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Outline

¨ Vulnerabilities!
¨ Elements of a vulnerability
¨ Impact of vulnerability exploitation

¤Confidentiality
¤ Integrity 
¤Availability

¨ Example vulnerability (and why)
¨ Threat model
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Vulnerability

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Flaw – Functionality that may violate security
¤ E.g., Crash, Use or modify sensitive data

¨ Accessible – Adversaries may access the flaw
¤ Flaw can run using adversary input

¨ Exploit – Provide inputs to cause security violation
¤ Adversary can produce an attack payload
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Security Requirements

¨ Security requirements are described in three categories (CIA)
¨ Confidentiality (Secrecy)

¤ E.g., Prevent leakage of sensitive data to an adversary
¨ Integrity

¤ E.g., Prevent unauthorized modification of sensitive data
¨ Availability

¤ E.g., Prevent blockage of use of critical services
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Example Code

¨ Does this code have a vulnerability?
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Security Requirements of the Code

¨ Confidentiality
¤ Must not read pointer values 

¨ Integrity
¤ Must not modify data other than “buffer”

¨ Availability
¤ Must complete its execution

¨ Not an exhaustive list
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What’s a Flaw?

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?
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Example Code

¨ Does this code have a flaw?
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How is ”buffer” represented?

¤ Variable buffer occupies 10 bytes in the stack region
n char buffer[10]; 

¤ buffer is an array of objects of type char
n C does not represent strings as a data type

¤ buffer is also a pointer to the memory region of 10 bytes
n C uses the variable “buffer” to store the memory location of 

these 10 bytes in the process’s address space
n printf(“0x%x\n”, buffer);  // prints addr
n printf(“%s\n”, buffer);    // prints value

0 2n-1



What’s a Flaw?

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?

¨ In the example code, memory outside of “buffer” 
may be written illicitly, violating integrity 
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Example Code

¨ The function sscanf writes each byte from 
”source” to “buffer” until a 0-byte in “source”
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Why is that a flaw?

¤ buffer occupies 10 bytes in the stack region
n sscanf(source, “%s, buffer)

¤ sscanf starts at the memory location “buffer”
n And writes until a null byte is found in “source”
n Does source have to have a null byte within its first 10 bytes?
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Why is that a flaw?

¤ Buffer occupies 10 bytes in the stack region
n sscanf(source, “%s, buffer)

¤ sscanf starts at the memory location “buffer”
n And writes until a null byte is found in “source”
n Which could be more than 10 bytes

¤ Which illicitly writes memory outside of the allocated 
region for “buffer”
n What is there?  We’ll see
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What’s Accessibility?

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Accessibility – Can an adversary access the flaw? 
¤ What does “access” mean?
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Back to Accessibility

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Accessibility – Can an adversary access the flaw? 
¤ I.e., Cause the flawed action to happen

¨ Can the adversary cause the flawed code to run?  
Can the adversary supply the inputs to cause the 
flawed action to happen?  
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Example Code

¨ Is “source” accessible to an adversary?
¨ Can an adversary cause “sscanf” to run?
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Example Code

¨ An adversary can supply the value “source” from 
the command line
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What’s Exploitation?

¨ A vulnerability is a flaw (e.g., in software) that is 
accessible to an adversary who can exploit that 
flaw

¨ Exploit – Can the adversary use the accessible flaw 
to cause the program’s execution to violate a 
security requirement
¤ What are violations of security requirements?
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What Can Be Exploited?

¤ What is in the yellow memory area
n Stack memory

¤ What does stack memory look like?
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cdecl – the default for Linux & gcc
12
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What Can Be Exploited?

¤ What is in the yellow memory area
n Stack memory

¤ What can be written illicitly by sscanf in this program?
n Local variables: none, as “buffer[10]” is the only one
n Frame pointer (ebp)
n Return address
n Prior stack frames (gray)
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Hijack Control Flow – Ret Addr
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Return Address

¨ The return address of a function determines the 
code that is run when the function returns
¤ By modifying this value, you can change how the 

program executes
¤ In arbitrary and powerful ways

¨ The main way of hijacking programs for many 
years, but now there are new hijacking techniques 
that are harder for defenders to detect
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Threat Model

¨ Vulnerabilities connect exploitable flaws in 
programs with adversary accessibility

¨ What resources an adversary can access from 
a program’s attack surface and the operations 
an adversary can perform on those resources 
form the Threat Model
¤You should consider systematically what threats 

your programs face
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Threat Model

¨ What are the resources and operations on those 
resources that form the threats here?
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Threat Model

¨ Can supply (write) the value “source” from the 
command line – argv[1] – supply (write) the value 
of argc
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Kinds of Flaws

¨ The kind of flaw shown in this example is called a 
memory error
¤ Most common type of flaw in current vulnerabilities
¤ Approximately 70% of vulnerabilities reported by 

Google and Microsoft independently
¨ But, there are many other types of flaws

¤ Even in connecting the program with its environment
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Conclusions

¨ Vulnerabilities that compromise confidentiality or 
integrity are common

¨ Vulnerabilities allow adversary to access flaws that 
they can exploit to violate security requirements

¨ We demonstrated a memory error vulnerability to 
hijack the return address on the stack
¤ Buffer overflow (more later)

¨ Many types of flaws are out there that may be 
exploitable
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Questions
46


