
Memory Exploits
October 28, 2024

1

CS165 – Computer Security

2

Building Exploits

¨ You have some idea about various kinds of exploits
that are possible

¨ Today, we will discuss methods to build exploits for
some simple programs

¨ Techniques you will be expected to adapt for
Project 2

3

Project 2 Exploits

¨ Disclosure – Buffer Overread
¤ Prepare memory to read beyond the end of a memory

region
¨ Heap – Type Confusion to Control Hijack

¤ Modify a function pointer using a type confusion
¨ Heap – Temporal attack to leak memory

¤ Use a stale pointer to access a secret in “freed” memory
¨ Buffer overflow – Control Hijack

¤ Return-to-code to run desired code

4

Exploits Need Debugger Help

¨ Using the debugger is key to:
¤ Learning what you need to know to build an exploit
¤ Debugging the exploit payload

¨ But, other tools help as well…
¤ objdump
¤ strings

¨ Discuss these today
¤ And labs will cover more details

5

Hijack Control Flow

¨ Let’s start by hijacking the control flow of a process
by exploiting a spatial error
¤ E.g., Buffer Overflow

¨ What’s the target - for hijacking control flow?

6

Hijack Control Flow

¨ Let’s start by hijacking the control flow of a process
by exploiting a spatial error
¤ E.g., Buffer Overflow

¨ How do we know there is an flaw? We test

7

Hijack Control Flow

¨ Find where the return address is on the stack
relative to the ‘buffer’
¤ Where is the return address?

n Find what the value of the return address should be
n Run the program to run ”function” in the debugger
n And then locate the return address on the stack using the

debugger

8

Hijack Control Flow

¨ What should the value of the return address be?
¤ What should the return address reference?

n Function ”main” calls function “function” and returns

9

Hijack Control Flow

¨ What should the value of the return address be?
¤ What should the return address reference?

n Function ”main” calls function “function” and returns

¨ The return address should reference the
instruction that is run immediately after ”function”
returns
¤ Instruction after the associated “call” in the caller

n “main” is the caller in our case

¨ How do we find that?

10

Finding the Return Address Value

¨ Use “objdump”
¤ Specifically – objdump –dl cs165-p1 | less

11

Finding the Return Address Value

¨ Use “objdump”
¤ What should the

return address
value be?

12

Finding the Return Address Value

¨ Use “objdump”
¤ What should the

return address
value be?

¤ Instruction after
the call

¤ 0x084856D
n In Hex, 32 bits

13

Using the Debugger

¨ Find where the return address is on the stack relative
to the ‘buffer’

¨ Run the program in the debugger
¤ To see the memory layout

14

Using the Debugger

¨ Find where the return address is on the stack relative
to the ‘buffer’

¨ Run the program in the debugger
¤ To see the memory layout

15

Finding the Return Address

¨ Find where the return address is on the stack relative
to the ‘buffer’

¨ Run the program in the debugger
¤ Where’s the return address? 0x084856D

16

Finding the Return Address

¨ Find where the return address is on the stack relative
to the ‘buffer’

¨ Run the program in the debugger
¤ Where’s the return address? At 0xffffc8ac

17

Finding the Return Address

¨ Find where the return address is on the stack relative
to the ‘buffer’

¨ Run the program in the debugger
¤ What’s the stack look like after the overwrite?

18

Finding the Return Address

¨ How many bytes from buffer to the return address?

¨ 28 bytes from $esp, but only 22 bytes from buffer
¤ Note that the value may not be on the boundary

19

Where to Redirect Control?

¨ For the project, mainly want to cause statements to
be printed to the terminal to demonstrate exploit
¤ Redirect control flow to printf
¤ Two ways

n Invoke printf statements in the program already
n Invoke the printf library function interface

n Accessible from the procedure linkage table (PLT)

20

Invoke Program Statements

¨ Invoke printf statements in the program already
¤ Where is one?
¤ Back to objdump – at 0x08048526

21

Invoke Program Statements

¨ Invoke printf statements in the program already
¤ How to build a payload?
¤ “echo” shell command is an easy way

n But need to generate binary byte values not ascii

¨ What happens when we use that payload?

22

Invoke Program Statements

¨ Let’s investigate with the debugger

23

Invoke Program Statements

¨ Let’s investigate with the debugger (more)

¨ The argument to printf is wrong, but the debugger
gives us a hint – it tried to use the value 0x41414444
¤ We supplied that
¤ We can replace it with a legit address in the payload

24

Strings program

¨ Prints the locations of the hardcoded strings in the
binary

¨ Produces

¨ Let’s print the “buffer address” string at 61b
¤ From the start of the binary (0x08048000)

25

Strings program

¨ Build a new payload and try again

¨ Printed two lines of “buffer address”
¤ But, seg faulted
¤ This is expected as we have messed up the stack

¨ Need to insert a call to ”exit” after the return address
to exit gracefully
¤ Right after the address of printf usually

26

Using the printf@plt

¨ The dynamic linker inserts the library code in process
memory at a location it chooses
¤ And it sets the addresses of the library functions used by

the program in the PLT
¤ To enable your program to call the library correctly

¨ We can launch exploits from the PLT also

27

Using the printf@plt

¨ Let’s build an exploit and give it a try
¨ This is the second try

¨ Note the 4 A’s between the two addresses
¤ I had to move the address of the string one slot over as

that is where the code for printf expects the argument
¤ Still crashes tho

n Can fix by replacing the ‘AAAA’ with the address of exit@plt,
but there is no call to ”exit” in the code

28

GDB PEDA

¨ GDB Python Exploit Development Assistance
¤ https://github.com/longld/peda

¨ More direct user interface for tracking exploit
execution and related info
¤ I suspect you will prefer this over the “old school”

GDB-only usage – at least for fixing exploits
¤ Although more directed at stack exploits than the heap

¨ Let’s look at the failed payload and debugging that
¤ This time with GDB PEDA

https://github.com/longld/peda

29

Debugging w/ GDB PEDA

¨ Basic User Interface
¤ At start

¨ Shows
¤ Registers
¤ Disassembled code
¤ Stack
¤ GDB info

¨ Highlights type of data:
code, data, or value

¨ NOTE: different location
in memory

30

Debugging w/ GDB PEDA

¨ Basic User Interface
¤ At start

¨ Shows
¤ EAX - input
¤ EIP – current inst
¤ Stack – return addr
¤ Line number

¨ Let’s go to “next”

31

Debugging w/ GDB PEDA

¨ After buffer overflow
¤ After “sscanf”

¨ Shows
¤ EBX – same, but see

next instruction
¤ EIP – current inst
¤ Stack – overflow
¤ Stack – new return addr

¨ Let’s “stepi”

32

Debugging w/ GDB PEDA

¨ After buffer overflow
¤ After “ret”

¨ Shows
¤ EBX – overwritten by

filler bytes
¤ EIP – at printf@plt
¤ Stack – references string

address
¨ Let’s “stepi”

33

Debugging w/ GDB PEDA

¨ After buffer overflow
¨ Shows

¤ EBX is still filler bytes
¤ Instruction uses ebx for

an address
¤ Seg Fault

¨ We can see cause of
overwriting the stack
value used to load ebx

34

Attack Summary

¨ Attack Steps
¤ Find where you want to redirect control flow

n From objdump – code in program or PLT
¤ Find how far the target memory location (return

address) is from the source of the overflow
n From gdb – display memory x/<N>x <source>, where <N> is

number of words to display and <source> is the base address
¤ Craft payload to modify target

n From echo –ne – limit data overwritten to avoid side effects
¤ Use program strings – hardcoded in the code segment

n From strings –t x – Add code segment’s base address

35

Heap Attacks

¨ Heap attacks are somewhat easier for us
¤ Unsafe function (flaw) used on heap data object

n Unsafe functions?
¤ Target may be in the same object

n Project 1 heap object?
n What could be a target?

¤ Payload is simpler
n Less stuff in the object to mess up than the stack often

¨ Let’s see a simplified example

36

Heap Attacks

¨ Program using heap objects of type “test”

37

Heap Attacks

¨ Can you see the unsafe function in this case?

38

Heap Attacks

¨ Can you see the unsafe function in this case?

39

Heap Attacks

¨ What is the target?

40

Heap Attacks

¨ Function pointer – why?

41

Heap Attacks

42

Buffer Overread/Disclosure

¨ Disclosure attacks use flaws to read memory
outside the accessed memory region

¨ Two typical flaws
¤ Adversary controls the length used to read
¤ Adversary controls the input being read

¨ How are these exploited?

43

Buffer Overread/Disclosure

¨ Adversary controls the length used to read and
receives dest
¤ strncpy(char *dest, char *source, size_t length)

¨ Suppose data copied into “dest” will be sent back
to the adversary
¤ How can an adversary with access to specify the value

of “length” to…
¤ Read unauthorized data outside of the memory region

of ”source”?

44

Buffer Overread/Disclosure

¨ Adversary controls the length used to read
¤ strncpy(char *dest, char *source, size_t length)

¨ Suppose data copied into “dest” will be sent back
to the adversary
¤ How can an adversary with access to specify the value

of “length” to …
¤ Read unauthorized data outside of the memory region

of ”source”, if not null terminated?
¨ Ans: Specify length beyond the end of memory

region of source – e.g., Heartbleed

45

Buffer Overread/Disclosure

¨ Adversary controls the input (source) being read
¤ strncpy(char *dest, char *source, size_t length)

¨ Suppose when “dest” is read the data will be sent
back to the adversary
¤ How can an adversary with access to specify the value

of “source” to …
¤ Read can a read of “dest” to read unauthorized data

outside of the memory region of ”dest”?

46

Buffer Overread/Disclosure
¨ Adversary controls the input (source) being read

¤ strncpy(char *dest, char *source, size_t length)
¨ Suppose data copied into “dest” will be sent back

to the adversary
¤ How can an adversary with access to specify the value

of “source” …
¤ Read unauthorized data outside of the memory region

of ”source”?
¨ Ans: Perhaps the adversary can create a source

value that is not a legal string (e.g., no null-
terminator)

47

Take Away

¨ Today, we examined the basics of building an
exploit
¤ Experience helps you gain confidence
¤ Start Project 2
¤ Bring us questions

¨ Demonstrated the steps to construct a stack buffer
overflow exploit
¤ Can apply the same tools to manipulate the heap
¤ And describe heap overflows
¤ And disclosure attacks

48

Type Errors

¨ Errors that permit access to memory according to a
multiple, incompatible formats
¤ These are called type errors
¤ Access using a different “type” than used to format the

memory
¨ Most of these errors are permitted by simple

programming flaws
¤ Of the sort that you are not taught to avoid
¤ Let’s see how such errors can be avoided

¨ Some of the changes are rather simple

Other Error Prone Type Casts

¨ Downcasts – Cast to a larger type; allows overflow
¤ t1 *p, t2 *q; // declare pointers
¤ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p
¤ pàfield = value; // suppose this is an int field
¤ q = (t2 *)p; // downcast, t2 is a larger type
¤ qàextra= value2; // overflow memory of object

¨ E.g., t2 is a child type of t1
¤ So, the size of type t2 is greater than the size of type t1
¤ “extra” field is added to the type t1 to create type t2

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ Only memory large enough for t1 is allocated

Int
F3

Int
F2

Int
F1

“p”

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ But, if we assign a pointer of type t2 to the object

¨ This is what can be referenced by “q”
¤ ”q” of type t2 thinks it is referencing a larger region

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ But, if we assign a pointer of type t2 to the object

¨ What will happen when the program accesses
“qàextra”?

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

What Can Go Wrong?

¨ Downcasts – Cast to a larger type; causes overflow
¤ t1 *p, t2 *q; // declare pointers
¤ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p
¤ pàfield = value; // suppose this is an int field
¤ q = (t2 *)p; // down cast, t2 is a larger type
¤ qàextra = value2; // overflow memory of object

¨ By downcasting to the larger type t2 with the “extra”
field, gives the adversary the ability to read/write
beyond the memory region allocated
¤ Memory region is “sizeof(t1)” in size

54

Type Confusion

¨ Many effective attacks exploit data of another type
struct A {

struct C *c;
char buffer[40];

};

struct B {
int B1;

int B2;
char info[32];
};

55

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;
char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {
int B1;

int B2;
char info[32];

};

56

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;

char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];
};

¨ Arbitrary Write Primitive!
¤ Adversary controls the value to write and the location of the write
¤ Allow adversary to write an arbitrary value to an arbitrary location

Exploiting Type Errors

¨ Type A is unrelated to type B

char[40]
buffer

C *
c“x”

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ Why could this become a problem?

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ The code allows assignment of field B1

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ The code allows assignment of field B1 of y, which
corresponds to field c of x

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

61

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;

char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];
};

¨ Arbitrary Write Primitive!
¤ Adversary controls the value to write and the location of the write
¤ Allow adversary to write an arbitrary value to an arbitrary location

62

Who Would Do That?!

¨ How could such an error happen?

63

Who Would Do That?!

¨ How could such an error happen?
¨ Several ways

¤ Type casts
¤ Unions – use the same memory with multiple formats
¤ Use-before-initialization (UBI)
¤ Use-after-free (UAF)

¨ The last two are due to bugs created because
C/C++ requires the programmer manage memory
¤ Temporal errors

64

Unions

¨ Example of a union data structure

http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-
data/union.html#:~:text=A%20union%20data%20structure%20is,variables%20at%20any%20one%20time

1/29/24, 10:34 PM

Page 1 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

The union data type

The union data type

Syntax to define a union data structure:

 union UnionName
 {
 datatype1 varName1; // List of variables
 datatype2 varName2;

...
 };

Meaning:

A union data structure is a number of memory cells used to store any one of the variables specified in the union structure

In other words:

The same memory cell(s) are used to store one of the variables in the list of variables at any one time

It is not possible to store more than one of the variables given in the list of variable at the same time

Defining a union typed variable:

Just like a struct data type, you can define variables of a union data type after you have defined the structure of a union
data type

Example:

 union myExample // Union definition
 {
 int a;
 double b;
 short c;
 char d;
 };

 union myExample x; // Define a variable of the type union myExample

How the different variables in a union typed variable are stored in memory:

Example union definition:

 union myExample
 {
 int a;
 double b;
 short c;
 char d;
 };

How the different variable in the type union myExample are stored in memory:

1/29/24, 10:34 PM

Page 2 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

Observe that:

Every member variable in a union typed variable start at the same memory address

The number of bytes used to store a member variable depends on the size (= data type) of the member
variable,

a uses 4 because it is an int type variable
b uses 8 because it is an double type variable
And so on.

The size of a union typed variable is equal to the size of the largest component variable

A C program that shows the facts of the union data structure

We can easily show the above facts with the following C program:

 union myUnion // Union structure
 {
 int a;
 double b;
 short c;
 char d;
 };

 struct myStruct // Struct with the same member variables
 {
 int a;
 double b;
 short c;
 char d;
 };

 int main(int argc, char *argv[])
 {
 struct myStruct s; // Define a struct
 union myUnion u; // and a union variable

 // Print the size and the address of each component

 printf("Structure variable:\n");
 printf("sizeof(s) = %d\n", sizeof(s));
 printf("Address of s.a = %u\n", &(s.a));
 printf("Address of s.b = %u\n", &(s.b));

65

Unions

¨ Example of a union data structure

http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-
data/union.html#:~:text=A%20union%20data%20structure%20is,variables%20at%20any%20one%20time

1/29/24, 10:34 PM

Page 2 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

Observe that:

Every member variable in a union typed variable start at the same memory address

The number of bytes used to store a member variable depends on the size (= data type) of the member
variable,

a uses 4 because it is an int type variable
b uses 8 because it is an double type variable
And so on.

The size of a union typed variable is equal to the size of the largest component variable

A C program that shows the facts of the union data structure

We can easily show the above facts with the following C program:

 union myUnion // Union structure
 {
 int a;
 double b;
 short c;
 char d;
 };

 struct myStruct // Struct with the same member variables
 {
 int a;
 double b;
 short c;
 char d;
 };

 int main(int argc, char *argv[])
 {
 struct myStruct s; // Define a struct
 union myUnion u; // and a union variable

 // Print the size and the address of each component

 printf("Structure variable:\n");
 printf("sizeof(s) = %d\n", sizeof(s));
 printf("Address of s.a = %u\n", &(s.a));
 printf("Address of s.b = %u\n", &(s.b));

1/29/24, 10:34 PM

Page 3 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

 printf("Address of s.c = %u\n", &(s.c));
 printf("Address of s.d = %u\n", &(s.d));

 putchar('\n');

 printf("Union variable:\n");
 printf("sizeof(u) = %d\n", sizeof(u));
 printf("Address of u.a = %u\n", &(u.a));
 printf("Address of u.b = %u\n", &(u.b));
 printf("Address of u.c = %u\n", &(u.c));
 printf("Address of u.d = %u\n", &(u.d));
 }

Output:

 Structure variable:
 sizeof(s) = 24
 Address of s.a = 4290768696
 Address of s.b = 4290768704
 Address of s.c = 4290768712
 Address of s.d = 4290768714

 Union variable:
 sizeof(u) = 8
 Address of u.a = 4290768688 (Same location !!!)
 Address of u.b = 4290768688
 Address of u.c = 4290768688
 Address of u.d = 4290768688

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link(s) and save in a scratch directory

To compile: gcc union1.c
To run: ./a.out

The use of union variables

Common uses of union typed variables:

1. As a buffer to store a value for an user-specified operation

The user-specified operation can receive different types of values.

2. You can use multiple struct variables of the same size inside a union variable to re-map the different bits to make
accessing the bit information easier

This technique is commonly used in network programming to process different message headers

This topic is beyond the scope of this course....

Personal anecdote:

66

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

67

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

¨ Allocate memory that includes all the fields that
will be accessed by any pointer

Allocating the Largest Type Used

¨ Type t1

¨ Type t2

¨ If we allocate an object of type t2
¤ Then accesses via ”p” and ”q” are within bounds and

access the same fields

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

69

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

¨ Allocate memory that includes all the fields that
will be accessed by any pointer
¤ In this case, all casts are an “upcast” of the allocated

type (i.e., have the same or fewer fields)
¤ And all the fields are in the corresponding locations

and have the same type
¤ Like casting a child class to a parent class in OOP

70

Temporal Memory Errors

¨ Exploit inconsistencies in the assignment of
pointers to memory regions
¤ Use-before-initialization

n Prior to a pointer being assigned to an object (memory
region)

¤ Use-after-free
n Use a pointer in a statement after the memory region to

which has been assigned has been deallocated
n And something has been allocated there in its place

¨ The most common vector for exploits today

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

What Is Going Wrong?

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object

Use-Before-Initialization (UBI)

¨ A pointer may reference a memory region that does
not hold a defined (assigned) object

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object

¨ Called “use before initialization” (UBI)
¤ Allows an adversary to reference a value that happens to

be at the location that “p” is declared (not an assignment)
¤ Could be anywhere

Why UBI Is A Problem

¨ Use before initialization

¨ Questions to explore
¤ Where is the pointer allocated in memory?

n Can the adversary control what is written to that location
¤ What is the pointer’s value at initialization?

n Can this reference a useful target object to attack?

Ptr

Why UBI Is A Problem

¨ Use before initialization

¨ Assume function “A” calls functions “B” and “C”
¤ When function “B” is called, a new stack frame is created
¤ Using memory in the stack region
¤ Suppose there is a string “buffer” built from adversary

input
¤ Then, function ”B” returns

Buffer

Why UBI Is A Problem

¨ Use before initialization

¨ Assume function “A” calls functions “B” and “C”
¤ When function “C” is called, a new stack frame is created
¤ Using memory in the stack region – used by function “B”
¤ Suppose there is a local variable pointer “ptr” declared in

function “C”
¤ But, ”ptr” is not initialized – what is the value of “ptr”?

Buffer ptr

79

Prevent UBIs

¨ Is there a way to prevent UBI vulnerabilities?

80

Prevent UBIs

¨ Is there a way to prevent UBI vulnerabilities?
¤ Simple: initialize your variables
¤ Pointers and data

What Is Going Wrong?

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object – release memory for reuse
¤ len = snprintf(p, size, "%s", original_value); // use pointer

Use-After-Free (UAF)

¨ A pointer may reference a memory region that does
not hold a defined (assigned) object

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object – release memory for reuse
¤ len = snprintf(p, size, "%s", original_value); // use pointer

¨ Called “use after free” (UAF)
¤ Allows an adversary to reference a memory region that

may be allocated to a different object
¤ I.e., imagine a malloc between the free and use

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ Focus on object ”B”
¤ You have a reference to “B” – say pointer “b”

Obj
A

Obj
B

Obj
C

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ Object ”B” is deallocated
¤ And you still have a reference to “B” – e.g., pointer “b”
¤ And, pointer “b” may have “uses” after the deallocation of

object ”B”
¤ But, the allocator is free to reuse the memory region

Obj
A

Obj
C

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ The allocator chooses to use the memory region for object

“D”
¤ So, a “use” of pointer “b” will access the object ”D” instead
¤ Leak: Can read information in Obj D (even if another user’s)
¤ Attack: Can modify information in Obj D (maybe pointers!)

Obj
A

Obj
C

Obj
D

86

Prevent UAFs

¨ Is there a way to prevent UAF vulnerabilities?

87

Prevent UAFs

¨ Is there a way to prevent UAF vulnerabilities?
¤ Simple: zero pointers when freeing them
¤ Their use (after freeing) will cause a crash, but cannot

be exploited

Conclusions

¨ Memory errors are still the most common cause of
vulnerabilities

¨ They are caused by C/C++ allows objects (memory
regions) and pointers (references to memory
locations) to be defined and managed separately

¨ Thus, C/C++ are neither memory safe nor type safe
¨ Which leads to spatial, type, and temporal errors

88

Questions
89

