
Filesystem Security
November 22, 2024

1

CS165 – Computer Security

File Open

¨ Problem: Processes need resources from system
¤ Just a simple open(filepath, …) right?
¤ But, adversaries can cause victims to access resources of their

choosing
¤ And if your program has some valuable privileges, an

adversary may want to trick you into using them to
implement a malicious operation

2

A Webserver’s Story …

¨ Consider a university department webserver …

3

GET /~student1/index.html HTTP/1.1

Apache
Webserver

student2/
public_html

student1/
public_html

faculty1/
public_html

/etc/
passwd

Link

Symbolic Link

¨ Many file systems allow you to create a “link” to refer
another file
¤ I.e., file systems are not trees, but graphs

¨ There is a link command – “ln”
¤ ln –s target linkname

¤ Creates a “link” file named “linkname” in the current
directory

¨ When you “open” the linkname, you actually open the
target file
¤ ln –s /etc/passwd mylink
¤ open(“mylink”, O_RDWR, …);

¤ Does what? 4

Attack Video

What Just Happened?

¨ Program acts as a confused deputy
¤ when expecting
¤ when expecting

Webserver

Password
File Web Pages

Authenticate

Passwd
File

Web PagesAuthenticate

OK Not
OK

Passwd
File

Web PagesServe
Webpage

OK
Not
OK

Serve
Webpage

Talk Outline
¨ Problem: Processes need resources from system

7

CSE543 - Introduction to Computer and Network Security Page

Integrity (and Secrecy) Threat
• Confused Deputy
‣ Process is tricked into performing an operation on

an adversary’s behalf that the adversary could not
perform on their own
• Write to (read from) a privileged file

�X

Confused Deputy Attacks

8

Untrusted Search Path
CWE-426

Untrusted Library Load
CWE-426

File / IPC squatting
CWE-283

Directory Traversal
CWE-22

PHP File Inclusion
CWE-98

Link Following
CWE-59

TOCTTOU Races
CWE-362

Signal Races
CWE-479

Confused
Deputy
Attacks

Lesson

¨ Opening a file is fraught with danger
¤ We must be careful when using an input that may

be adversary controlled when opening a file
n Or anything else…

9

Name Resolution

¨ Processes often use names to obtain access to system resources
¨ A nameserver (e.g., OS) performs name resolution using a

namespace (e.g., directories) to convert a name (e.g.,
pathname) into a system resource (e.g., file)
¤ Filesystem, System V IPC, …

10

/ var mail rootP open(“/var/
mail/root”)

Name
(pathname)

Directories

Resource (file)

Namespace (filesystem)

/ var mail root

mailvar

Link Traversal Attack

¨ Adversary controls links to direct a victim to a
resource not normally accessible to the adversary

¨ Victim expects one resource, gets another instead

11

open(“/var/
mail/root”)

/ rootvar mailvar mail/

etc passwdpasswd

rootrootVroot

Amail

File Squatting Attack

¨ Adversary predicts a resource to be created by a
victim – creates that resource in advance

¨ Victim accesses a resource controlled by an
adversary instead

12

mailvaropen(“/var/
mail/root”)

/ rootvar mailvar mail/ root

owner rootowner mail

root

Amail

Vroot

Common Threat

¨ What is the threat that enables link traversal and
file squatting attacks?
¤ Common to both

Common Threat

¨ What is the threat that enables link traversal and
file squatting attacks?
¤ Common to both

¨ In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution
¤ Could be any directory used in resolution, not just

the last one
¤ Enables the adversary to plant links and/or

files/directories where they can write

Threat Example

¨ An adversary may be authorized to write to a directory
you use in resolving a file path

¨ E.g., groups and others may have write permission to
a directory
¤ Consider the directory /tmp
¤ ls –la /tmp

n drwxrwxrwx --- root root --- .
n Means?

15

Threat Example

¨ Suppose your program wants to create a new file
at “/tmp/just_a_normal_file_here”
¤ What file will you create/open?

17

File Squatting

¨ Suppose your program wants to create a new file
at “/tmp/just_a_normal_file_here”
¤ What file will you open?

n An adversary could have created this file already (file
squat) and given you permissions, so that you can use it

n Can be difficult to verify the origins of a file

¤ Causes your program to use a file under adversary
control when you expect your own file

18

Threat Example

¨ Suppose your program is asked to open the file path
“/tmp/just_a_normal_file_here”
¤ What file will you open?

19

Link Traversal

¨ Suppose your program is asked to open the file path
“/tmp/just_a_normal_file_here”
¤ What file will you open?

n An adversary could have created this as a symbolic link to
any file in the system that you can access

n And it is difficult/expensive to verify that this is not a
symbolic link

n stat – provides file system information – e.g., permissions
n lstat – provides file system information (like “stat”) for the link,

rather than the file/directory the link refers to

¤ Causes your program to access an adversary-chosen file

20

Prevent File System Attacks

¨ How would you prevent such attacks?

Check and Use

¨ Some system calls enable checking of the file (check)
¤ Does the requesting party have access to the file? (stat,

access)
¤ Is the file accessed via a symbolic link? (lstat)

¨ Some system calls use the file (use)
¤ Convert the file name to a file descriptor (open)
¤ Modify the file metadata (chown, chmod)

¨ Can an adversary modify the filesystem in between
check and use system calls?

TOCTTOU Races

¨ Time-of-check-to-time-of-use (TOCTTOU) Race Attacks
¨ Some system calls enable checking of the file (check)

¤ Does the requesting party have access to the file? (stat,
access)

¤ Is the file accessed via a symbolic link? (lstat)
¨ Some system calls use the file (use)

¤ Convert the file name to a file descriptor (open)
¤ Modify the file metadata (chown, chmod)

¨ Can an adversary modify the filesystem in between
check and use system calls? Yes. Pretty reliably.

Vulnerabilities Easily Overlooked

¨ Manual checks can
easily overlook
vulnerabilities

¨ Misses file squat at
line 03!

24

01 /* filename = /var/mail/root */
02 /* First, check if file already exists */
03 fd = open (filename, flg);
04 if (fd == -1) {
05 /* Create the file */
06 fd = open(filename, O_CREAT|O_EXCL);
07 if (fd < 0) {
08 return errno;
09 }
10 }
11 /* We now have a file. Make sure
12 we did not open a symlink. */
13 struct stat fdbuf, filebuf;
14 if (fstat (fd, &fdbuf) == -1)
15 return errno;
16 if (lstat (filename, &filebuf) == -1)
17 return errno;
18 /* Now check if file and fd reference the same file,
19 file only has one link, file is plain file. */
20 if ((fdbuf.st_dev != filebuf.st_dev
21 || fdbuf.st_ino != filebuf.st_ino
22 || fdbuf.st_nlink != 1
23 || filebuf.st_nlink != 1
24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file
26 with one link"), filename);
27 close (fd);
28 return EINVAL;
29 }
30 /* If we get here, all checks passed.
31 Start using the file */
32 read(fd, ...)

Squat during
create (resource)

Symbolic link

Hard link,
race conditions

local

Local Exploits

¨ Attacks on filesystems, such as link traversal and
file squatting can be used by an adversary that
already controls code running on the host
¤ Often called “local exploits”

¨ Enable an adversary who has already controls
malware or hijacked processes to escalate
¤ Attack more privileged processes through shared

access to the file system
¨ Propagate an attack until the kernel is

compromised

Current Defenses

¨ Are there defenses to prevent such attacks?
¤ Yes, but the defenses are not comprehensive

Defenses

¨ Variants of the “open” system call
¤ Flag “O_NOFOLLOW” – do not follow any symbolic links

(prevent link traversal)
n Does not help if you may need to follow symbolic links
n May not be available on your system

¤ Flag “O_EXCL” and “O_CREAT” – do not open unless the
new file is created (prevent file squatting)
n Does not help if you if your program does not know whether the

file may need to be created

¨ These lack flexibility for protection in general

More Advanced Defenses

¨ The “openat” system call
¤ Can open the directory (dirfd) separately from opening the file

(path) to check the safety of that part of the name resolution
n int openat(int dirfd, const char *path, int oflag, ...);

¤ Control some aspects of opening “path” (e.g., no links)
n E.g., used in libc

libc_open (const char *file, int oflag, …)
to

return SYSCALL_CANCEL (openat, AT_FDCWD, file, oflag, …);

¨ The “openat2” system call
¤ More flags limiting “how” name resolution is done for “path”
¤ Not standard

Openat Usage Example

¨ Suppose you want to open “/var/mail/root” safely with
“openat”
¤ How would you do it?
int openat(int dirfd, const char *path, int oflag, ...);

¨ Three steps
¤ (1) Open “/var/mail” to obtain a “dirfd”
¤ (2) Validate that the resulting file descriptor refers to

“/var/mail”
¤ (3) Open the file “root” using “openat” using options to protect

the open from attacks
n O_NOFOLLOW to prevent use of symbolic links (i.e., prevent link traversal)
n O_EXCL with O_CREAT to ensure a fresh file is created (i.e., to prevent file

squatting)

Validating Directories

¨ How do you validate a directory for “dirfd”?
¨ Three steps

¤ (1) Open “/var/mail” to obtain its “fd”
¤ (2) Collect the “stat” structure for this “fd”

n From the file descriptor using fstat
int fstat(int fd, struct stat *buf);

¤ (3) Check that this “fd” refers to expected directory inode
S_ISDIR(mode_t buf.st_mode); // see ”struct stat” format

Check value of st_ino field

Conclusions

¨ Adversaries can attack your use of the filesystem
¨ Local exploit on shared access to the filesystem that

your program may use in name resolution
¤ If an adversary has write permission to any directory

used
n File squatting can control file content used by your program
n Link traversal can redirect your program to other files

¨ Can use available system calls, such as openat, to
prevent most forms of these attacks, but not all

64

Questions
65

