dinucleotides within specific transcription-factor binding sites,
indicating that its activity in catalyzing DNA demethylation is
influenced by the underlying sequence context. The study in
[18] also reported that TET1 prefers binding to specific genomic
regions. This appears to be also true for DNMT3. Jeltsch et al.
[20] demonstrated that the enzymatic activities of DNMT3A and
DNMT3B are influenced by the sequence context of their target
sites. As part of these studies, several DNMT3 and TET knockout
methylation data sets for human and mouse have been produced
(see, e.g. [12, 21, 22]). These data sets open the possibility to
investigate whether one could predict which specific cytosines
are affected by DNMT3 and TET using a machine learning model.

Here, we explore for the first time the problem of predicting
differentially methylated cytosines (DMCs) in TET and DNMT3
knockout mutants, using exclusively the underlying DNA
sequence around the cytosines. Our classifier, called Language
model-based Methyltransferases Activity Predictor (L-MAP), is
a transformer-based large language model (LLM) that utilizes
contextual sequence information to predict the enzymatic
activity of DNMT3 and TET on cytosines.

We envision L-MAP as a tool to impute missing or uncertain
DMCs from wet lab experiments, which are costly and often leave
some cytosines with insufficient coverage or uncovered. In this
study, we also investigate (1) whether training L-MAP on DNMT3
knockouts can be used to predict TET activities, and vice versa;
(2) whether training L-MAP on human knockout data can be used
to predict the enzymatic activity on mice, and vice versa; (3)
whether the methylation levels of nearby cytosines can help L-
MAP predict DMCs with higher accuracy; and (4) whether L-MAP
has learned sequence motifs known to be associated with the
enzymatic activity of DNMT3 and TET enzymes.

A deeper understanding of cell functions can lead to significant
advancements in medical research, therapeutic development, dis-
ease prevention, and diagnostic techniques [23, 24]. Some studies
have identified interacting partners for TETs and DNMT3s [25, 26].
Here, we have identified transcription factor binding site motifs
that may be linked to TET and DNMT3 activity in pluripotent
cells. These findings can open new avenues for understanding the
functions of these methyltransferases and lead to advancements
in treatment strategies and novel drug discoveries.

Results
We analyzed seven knockout data sets: four human data sets
(DNMT3KO, TETKO, QKO, and PKO ESC lines) and three murine
data sets [DNMT3A and DNMT3B knockouts in embryonic stem
cells, and TET2 and TET3 knockouts in intestinal stem cells (ISCs)].
Correspondingly, we had three wild-type datasets, namely human
ESC, mouse ESC, and mouse small intestine ESC. Additional details
about these data sets are reported in the Methods section. Supple-
mental Figure 2 reports the genome-wide methylation levels for
the three wild-type and seven knockout data sets. We recall that
methylation levels are expressed by a real number in the interval
[0, 1], where 0 indicates that none of the cells in the sample are
methylated, and 1 indicates that all the cells in the sample are
methylated. The data show that the average methylation level
is in the range 0.7–0.8 for all data sets, except for the DNMT3A
knockout data set on the mouse ESCs.

The methylation levels for the seven knockout and three wild-
type datasets were used to determine seven sets of DMCs. A
cytosine was determined to be differentially methylated when
its methylation level for the knockout was significantly higher
or lower than its methylation level in the wild-type (details in
Methods). Supplemental Figure 1 reports the number of DMCs on
the seven datasets. The number of DMCs ranges from about 100
000 in the DNMT3B knockout dataset for mouse ESC, to about 1.5
million in the DNMT3A knockout for mouse ESC. Based on this,
we chose a sample size of 100 000 cytosines for each dataset, half
of which were differentially methylated (and the other half were
not). The sample included 100 000 512 bp-long DNA sequences
centered around the chosen cytosines, along with the correspond-
ing binary label (1 indicated a DMC, 0 otherwise). We evaluated
the impact of the size of the training dataset on L-MAP’s accuracy
in Supplemental Figure 7. The figure shows that the accuracy
improves up to a sample size of 100 000. Further increases in
the sample size do not significantly improve L-MAP’s accuracy.
We also evaluated L-MAP’s performance using precision, recall,
F1, and specificity score on the seven knockout datasets (see
Supplemental Figure 12).

For each knockout experiment, L-MAP was trained on 90 000
cytosines (chosen uniformly at random) and tested on 10 000
cytosines (chosen uniformly at random). The cytosines in the
test set were at least 256 base pairs away from any cytosine
in the training set, so that the corresponding windows did not
overlap. We did not mix data from different datasets. To ensure
consistent results across different random train-test splits, we
computed the variance of L-MAP’s accuracy across five random
samples of the training set for TETKO and DNMT3KO. The average
and standard deviation for L-MAP’s accuracy are illustrated in
Supplemental Figure 5. The results indicate that the deviation in
L-MAP’s accuracy is very small across different random samples
of the training set, which allowed us to rely on the results of a
single run for the rest of the experiments.

Figure 1A shows the methylation levels of human ESC wild-
type and TET knockout cytosines in the region [2493500,2497500]
of chromosome 19, as a qualitative example of the training data.
The middle panel shows the difference in methylation level
between the two cell lines, where the red dots indicate DMCs (blue
otherwise). The lower panel shows L-MAP’s predictions of DMCs
based on the sequence context around the cytosine. Observe how
L-MAP makes accurate predictions in the middle portion of this
region.

Figure 1B shows the receiver operating characteristic (ROC)
curves for the binary classification performance of L-MAP on the
four human knockout data set. The figure shows that the best
classification performance was achieved on the TETKO dataset in
which TET1, TET2, and TET3 genes were knocked out [area under
the curve (AUC) 0.89, accuracy 0.79]. The second best was on the
DNMT3KO dataset, in which both DNMT3A and DNMT3B genes
were knocked out. The quadruple knockout (QKO) and quintuple
knockout (PKO) had lower accuracy and AUC compared with
TETKO and DNMT3KO. Our hypothesis is that mixing multiple
enzymatic knockouts in QKO and PKO makes it harder for the
classifier to capture their sequence specificity. However, the fact
that L-MAP can still classify DMCs in the QKO and PKO suggests
the existence of common sequence signatures between the two
classes of enzymes.

Figure 1C shows the ROC curves for the binary classification
performance of L-MAP on the three mouse knockout data set.
Again, the figure shows that the best classification performance
was achieved on the TET2/3KO dataset in which both TET2 and
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Figure 1. (A—upper panel) methylation levels of human ESC wild-type and TET knockout cells in the region [2493500,2497500] of chromosome 19; (A—
middle panel) the difference in methylation level between wild-type and knockout; the red dots indicate differentially methylation cytosines; (A—lower
panel) predictions generated by L-MAP based on contextual sequence information; the red dots indicate cytosine that are predicted to be differentially
methylated; (B) ROC curves for the performance of L-MAP on human TET and DNMT3 knockout datasets (AUC=area under the curve, ACC=accuracy); (C)
ROC curves for the performance of L-MAP on mouse TET and DNMT3 knockout datasets (AUC=area under the curve, ACC=accuracy); (D) the architecture
L-MAP.

TET3 genes were knocked out (AUC 0.81, accuracy 0.73). These
results also suggest that in humans and mice, the TET activity
is more sequence-dependent than DNMT3. The performance of
L-MAP on the DNMT3bKO dataset was the second-best.

Cross knockout prediction
In the following experiments, we carried out a set of cross-
knockout and cross-species predictions. In one set of experiments,
L-MAP was trained on one knockout dataset and tested on a
different knockout enzyme. In the second set, L-MAP was trained
on human knockout data and tested on mouse knockout data, or
vice versa.

The cross-species L-MAP’s accuracy is visualized in Fig. 2A and
Fig. 2B, for human and mouse, respectively. The figures indicate
that the highest accuracy is often observed when L-MAP is trained
and tested on the same data set, as expected. However, there
are some exceptions. L-MAP’s accuracy is higher when trained
on human PKO and QKO data sets and tested on TET data sets,
compared with being tested on the same knockout dataset. This
can be explained by the presence of shared patterns in the PKO
and QKO cell lines, both of which include the knockout of TET.

The cross-knockout L-MAP’s accuracy is illustrated in Fig. 2C
and Fig. 2D. Figure 2C reports the results on three data sets: two
for mouse ESC (DNMT3AKO and DNMT3BKO) and one for human
ESC (DNMT3KO, which includes DNMT3A and DNMT3B knock-
out). Figure 2D reports the results on two data sets: one for human
ESC (TETKO, corresponding to TET1, TET2, and TET3 knockout)
and one for mouse ISC (TET23KO, representing TET2 and TET3
knockout). The figure shows that the highest accuracy is achieved
when the model is trained and tested on the same dataset. Also,
we observed that in the case of TET, the cross-species experiment
yields significantly lower accuracy, suggesting that the underlying
sequence contexts associated with TET activity are likely to be
different in the two species.

Motif analysis
The objective of this analysis was to extract “knowledge” from
the LLM to gain insights on the sequence context employed by
L-MAP to make predictions about DMCs. Briefly, we used the
attention layer of L-MAP to identify DNA sequences associated
with DMCs and DNA sequences associated with non-DMCs. These
positive and negative examples were processed using STREME
[27], to obtain motifs and corresponding P-values (see Methods
for details). Figure 3 reports the motifs with the lowest P-value
for each of the seven knockout datasets (the lowest three P-value
motifs are reported in Supplemental Figures 8 and 9). We utilized
JASPAR [28] to search for known motifs that matched our motifs.
The best matches are reported in the last four columns of Fig. 3.
The results indicate that all the motifs are associated with the
C2H2 zinc finger factors, which are known to have a role in methy-
lation and demethylation processes (see, e.g. [29–32]). For instance,
zinc finger protein ZNF615 plays a significant role in embryonic
stem cell development through DNA methylation by facilitating
the recruitment of DNA methyltransferases to specific genomic
regions [33]. Most of the matching motifs are also associated with
molecular mechanisms in embryonic stem cells.

The first JASPAR hit in Fig. 3 is the binding site for the PRDM9
zinc finger, which controls the location and intensity of crossovers
during meiosis in humans and mice [34–36]. Studies have shown
that there is a link between PRDM9 activity and TET1 during
meiosis in mice [37]. The second hit is the motif associated with
ZNF320, which influences the regulation of the cell cycle and
immune infiltration, underscoring its significance in the molec-
ular pathways of hepatocellular carcinoma progression [38]. The
third hit is the binding site for ZBTB14, which is a key protein in
Xenopus embryonic development, influencing neural induction
and differentiation by modulating BMP and WNT signaling path-
ways [39]. ZBTB14 is also known as a regulator that binds to non-
methylated CpG islands, playing a crucial role in controlling gene
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Figure 2. (A) L-MAP’s accuracy when trained on a human knockout dataset and tested on another human knockout dataset; (B) L-MAP’s accuracy when
trained on one mouse knockout dataset and tested on another mouse knockout dataset; (C and D) L-MAP’s accuracy when trained on a human (mouse)
knockout dataset and tested on a mouse (human) knockout datasets.

expression associated with the two-cell-like state [40]. The fourth
hit is the motif associated with GLIS2, which has been identified as
a transcriptional activator and is implicated as an epigenetically
defined biomarker of a pluripotent phenotype in human ESCs [41].
The fifth hit is the binding site for ZNF740, which plays a crucial
role in cell differentiation by modulating the expression of MEF2C
and its target genes, influencing the transition of pluripotent
stem cells into trophoblasts through its interaction with a specific
genomic variation [42]. The sixth hit is the motif associated with
ZNF343, which is involved in the early stages of human embryonic
development and influences embryo quality and developmental
potential [43]. The last hit on Fig. 3 is the KLF17 binding site, which
plays a significant role in the establishment of naive pluripotency
in human ESCs [44].

L-MAP’s high accuracy in the prediction of DMCs for the TET
knockout samples can be leveraged for a deeper analysis of the
related motifs. In Supplemental File 1, we collected the 20 motifs
with the lowest P-values and searched the JASPAR database for
corresponding transcription factor binding motifs. These tran-
scription factors can be further analyzed for potential interaction
with TET. Notably, CTCF had the highest occurrence in the JAS-
PAR hits. The interaction between CTCF and TET is well studied
[25, 45–49]. We expect that the other transcription factors in this
list are also interacting with TET, but most of them are unexplored
in the literature. This is an opportunity for research in functional
determinants of TET proteins.

DNMT3a and DNMT3b de novo DNA methyltransferases are
known to have strong sequence preferences, particularly in the
sequences surrounding the CpG dinucleotides [50–55]. To inves-
tigate which positions in the input window are more important
for the classification, we extracted L-MAP’s attention scores. Fig-
ures 10 and 11 in the supplemental material show the attention
scores within the input window for L-MAP on different data sets.
The results indicate that L-MAP’s strongest attention is on the
positions flanking the center cytosine. Also, the figures show that
the attention is much stronger on the flanking positions for the
DNMT3 data sets compared with TET data sets, consistent with
the literature.

Predictions using sequence and methylation
levels
Within the scope of data imputation, one could assume to have
the methylation levels of some cytosines and want to predict
DMCs for the missing data. To test the extent to which imputation
would be possible, we modified the input to L-MAP to allow
the use of nearby methylation levels for the wild-type sample,
the knockout sample, or both (in addition to the primary DNA
sequence surrounding the cytosine of interest). Details about the
architecture of this variant of L-MAP can be found in the Methods
section.

Figure 4 illustrates the performance of L-MAP using various
input combinations. Except for HESC-DNMT3KO, the figure shows
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Figure 3. Sequence motifs (extracted from the attention layer of L-MAP) that achieved the lowest P-values in each knockout dataset and the corresponding
the best hits from the JASPAR motif database.

Figure 4. L-MAP’s prediction accuracy in seven knockout datasets when
neighboring cytosine methylation levels are used (in addition to the
primary DNA sequence).

that providing the methylation levels of neighboring cytosines
does not significantly improve L-MAP’s accuracy. In fact, in five
out of seven cases, L-MAP performs slightly better when neigh-
boring cytosine methylation levels were not provided.

Discussion
Here, we introduced L-MAP, an LLM capable of predicting DMCs for
TET and DNMT3 knockouts from the DNA sequence surrounding
the cytosine of interest. To the best of our knowledge, we are

the first to explore this prediction problem. Our experimental
results show L-MAP can accurately predict DMCs in human and
mouse ESCs.

Our cross-species and cross-enzyme experiments highlight the
potential of L-MAP to predict DMCs even when trained on differ-
ent knockout datasets, with the exception of the model trained
on the human TETKO dataset and tested on mouse ESC TET23KO
and vice versa. This observation suggests distinct TET activity
domains in ESCs between mouse and human species.

In practice, L-MAP can be used to obtain the methylation levels
for cytosines that have insufficient sequencing coverage, enabling
researchers to include more cytosines in their downstream anal-
yses. This increase in the methylation signal could make a dif-
ference in discovering new relationships between methylation
enzymes like DNMT3 and TET and specific genes or regulatory
elements.

By analyzing the attention layer of L-MAP, our study identified
DNA sequence motifs associated with TET and DNMT3 activity in
human ESC, mouse ESC, and mouse ISC, which were validated by
comparing them with known motifs. Our work represents the first
attempt in addressing this challenging problem, and it provides
a tool to gain new insights into the role of TET and DNMT3
activity in cell processes, particularly during cell differentiation.
The ability to predict DMCs and discover associated sequence
motifs opens up opportunities for advancing our understanding
of epigenetic regulation in various cellular processes.

Although we assessed the capability of L-MAP for predicting
DMCs on a limited set of knockouts in human and mouse ESCs, it
remains uncertain whether these findings are applicable to other
knockouts or cell lines. The biggest obstacle to expanding L-MAP
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to other cell lines or other species is the lack of knockout data sets,
which are laborious and expensive to produce. Currently, L-MAP
relies solely on the DNA sequence surrounding the cytosines. In
order to extend L-MAP to other cell lines or species, it is possible
that the classifier might need additional genomic features. The
sequence alone may not be sufficient to capture the influence of
broader epigenetic contexts or chromatin structures. In addition,
our choices for L-MAP’s main hyperparameters (i.e. token size and
window size) were determined experimentally by maximizing the
predictive performance of L-MAP on our data sets. It is possible
that other knockout data sets would require a different choice of
these hyperparameters.

We observed that a significant proportion of DMCs were located
in close proximity to each other, possibly connected to the pres-
ence of CpG islands. A failure to account for this phenomenon
could result in overlaps between training windows and test win-
dows, biasing the model performance. Future studies could assess
the performance of predictive models separately for CpG islands
and non-CpG islands to provide a deeper understanding of their
capabilities.

Methods
Data sources and pre-processing
We used a total of seven knockout data sets and three wild-
type datasets from three studies, with each wild-type data set
associated with one of these studies. In the first study, Charlton
et al. [12] engineered HUES8 human embryonic stem cell lines
using CRISPR-Cas9 to selectively inactivate DNMT3A, DNMT3B,
TET1, TET2, and TET3 genes, producing variants with multiple
genetic knockouts. Specifically, they created the DNMT3KO line
(DNMT3A and DNMT3B were deactivated), the TETKO line (TET1,
TET2, and TET3 were knocked out), the QKO line (TET1, TET2,
TET3, and DNMT3B were deactivated), and the PKO line (TET1,
TET2, TET3, DNMT3A, and DNMT3B were knocked out). In the
second study, Gu et al. [21] generated mouse embryonic stem
cell knockout data sets by inactivating DNMT3A and DNMT3B to
analyze their roles in DNA methylation. In the third study, Ansari
et al. [22] generated mouse ISC knockout data sets by creating
double knockout mice lacking TET2 and TET3 to investigate their
roles in the small intestine.

All 10 datasets (seven knockout and three wild-type) (i) were
obtained using whole-genome bisulfite sequencing using Illu-
mina sequencing instruments and (ii) were processed using the
BSMAP pipeline [56] for mapping bisulfite-treated reads to the
reference genome. In all these datasets, due to the choice of the
protocol used to carry out the bisufite-treated sequencing, only
the methylation levels for the forward strand are available. In
our experiments, we used the methylation levels provided by the
authors. However, to ensure that we could compare methylation
levels across different studies, we re-analyzed the three wild-type
samples using a common software pipeline. We processed the
three sets of Illumina reads through Bismark [57] using default
parameters. The methylation levels obtained from our pipeline
matched almost exactly the methylation levels provided by the
authors: the mean square difference between our levels and those
provided by the authors was ¡2%.

Given a pair of (wild-type, knockout) data sets, we compared
the difference in methylation levels for the same cytosine in
the two experiments. We defined a cytosine to be differentially
methylated (DMC) if the absolute value of the difference between

the methylation level in the wild-type and the methylation level
in the knockout from the same study was at least 0.6, as proposed
by Charlton et al. [12]. We only called DMC for cytosines that
were covered by at least 10 reads in both wild-type and knockout
experiments. Cytosines that were not covered by at least 10 reads
in either experiment were considered undetermined and ignored
in our study.

Training set design
We studied the effect of the size of the training set on L-MAP’s
accuracy in Supplemental Figure 7. The results show that L-MAP’s
performance improves until the training set size reaches 100 000
data points. Expanding the training set size further only increases
the training time, without a significant benefit in the accuracy.
Based on this analysis, for each knockout experiment, we con-
structed the training set by randomly sampling 45 000 cytosines
that were differentially methylated (DMCs) and 45 000 cytosines
that were not differentially methylated (non-DMCs) from the
entire genome, resulting in a training set of 90 000 cytosines. For
the test set, we randomly selected an additional 5000 DMCs and
5000 non-DMCs from the remaining data, ensuring that none of
these test cytosines were closer than 256 bp to any cytosine in the
training set. To clarify, we did not mix data from different datasets;
each experiment was conducted using data exclusively from its
specific dataset. We evaluated L-MAP’s performance for various
choices of the input window sizes on DNMT3 and TET knockout
datasets in Supplemental Figure 4. Based on this analysis, we
selected 512 bp centered around the cytosine of interest, as it
yielded the best results among the tested sizes. We should note
that 512 bp is the longest possible input that DNABERT allows.

The label of each sequence was binary, indicating whether the
center cytosine was differentially methylated or not.

Classifiers
The architecture of L-MAP combines DNABERT [58] with a fully
connected neural network as shown in Fig. 1D. For each exper-
iment, we fine-tuned the pre-trained DNABERT and the fully
connected network for five epochs. Each epoch took about 40 min
on an NVIDIA GeForce RTX 3090 GPU. L-MAP required about 24GB
of RAM to load all the parameters of the LLM. To evaluate the
convergence and potential overfitting, we analyzed the training
and test accuracy and loss over epochs on the HESC-DNMT3KO
dataset (see Supplemental Figure 13).

In Supplemental Figure 6 we assessed the accuracy of
other Transformer-based models. DNABERT and the nucleotide-
transformer tied for the best performance on the TET knockout
dataset. Between the two, we chose DNABERT because of its
motif-finding module. The input sequence was first tokenized in
overlapping 6-mers. In Supplemental Figure 3 we tested various
sizes for the tokens on the DNMT3 dataset, and k = 6 produced
the best performance. DNABERT’s output layer was used as
input to a fully connected neural network consisting of three
layers with 128, 24, and 2 nodes, respectively. Each layer used a
dropout rate of 0.5 and employed the ReLU activation function,
with the exception of the final layer, which utilized softmax
as the activation function. The model was trained utilizing the
Adam optimizer, with a learning rate of 1e-5, and employed a
binary class entropy as the loss function. Also, we evaluated the
performance of a random forest and a support vector machine
classifier using the embedding produced by the pre-trained
DNABERT encoder. Supplemental Figure 14 shows that L-MAP
outperformed both the RF classifier and the SVM classifier,
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indicating the importance of fine-tuning DNABERT to achieve
optimal performance.

In the experiments that used neighboring cytosine methylation
levels, the embedding produced by DNABERT was concatenated
with the vector(s) representing the methylation levels from either
wild-type or knockout datasets (or both). This additional vector
was -1 in all positions, except for the positions of neighboring
cytosines with sufficient read coverage, where the known methy-
lation level of the cytosine was used.

Motif analysis
We first obtained a random set of 10 000 genomic sequences of
length 512 bp, where half of them were the context sequence sur-
rounding a DMC, while the other half surrounded a non-DMC. We
processed these sequences through DNABERT, then extracted the
weights from DNABERT’s attention layer. We used the weights to
identify high-attention regions, using the DNABERT motif-finding
tool. For each of these regions, we extracted the corresponding
DNA sequences from the original DNA sequence dataset, resulting
in two distinct sets of DNA sequences for positive and negative
samples. Then, we employed STREME [27] to identify motifs (and
their P-values) that were enriched in the positive set and depleted
in the negative set, using parameters minw=6, maxw=12, and nmo-

tifs=100. The position weight matrices of the three motifs with
the lowest P-values were matched against known motifs using
JASPAR [28].

Abbreviations
5mC = 5-methylcytosine
DMC = differentially methylated cytosines
LLM = large language model
L-MAP = language model-based methyltransferases activity
predictor
AUC = area under the curve
TET = ten-eleven translocation (enzyme)
DNMT = DNA methyltransferase (enzyme)
ESC = embryonic stem cells
ISC = intestinal stem cells

Key Points

• L-MAP is a large language model that can predict dif-
ferentially methylated cytosines (DMCs) in human and
mouse when trained on TET and DNMT3 knockout
data sets.

• L-MAP predicts DMCs with high accuracy exclusively
based on the DNA sequence surrounding the cytosine of
interest.

• L-MAP can predict DMCs even when trained on different
knockout data sets (human versus mouse, or TET versus
DNMT3).

• L-MAP can be used to discover new transcription factor
binding sites associated with TET and DNMT3.
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