
Software Vulnerabilities
October 3, 2024

1

CS165 – Computer Security

Outline

¨ Vulnerabilities!
¨ Elements of a vulnerability
¨ Impact of vulnerability exploitation

¤Confidentiality
¤ Integrity
¤Availability

¨ Example vulnerability (and why)
¨ Threat model

2

Vulnerability

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – Functionality that may violate security
¤ E.g., Crash, Use or modify sensitive data

¨ Accessible – Adversaries may access the flaw
¤ Flaw can run using adversary input

¨ Exploit – Provide inputs to cause security violation
¤ Adversary can produce an attack payload

3

Security Requirements

¨ Security requirements are described in three categories (CIA)
¨ Confidentiality (Secrecy)

¤ E.g., Prevent leakage of sensitive data to an adversary
¨ Integrity

¤ E.g., Prevent unauthorized modification of sensitive data
¨ Availability

¤ E.g., Prevent blockage of use of critical services

4

Example Code

¨ Does this code have a vulnerability?
5

Security Requirements of the Code

¨ Confidentiality
¤ Must not read pointer values

¨ Integrity
¤ Must not modify data other than “buffer”

¨ Availability
¤ Must complete its execution

¨ Not an exhaustive list

7

What’s a Flaw?

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?

8

Example Code

¨ Does this code have a flaw?
9

How is ”buffer” represented?

¤ Variable buffer occupies 10 bytes in the stack region
n char buffer[10];

¤ buffer is an array of objects of type char
n C does not represent strings as a data type

¤ buffer is also a pointer to the memory region of 10 bytes
n C uses the variable “buffer” to store the memory location of

these 10 bytes in the process’s address space
n printf(“0x%x\n”, buffer); // prints addr
n printf(“%s\n”, buffer); // prints value

0 2n-1

What’s a Flaw?

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?

¨ In the example code, memory outside of “buffer”
may be written illicitly, violating integrity

11

Example Code

¨ The function sscanf writes each byte from
”source” to “buffer” until a 0-byte in “source”

12

Why is that a flaw?

¤ buffer occupies 10 bytes in the stack region
n sscanf(source, “%s, buffer)

¤ sscanf starts at the memory location “buffer”
n And writes until a null byte is found in “source”
n Does source have to have a null byte within its first 10 bytes?

0 2n-1

Why is that a flaw?

¤ Buffer occupies 10 bytes in the stack region
n sscanf(source, “%s, buffer)

¤ sscanf starts at the memory location “buffer”
n And writes until a null byte is found in “source”
n Which could be more than 10 bytes

¤ Which illicitly writes memory outside of the allocated
region for “buffer”
n What is there? We’ll see

0 2n-1

What’s Accessibility?

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Accessibility – Can an adversary access the flaw?
¤ What does “access” mean?

15

Back to Accessibility

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Accessibility – Can an adversary access the flaw?
¤ I.e., Cause the flawed action to happen

¨ Can the adversary cause the flawed code to run?
Can the adversary supply the inputs to cause the
flawed action to happen?

16

Example Code

¨ Is “source” accessible to an adversary?
¨ Can an adversary cause “sscanf” to run?

17

Example Code

¨ An adversary can supply the value “source” from
the command line

18

What’s Exploitation?

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Exploit – Can the adversary use the accessible flaw
to cause the program’s execution to violate a
security requirement
¤ What are violations of security requirements?

19

What Can Be Exploited?

¤ What is in the yellow memory area
n Stack memory

¤ What does stack memory look like?

0 2n-1

Process
MemoryFile system

Basic Execution
11

Binary

Code

Data

...

Processor

Process
MemoryFile system

Basic Execution
11

Binary Code

Data

...

Stack

Heap

Processor

Process
MemoryFile system

Basic Execution
11

Binary Code

Data

...

Stack

Heap

Processor

Fetch, decode, execute

Process
MemoryFile system

Basic Execution
11

Binary Code

Data

...

Stack

Heap

Processor

Fetch, decode, execute

read and write

cdecl – the default for Linux & gcc
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

cdecl – the default for Linux & gcc
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 28
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

%esp
stack

cdecl – the default for Linux & gcc
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

%esp
stack

cdecl – the default for Linux & gcc
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

%esp
stack

cdecl – the default for Linux & gcc
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

%esp
stack

What Can Be Exploited?

¤ What is in the yellow memory area
n Stack memory

¤ What can be written illicitly by sscanf in this program?
n Local variables: none, as “buffer[10]” is the only one
n Frame pointer (ebp)
n Return address
n Prior stack frames (gray)

0 2n-1

Hijack Control Flow – Ret Addr
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

Hijack Control Flow – Ret Addr
12

int orange(int a, int b)
{
char buf[16];
int c, d;
if(a > b)

c = a;
else

c = b;
d = red(c, buf);
return d;

}

…

b

a

overwrite

overwrite

overwrite

Write to ‘buf’
overwriting other
local variables,

etc

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack
frame

to be created
before

calling red

after red has
been called

gr
ow

Return Address

¨ The return address of a function determines the
code that is run when the function returns
¤ By modifying this value, you can change how the

program executes
¤ In arbitrary and powerful ways

¨ The main way of hijacking programs for many
years, but now there are new hijacking techniques
that are harder for defenders to detect

33

Threat Model

¨ Vulnerabilities connect exploitable flaws in
programs with adversary accessibility

¨ What resources an adversary can access from
a program’s attack surface and the operations
an adversary can perform on those resources
form the Threat Model
¤You should consider systematically what threats

your programs face

34

Threat Model

¨ What are the resources and operations on those
resources that form the threats here?

35

Threat Model

¨ Can supply (write) the value “source” from the
command line – argv[1] – supply (write) the value
of argc

36

Kinds of Flaws

¨ The kind of flaw shown in this example is called a
memory error
¤ Most common type of flaw in current vulnerabilities
¤ Approximately 70% of vulnerabilities reported by

Google and Microsoft independently
¨ But, there are many other types of flaws

¤ Even in connecting the program with its environment

37

Conclusions

¨ Vulnerabilities that compromise confidentiality or
integrity are common

¨ Vulnerabilities allow adversary to access flaws that
they can exploit to violate security requirements

¨ We demonstrated a memory error vulnerability to
hijack the return address on the stack
¤ Buffer overflow (more later)

¨ Many types of flaws are out there that may be
exploitable

45

Questions
46

