CS165 — Computer Security

Filesystem Security
November 22, 2024

File Open
TR e

= Problem: Processes need resources from system
o1 Just asimple open (filepath, ..) right?

o1 But, adversaries can cause victims to access resources of their
choosing

o And if your program has some valuable privileges, an
adversary may want to trick you into using them to
implement a malicious operation

A Webserver’s Story ...
TR e

-1 Consider a university department webserver ...

GET /~student1/index.html HTTP/1.1
|

Symbolic Link

Many file systems allow you to create a “link” to refer
another file
l.e., file systems are not trees, but graphs

There is a link command — “In”
Iln —-s target linkname

Creates a “link” file named “linkname” in the current
directory

When you “open” the linkname, you actually open the
target file

In -s /etc/passwd mylink

open (“mylink”, O RDWR, ..);

Does what? .

Attack Video

® QuickTime Player File Edit View Window Help P — —

c

iPad Air iPad mini iPhone 503 & iTunes

B 'FESTIVAL

hayawardh@mantra: ~/cod... |

Put the ultim

Free iPad engraving.

Configure your new iMac.

Apple's Oppenheimer to Retire at End of September

Apple today announced that Peter Oppenheimer, Apple's senior vice

Questions? Advice?
president and CFO, will retire at the end of September. Luca Maestri

Singapore School Finds New Ways to Educate With iPad

Educators at one of Singapore's top public high schools have found that

using iPad in the classroom is helping students excel and changing the

i HEM i = O 8%EF Tueld:37AM Q

What Just Happened?

Serve
VVbbpage

Authenticate

Webserver]

/\

~
N—_

Password
File

SN~—

— TN
—_ —
Web Pages

— &

Program acts as a confused deputy

éSwhen expecting @
Q when expecting @

Not
OK oK
<> W >
Serve Web pages
File
Webpage
Not
P d Web Pages
Authenticate @ -

PENNSTAT

Integrity (and Secrecy) Threat =

* Confused Deputy

» Process is tricked into performing an operation on
an adversary's behalf that the adversary could not
perform on their own

* Write to (read from) a privileged file

Confused Deputy Attacks

Confused
Deputy
Attacks

e

Lesson

TR e
1 Opening a file is fraught with danger

1 We must be careful when using an input that may
be adversary controlled when opening a file

m Or anything else...

Name Resolution
1]

- Processes often use names to obtain access to system resources

o A nameserver (e.g., OS) performs name resolution using a
namespace (e.g., directories) to convert a name (e.g.,
pathname) into a system resource (e.g., file)

Filesystem, System V IPC, ...

Namespace (filesystem)

N—
P open (“/var/ root
mail/root”)
= A\ ™~
ame \ | | Resource (file)

(pathname) |
Directories

10

Link Traversal Attack

-1 Adversary controls links to direct a victim to a
resource not normally accessible to the adversary

o Victim expects one resource, gets another instead

open (“/var/
mail/root”)
Link

. 55 passwd

File Squatting Attack
L

-1 Adversary predicts a resource to be created by a

victim — creates that resource in advance

71 Victim accesses a resource controlled by an

adversary instead

open (“/var/
mail/root”)

-

owner maakl

root \

@

12

Common Threat
L]

0 What is the threat that enables link traversal and
file squatting attacks?

= Common to both

@‘*"‘@A

Common Threat

What is the threat that enables link traversal and
file squatting attacks?

Common to both

In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution

Could be any directory used in resolution, not just
the last one

Enables the adversary to plant links and/or
files/directories where they can write

Threat Example

An adversary may be authorized to write to a directory
you use in resolving a file path

E.g., groups and others may have write permission to
a directory

Consider the directory /tmp
ls —-la /tmp
drwxrwxrwx ——-— root root —---

Means?

15

Threat Example

Suppose your program wants to create a new file
at “/tmp/just_a_normal file_here”

What file will you create/open?

17

File Squatting

Suppose your program wants to create a new file
at “/tmp/just_a_normal file_here”

What file will you open?

An adversary could have created this file already (file
squat) and given you permissions, so that you can use it

Can be difficult to verify the origins of a file

Causes your program to use a file under adversary
control when you expect your own file

18

Threat Example

Suppose your program is asked to open the file path
“/tmp/just_a_normal_file _here”

What file will you open?

19

Link Traversal

Suppose your program is asked to open the file path
“/tmp/just_a_normal_file _here”

What file will you open?

An adversary could have created this as a symbolic link to
any file in the system that you can access

And it is difficult/expensive to verify that this is not a
symbolic link
stat — provides file system information — e.g., permissions

Istat — provides file system information (like “stat”) for the link,
rather than the file/directory the link refers to

Causes your program to access an adversary-chosen file

20

Prevent File System Attacks
T e

7 How would you prevent such attacks?

Check and Use

Some system calls enable checking of the file (check)

Does the requesting party have access to the file? (stat,
access)

Is the file accessed via a symbolic link? (lstat)

Some system calls use the file (use)
Convert the file name to a file descriptor (open)
Modify the file metadata (chown, chmod)

Can an adversary modify the filesystem in between
check and use system calls?

TOCTTOU Races

Time-of-check-to-time-of-use (TOCTTOU) Race Attacks

Some system calls enable checking of the file (check)

Does the requesting party have access to the file? (stat,
access)

Is the file accessed via a symbolic link? (lstat)
Some system calls use the file (use)

Convert the file name to a file descriptor (open)

Modify the file metadata (chown, chmod)

Can an adversary modify the filesystem in between
check and use system calls? Yes. Pretty reliably.

Vulnerabilities Easily Overlooked

Manual checks can

easily overlook
vulnerabilities

Misses file sguat at

line 03!

01
02
03

/* filename = /var/mail/root */
/* First, check if file already exists */
fd = open (filename, flg);

if (fd == -1) {

/* Create the file */
fd = open(filename, O_CREAT|O0_EXCL);
i JCFd, TR0l

Squat during
} return errno; Create (resou rCe)

}

/* We now have a file. Make sure

we did not open a symlink. */
struct stat fdbuf, filebuf;
if (fstat (fd, &fdbuf) == -1)
return errno;
if (lstat (filename, &filebuf) == -1) . .
return errno; SymbOIIC Ilnk
/* Now check if file and fd reference the same file,

if ((fdbuf.st_dev != filebuf.st_dev
Hard link,
| sEdlalemt s @it mildmnk = il
with one link"), filename);

file only has one link, file is plain file. */
| stelsmn? . Grp_dline = st ll@enht - G 1king
| I& £dbuf . st _nlink U= 1
|| (abut.st_mode & s_1RUT) 1= s_teREc)) {| race conditions
error (_("%s must be a plain file
close (Id);
return EINVAL;

}

/* If we get here, all checks passed.
Start using the file */
read(fd, ...)

Local Exploits

Attacks on filesystems, such as link traversal and

file squatting can be used by an adversary that
already controls code running on the host

Often called “local exploits”

Enable an adversary who has already controls
malware or hijacked processes to escalate

Attack more privileged processes through shared
access to the file system

Propagate an attack until the kernel is
compromised

Current Defenses
e

-1 Are there defenses to prevent such attacks?
o1 Yes, but the defenses are not comprehensive

Defenses

Variants of the “open” system call

Flag “O_NOFOLLOW” — do not follow any symbolic links
(prevent link traversal)

Does not help if you may need to follow symbolic links

May not be available on your system

Flag “O_EXCL” and “O_CREAT” — do not open unless the
new file is created (prevent file squatting)

Does not help if you if your program does not know whether the
file may need to be created

These lack flexibility for protection in general

More Advanced Defenses

The “openat” system call

Can open the directory (dirfd) separately from opening the file
(path) to check the safety of that part of the name resolution

int openat(int dirfd, const char *path, int oflag, ...);
Control some aspects of opening “path” (e.g., no links)

E.g., used in libc

libc_open (const char xfile, int oflag, ..)
to
SYSCALL_CANCEL (openat, AT_FDCWD, file, oflag, ..);

The “openat2” system call
More flags limiting “how” name resolution is done for “path”
Not standard

Openat Usage Example

Suppose you want to open “/var/mail/root” safely with
“openat”

How would you do it?
int openat(int dirfd, const char *path, int oflag, ...);

Three steps
(1) Open “/var/mail” to obtain a “dirfd”

(2) Validate that the resulting file descriptor refers to
“/var/mail”

(3) Open the file “root” using “openat” using options to protect
the open from attacks

O_NOFOLLOW to prevent use of symbolic links (i.e., prevent link traversal)

O_EXCL with O_CREAT to ensure a fresh file is created (i.e., to prevent file
squatting)

Validating Directories

How do you validate a directory for “dirfd”?

Three steps
(1) Open “/var/mail” to obtain its “fd”
(2) Collect the “stat” structure for this “fd”

From the file descriptor using fstat
int fstat(int fd, struct stat *buf);

(3) Check that this “fd” refers to expected directory inode
S ISDIR(mode t buf.st mode); // see ”"struct stat” format

Check value of st ino field

Conclusions

Adversaries can attack your use of the filesystem

Local exploit on shared access to the filesystem that
your program may use in name resolution

If an adversary has write permission to any directory
used

File squatting can control file content used by your program

Link traversal can redirect your program to other files

Can use available system calls, such as openat, to
prevent most forms of these attacks, but not all

Questions
L es |

QA

