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Memory Error Defenses

¨ We have discussed some
¤ Canaries
¤ Address Space Layout Randomization
¤ Data Execution Protection (No Execute)

¨ Do these defenses work? 
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Memory Error Defenses

¨ We have discussed some
¤ Canaries
¤ Address Space Layout Randomization
¤ Data Execution Protection (No Execute)

¨ These defenses do not prevent ROP attacks
¤ Why not?

n Bypass canaries and ASLR
n Disclose canary values on stack
n Disclose stack pointer values (e.g., EBP) to decode ASLR
n Exploit function pointers other than the return address

n DEP/NX does not prevent execution of code memory
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Control Hijacking

¨ Two main ways that C/C++ allows code targets to be 
computed at runtime
¤ Return address (stack) – choose instruction to run on “ret” 

(i.e., function return)
n Why is the return address determined dynamically?

¤ Function pointer (stack or heap) – chooses instruction to 
run when invoked
n Also called an indirect call

¨ If adversary can change either they can hijack control
¨ Difficult to prevent modification of function pointers

¤ No broad defense at present (too expensive)
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Protect the Return Address

¨ There is a defense that prevents the return address 
from being modified without detection
¤ More reliable than stack canaries
¤ Called shadow stack
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Shadow Stack

¨ Idea: Check whether the return address has been 
modified directly 
¤ Not use a separate item like a canary

¨ On Call: record the value of the return address in a 
safe memory location (i.e., the “shadow”)

¨ On Return: compare the value of the return address to 
be assigned to the %eip to the “shadow” recorded
¤ Reject unless they match
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Why Not Do This Already?

¨ Idea: Check whether the return address has been 
modified directly 
¤ Not use a separate item like a canary

¨ Seems like an obvious and easy defense
¤ But the performance of recording the return address twice
¤ And protecting the return address from modification
¤ Is significant higher than the canary defense

¨ What can we do if a software defense is easy, but 
expensive?
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Intel CET

¨ Implement the defense in hardware
¨ Specifically, Intel Control-Flow Enforcement 

Technology (CET)
¤ Implements shadow stack (and more)
¤ To prevent return-oriented programming attacks
¤ Windows supports Intel CET
¤ So do Linux compilers (gcc and clang)

n With the –fcf-protection flag
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Control Hijack w/ Function Ptrs

int main()

{

int (*f)() = &function;
int val = f();

return val;

}

¨ If an adversary can modify the value of variable “f”, 
then they can choose which code to run (e.g., gadget)
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Defense for ROP Attacks

¨ There is a defense that prevents many ROP attacks
¤ Called control-flow integrity
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Defense for ROP Attacks

¨ There is a defense that prevents many ROP attacks
¤ Called control-flow integrity

¨ Control-flow integrity restricts the values of function 
pointers to only those that are legally possible
¤ Given the program code
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Indirect Call

¨ A function call using a function pointer
¤ What happens?

int F_A()

{

int (*fp)();

…

fp = &F_B;

…

fp();

… 

}
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Control-Flow Integrity 

8 

Our Mechanism 

FA FB 

return 
call fp 

Acall 

Acall+1 

B1 

Bret 

CFG excerpt 

nop IMM1 

if(*fp != nop IMM1) halt 

nop IMM2 

if(**esp != nop IMM2) halt 

NB: Need to ensure bit patterns for nops 
appear nowhere else in code memory 
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Indirect Call

¨ A function call using a function pointer
¤ What happens?

int F_A()

{

int (*fp)();

…

if (a > 0) fp = &F_B;

else fp = &F_C;

…

fp();

… 

}
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Control-Flow Integrity 

9 

More Complex CFGs 

Maybe statically all we know is that  
FA can call any int     int function 

FA 

FB 

call fp 

Acall 
B1 

CFG excerpt 

C1 

FC 

nop IMM1 

if(*fp != nop IMM1) halt 

nop IMM1 

Construction: All targets of a computed jump must have 

the same destination id (IMM) in their nop instruction 

succ(Acall) = {B1, C1} 
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Control-Flow Integrity 

10 

Imprecise Return Information 

Q: What if FB can return 

     to many functions ? 

Bret 

Acall+1 

CFG excerpt 

Dcall+1 

FB 

FA 

return 

call FB 

FD 

call FB 

nop IMM2 

if(**esp != nop IMM2) halt 

nop IMM2 

succ(Bret) = {Acall+1, Dcall+1} 

CFG Integrity: 

Changes to the 
PC are only to 
valid successor 
PCs, per succ(). 

A: Imprecise CFG 
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Control-Flow Integrity 

11 

No “Zig-Zag” Imprecision 

Acall 
B1 

CFG excerpt 

C1 

Ecall 

Solution I: Allow the imprecision Solution II: Duplicate code 
to remove zig-zags 

Acall 
B1 

CFG excerpt 

C1A 

Ecall C1E 
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Destination Equivalence

¨ Eliminate impossible return targets
¤ Two destinations are said to be equivalent if they connect 

to a common source in the CFG.

ret

func_j:

ret

func_i:

R2:

call  func_j
R3:

R1:
call    %eax

call   func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to



22

Destination Equivalence

¨ Eliminate impossible return targets
¤ Can R2 be a return target of func_j?

ret

func_j:

ret

func_i:

R2:

call  func_j
R3:

R1:
call    %eax

call   func_i

Figure 4. Destination equivalence effect on ret instructions (a dashed line
represents an indirect call while a solid line stands for a direct call)

effect on the ret instructions. In this figure, there are one
indirect call instruction and two direct call instructions.
The indirect call may invoke both functions func i and
func j while the two direct calls execute func i and
func j, respectively. R1, R2 and R3 are the corresponding
three return addresses. From the figure, the function func i
can return to R1 and R2, and the function func j can
return to R1 and R3. Because of the destination equivalence
effect, R1, R2 and R3 are all equivalent in this example.
More specifically, since R2 is equivalent to R1 and R1 is
equivalent to R3, based on the transitivity of the equivalence
relation, R2 is equivalent to R3. The destination equivalence
effect also indicates that a return address has the same index
in each target table that contains it. This is obvious since
only one index can be assigned to a specific destination.
In our example, R1, R2 and R3 forms one equivalent
group, and two ret instructions in func i and func j can
return to them. If one table per function is used to enforce
the control-flow integrity, we can use a table “R1, R2,
error” for the ret instruction in func i, and another table
“R1, error, R3” for the ret instruction in func j, where
error denotes a special destination to trap an impossible
control transfer. Therefore, our one-table-per-function-based
control-flow integrity enforcement policy is more precise
than the one originally proposed in [1], where R1, R2 and
R3 will bear the same label ID and both ret instructions
can legitimately transfer control to all of them. In particular,
in [1], the function func i can legally return to R3 and
func j can legally return to R2. In comparison, our scheme
can flexibly handle the destination equivalence effect and
make these two paths simply impossible in HyperSafe.

III. IMPLEMENTATION
We have implemented a prototype of HyperSafe and

applied it to protect two open-source Type-I hypervisors,
i.e., BitVisor [46] (with ∼190K SLOC) 4 and Xen [5] (with
∼230K SLOC). In particular, the first technique – non-
bypassable memory lockdown – is implemented by directly
extending their memory management modules. For the sec-
ond technique – restricted pointer indexing, we choose to
extend the open-source LLVM compiler so that we can

4In our prototype, we disabled the VPN support in BitVisor as it is not
relevant.

enable it by simply re-compiling the hypervisor code with
the modified compiler. Our development environment is a
standard 64 bit Ubuntu 9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen port
only contains the non-bypassable memory lockdown feature,
which nevertheless guarantees the nontrivial code integrity
of Xen. Meanwhile, our current prototype integrates the
trusted booting software, i.e., tboot [49], to protect the load-
time integrity. After the hypervisor is successfully loaded,
HyperSafe will then ensure its runtime integrity. In the
following, we focus on the BitVisor port as an example to
present our implementation details.

A. Non-Bypassable Memory Lockdown
The key novelty of our system is the non-bypassable

memory lockdown technique for hypervisor integrity protec-
tion, achieved purely based on commodity hardware support.
Specifically, HyperSafe write-protects the hypervisor’s page
tables and turns on the WP bit in CR0 to initiate the memory
lockdown. Our system requires only minimal modifications
to the supported hypervisors, therefore satisfying the sec-
ond design goal (Section II). Specifically, in our BitVisor
prototype, we only added or changed 521 lines of C code
and 9 lines of assembly code. To avoid potential pitfalls in
W⊕X enforcement (Section II), we adjust the link script to
align related sections to avoid mixed pages and at runtime
disallow double mappings.
In our prototype, we reserved the top 128MB physical

memory for BitVisor. This memory is mapped 1 : 1 to
the virtual address 0x40200000. A 32MB memory range,
starting at the virtual address 0x40800000, is reserved as the
shared page table pool from which all the hypervisor’s page
tables are allocated. After secure booting from tboot, the
hypervisor properly initializes the page table data structure,
turns on the WP protection in the CR0 register, and then
enables the paging mode. After entering the paging mode,
every virtual memory access will be automatically translated
through page tables. Because of that, all the page tables
have to be accessible and mapped in the hypervisor’s virtual
address space. In BitVisor, since all the page tables are
allocated from and mapped in the page table pool, we simply
set the whole page table pool as read-only to lock the
page tables. To accommodate benign updates, our system
first traverses through the page table hierarchy to locate the
affected page table entries, and then escorts their updates to
guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any

write attempts to modify them at runtime (e.g., either by
legitimate hypervisor code or malicious code injected due
to a successful exploitation) will be trapped. Inside the page
fault handler, we will enforce an unlocking logic that simply
preserves the W⊕X property. In the meantime, there also
exist a number of legitimate reasons for the hypervisor to
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Restricted Pointer Indexing

¨ One table for call and return for each call/return site

¨ Limit an indirect call to a predefined set of functions 
¤ Possible assignments to the function pointer for call site I

¨ Limit a return to a predefined set of callers
¤ Only the callers of Callee j

func_j

Ri

call       *%eax
Ri:        ... ...

func_j:

ret

[esp]

eax

Call Site i Callee j

(a) Traditional indirection call

Ri:        ... ...
call       *%eax

  Ri

func_j

ret

func_j:

Target Table i

eax

[esp]
Target Table j

Call Site i Callee j

(b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call in HyperSafe (Note Ri is the return address of the indirect call)

instrumented to convert the index back to the destination
address (e.g., by looking up the index in the table). For that,
we need to take the following two steps:
First, the instructions that introduce the control data into

the hypervisor program must be converted to use the indexes
instead. For simplicity, we call these instructions source
instructions. The source instruction for a return address is
the related call that pushes the return address onto the stack.
As a result, the call instruction will be instrumented into
two instructions: one pushes the index onto the stack and
another jmps to the function entry point. For an indirect
call, its source instruction is an earlier instruction that loads
the function address to the register or memory. Unlike the
return address case, the function pointer can possibly appear
in the data section (e.g., as a member of an initialized global
object or variable). As a result, we can leverage the compiler
to identify and convert them.
Second, the instructions that consume the control data

from the hypervisor program must be converted to translate
the indexes back to their destination addresses. Similarly,
we call these instructions sink instructions. Return addresses
will be used by the ret instructions while function pointers
will be consumed by indirect call/jmp instructions. During
instrumentation, a ret will be converted to a sequence of
instructions to pop the index off the stack, convert it into the
return address, and then return to it. An indirect call/jmp will
be converted to use the index to locate the function entry
point and then continue execution there.
Based on the above instrumentation, an indirect call acts

as a sink instruction for the consumed function pointer
and a source instruction for the dynamically-pushed return
address. Therefore, it will be instrumented twice. There may
also exist other instructions that access the control data but
are not the source and sink instructions. Among them, some
instructions can be left intact if the contents of the control
data are not explicitly examined by them. One example
is the mov instruction that copies the index to and from
registers or memory. Instructions that compare two function
addresses do not need instrumentation either if we assign the
pointer indexes in the order of their addresses. On the other
hand, instructions that examine the contents of control data
must be expanded to convert indexes into original control
data. A general solution is to discover and convert all such
instructions, ideally by the compiler. Fortunately, very few

instructions will touch return addresses on the stack. If they
do, most likely they are implemented in assembly and thus
we can instrument them manually. For function pointers,
most accessing instructions are mov or cmp. In this case,
the contents of the function pointers are not examined and
we can safely keep these instructions as is.
In Figure 3, we show the control flow for an instrumented

call/ret pair in HyperSafe when compared to the original
pair. In the figure, the original call has been instrumented
to fetch the index from eax, convert it to a function entry
point by indexing into its target table, and then jump
to the function. By substituting indexes for control data,
HyperSafe limits the destination of a runtime control transfer
to only those explicitly specified in the target table. In
other words, indirect instructions can only transfer control
to the targets allowed by the CFG. Moreover, because all
the destination addresses are known beforehand from the
hypervisor program binary, these target tables can be pre-
computed offline. At runtime, they are protected by directly
applying the memory lockdown technique.
Furthermore, with the help of the target tables, HyperSafe

can flexibly control the precision of control-flow integrity.
In one extreme case, we can simply use two big tables:
one is for all the ret instructions (with all valid return
addresses) and the other one is for all the indirect call
instructions (with all possible indirectly-called functions’
entry points). This scheme provides the least precision,
resulting in coarse protection: namely a ret can return to
any valid return address in the hypervisor program; and an
indirect call can call any indirectly-called function. On the
other extreme, each indirect call has its own target table,
and all ret instructions inside the same function share one
target table. In other words, each function has a dedicated
table for all of its returns. By doing so, we can provide
the finest control over what targets indirect instructions can
transfer control to. Note that there is no need to use one
target table per return instruction since all the ret instructions
in a function always have the same set of return addresses.
As pointed out in [1], the major factor that impairs the

precision of control-flow integrity is the so called destination
equivalence effect. That is, two destinations are considered
to be equivalent if they connect to a common source in
the CFG. Further, the equivalence relation is transitive. In
Figure 4, we show an example of the destination equivalence
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CFI Policies

¨ CFI limits the indirect call and return targets 
¤ But there are multiple CFI policies that may be enforced
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CFI Policies

¨ CFI limits the indirect call and return targets 
¤ But there are multiple CFI policies that may be enforced

¨ Coarse CFI
¤ What code locations could you execute from on a call?
¤ Or return?
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CFI Policies

¨ CFI limits the indirect call and return targets 
¤ But there are multiple CFI policies that may be enforced

¨ Coarse CFI
¤ Any function start (for indirect calls)

n That is, a function pointer can be used to call any function
¤ Follow any call site (for returns)

n A return address can return to any call site

¨ Reduces the fraction of instructions significantly
¤ But, does not prevent attacks in practice
¤ Why?
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CFI Policies

¨ CFI limits the indirect call and return targets 
¤ But there are multiple CFI policies that may be enforced

¨ Fine CFI
¤ Want to reduce the set of indirect call and return targets 

to those that are really possible
¤ What can we do for calls/returns?
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CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the 

same function signature
n Signature: return type, number of arguments, argument types
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CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the 

same function signature
n Signature: return type, number of arguments, argument types

¤ Suppose you have the function pointer declaration
n void (*fun_ptr)(int);

¤ Which function could be a legal target?
n void *function(int x)
n void function1(int *x)
n void function2(int y1, int y2)
n void function3(int z)
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CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the 

same function signature
n Signature: return type, number of arguments, argument types

¤ Suppose you have the function pointer declaration
n void (*fun_ptr)(int);

¤ Which function could be a legal target?
n void *function(int x)
n void function1(int *x)
n void function2(int y1, int y2)
n void function3(int z)



33

CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site that invoked the 

function
n How do we ensure that?
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CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site invoked

n Shadow stack
n Record return address in a safe location 
n Check return address against shadow value on return 
n Now implemented in Intel CET hardware
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CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site invoked

n Shadow stack
n Record return address in a safe location 
n Check return address against shadow value on return 
n Now implemented in Intel CET hardware

10 

Imprecise Return Information 

Q: What if FB can return 

     to many functions ? 

Bret 

Acall+1 

CFG excerpt 

Dcall+1 

FB 

FA 

return 

call FB 

FD 

call FB 

nop IMM2 

if(**esp != nop IMM2) halt 

nop IMM2 

succ(Bret) = {Acall+1, Dcall+1} 

CFG Integrity: 

Changes to the 
PC are only to 
valid successor 
PCs, per succ(). 

A: Imprecise CFG 
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Intel CET and CFI

¨ Intel Control-Flow Enforcement Technology (CET)
¤ Implements shadow stack

n On returns
¤ And coarse CFI 

n On indirect calls
¤ Linux compiler support (gcc and clang)

n With the –fcf-protection flag



Conclusions

¨ Can improve resilience to attack on memory errors
¤ Prevent return-oriented attacks

¨ Shadow stack
¤ Ensure that return address cannot be modified

n Ensure function returns to its caller

¨ Control-flow integrity
¤ Limit program control flows to those in program

n Limit to legal function pointer values

¨ Doesn’t prevent all exploits, but reduces many
attack vectors – and is now available 

84
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