CS165 — Computer Security

Memory Error Defenses
November 8, 2024

Memory Error Defenses

We have discussed some

Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)

Do these defenses work?

Memory Error Defenses

We have discussed some

Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)

These defenses do not prevent ROP attacks
Why not?

Memory Error Defenses

We have discussed some
Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)

These defenses do not prevent ROP attacks

Why not?
Bypass canaries and ASLR
Disclose canary values on stack

Disclose stack pointer values (e.g., EBP) to decode ASLR
Exploit function pointers other than the return address

DEP/NX does not prevent execution of code memory

Control Hijacking

Two main ways that C/C++ allows code targets to be
computed at runtime

Return address (stack) — choose instruction to run on “ret”
(i.e., function return)

Why is the return address determined dynamically?

Function pointer (stack or heap) — chooses instruction to
run when invoked

Also called an indirect call
If adversary can change either they can hijack control

Difficult to prevent modification of function pointers
No broad defense at present (too expensive)

Protect the Return Address

There is a defense that prevents the return address
from being modified without detection

More reliable than stack canaries
Called shadow stack

Shadow Stack

ldea: Check whether the return address has been
modified directly

Not use a separate item like a canary

On Call: record the value of the return address in a
safe memory location (i.e., the “shadow”)

On Return: compare the value of the return address to
be assigned to the %eip to the “shadow” recorded

Reject unless they match

Why Not Do This Already?

ldea: Check whether the return address has been
modified directly

Not use a separate item like a canary

Seems like an obvious and easy defense
But the performance of recording the return address twice
And protecting the return address from modification
Is significant higher than the canary defense

What can we do if a software defense is easy, but
expensive?

Intel CET

Implement the defense in hardware

Specifically, Intel Control-Flow Enforcement
Technology (CET)

Implements shadow stack (and more)
To prevent return-oriented programming attacks
Windows supports Intel CET

So do Linux compilers (gcc and clang)
With the —-fcf-protection flag

Control Hijack w/ Function Ptrs

int main ()

{
int (*f) () = &function;
int val = £();

return val;

If an adversary can modify the value of variable “f”,
then they can choose which code to run (e.g., gadget)

Defense for ROP Attacks

71 There is a defense that prevents many ROP attacks
o1 Called control-flow integrity

Defense for ROP Attacks

There is a defense that prevents many ROP attacks
Called control-flow integrity

Control-flow integrity restricts the values of function
pointers to only those that are legally possible

Given the program code

Indirect Call
I =

o A function call using a function pointer
1 What happens?

int F A()

{
int (*fp) ();

Control-Flow Integrity

Our Mechanism

% %

if(*fp != nop IMM,) halt
call fp if(*“esp != nop IMM,) halt

nop IMM, {————’__'return

é CFG excerpt
A > B,

call

NB: Need to ensure b?t patterns for nops IR, B
appear nowhere else in code memory

Indirect Call
I =

o A function call using a function pointer
1 What happens?

int F A()
{
int (*fp) ();

if (a > 0) fp = &F B;

else fp = &F C;

fp();

Control-Flow Integrity

More Complex CFGs

Maybe statically all we know is that CFG excerpt
F, can call any int— int function A » B,

FA call \ C1

% Fo| succlAa) = (B Ci
nop IMM,

if(*fp '= nop IMM) halt
call fp

|:
% nop IMM,

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

Control-Flow Integrity

Imprecise Return Information

Q: What if Fg can return CEG
excerpt
to many functions ? 2

A: Imprecise CFG Acall+1 1\

Dcall+1

%

if(**esp != nop IMM,) halt

succ(B,er) = {Acai+1> Deaie1}

CFG Integrity:

Changes to the

return PC are only to
valid successor
PCs, per succ().

Control-Flow Integrity

c 3 No “Zig-Zag” Imprecision

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

CFG excerpt CFG excerpt
B1 B1

Acall>< Acall \
C C
/ 1 1A

EcaII Ecall\ C1 E

Destination Equivalence

Eliminate impossible return targets

Two destinations are said to be equivalent if they connect
to a common source in the CFG.

func_1i:

——————
—————
—————
<

call %%eax I
R1: DN

ret

call func_i N ..
R2: func_j:

R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Destination Equivalence

Eliminate impossible return targets
Can R2 be a return target of func j?

func_1i:

——————
—————
< -

call %%eax I
R1: N

ret

call func_i AN ..
R2: func_j:

call func_j / §

R3: ret

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

Restricted Pointer Indexing

One table for call and return for each call/return site
Call Site 1 Callee |

Target Table 1
eax
. »| func_j — func_j:
call *%eax Target Table j
Ri:
\ [esp]
Rl < . \ ret

Limit an indirect call to a predefined set of functions
Possible assighnments to the function pointer for call site |

Limit a return to a predefined set of callers
Only the callers of Callee |

CFl Policies

CFl limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

CFl Policies

CFl limits the indirect call and return targets
But there are multiple CFI policies that may be enforced
Coarse CFI

What code locations could you execute from on a call?
Or return?

CFl Policies

CFl limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

Coarse CFI

Any function start (for indirect calls)
That is, a function pointer can be used to call any function

Follow any call site (for returns)
A return address can return to any call site
Reduces the fraction of instructions significantly

But, does not prevent attacks in practice
Why?

CFl Policies

CFl limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

Fine CFI

Want to reduce the set of indirect call and return targets
to those that are really possible

What can we do for calls/returns?

CFl Policies

]
7 Fine CFlI

For calls: match function pointers with functions of the
same function signature

m Signature: return type, number of arguments, argument types

CFl Policies

Fine CFI

For calls: match function pointers with functions of the
same function signature

Signature: return type, number of arguments, argument types

Suppose you have the function pointer declaration
void (*fun ptr) (int);
Which function could be a legal target?
vold *function(int x)
vold functionl (int *x)
vold functionZ(int yl, 1int y2)
(

vold function3 (int z)

CFl Policies

Fine CFI

For calls: match function pointers with functions of the

same function signature

Signature: return type, number of arguments, argument types
Suppose you have the function pointer declaration

void (*fun ptr) (int);
Which function could be a legal target?

vold *function(int x)

vold functionl (int *x)
vold functionZ(int yl, 1int y2)
vold function3 (

int z)

CFl Policies

- Fine CFlI

o1 For returns: Always return to the call site that invoked the
function

» How do we ensure that?

CFl Policies

Fine CFI

For returns: Always return to the call site invoked

Shadow stack
Record return address in a safe location
Check return address against shadow value on return
Now implemented in Intel CET hardware

CFl Policies

Fine CFI

For returns: Always return to the call site invoked
Shadow stack

Record return address in a safe location

Check return address against shadow value on return
Now implemented in Intel CET hardware

% Imprecise Return Information

. Q: What if Fg can return
Fa

CEG t
to many functions ? =2 excerpl

A: Imprecise CFG

CFG Integrity:
2 Changes to the

PC are only to
valid successor
call Fg PCs, per succ().

Intel CET and CFI

Intel Control-Flow Enforcement Technology (CET)

Implements shadow stack
On returns

And coarse CFl
On indirect calls

Linux compiler support (gcc and clang)
With the —-fcf-protection flag

Conclusions

Can improve resilience to attack on memory errors
Prevent return-oriented attacks

Shadow stack
Ensure that return address cannot be modified
Ensure function returns to its caller
Control-flow integrity
Limit program control flows to those in program

Limit to legal function pointer values

Doesn’t prevent all exploits, but reduces many
attack vectors —and is now available

Questions
85 |

QA

