CS165 — Computer Security

Dynamic (Fuzz) Testing
November 4, 2024

Our Goal

We want to develop techniques to detect
vulnerabilities automatically before they are
exploited
What'’s a vulnerability?
How to find them!

Vulnerability
TR e

7 How do you define computer ‘vulnerability’?
o Flaw
o Accessible to an adversary
o1 Adversary has ability to exploit

Problem

How do we know if your program has a flaw?
May be likely, but not guaranteed

More importantly, how do we locate a flaw!?
To assess whether it is vulnerable
Or better yet, to fix the flaw

Example
T e

- Can you find the flaw(s)?

int
im_vips2dz (IMAGE xin, const char xfilename) {
char *p, *q;
char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

N=l e e Y - S

im_strncpy(name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))) {

p = "\0";

im_strncpy(mode, p + 1, FILENAME_MAX);

—_— e
W N = O

}

—_—
wn

strcpy (buf, mode);
p = &buf[0];

—_— =
[=B B @)}
—

Flaw Evidence
I =

7 What indicates that your program has a flaw?

Flaw Evidence

What indicates that your program has a flaw!?

A crash (i.e., memory error)

Means that an instruction accessed an illegal memory
location

First example — read/write beyond bounds
A hang (i.e., infinite loop)

Some loop condition check has an error
Second example - Not check for EOF

Find Flaws

How can we find flaws?
Run the program

When it hangs/crashes, we have found a flaw

Challenge

Flaw may only be triggered by particular inputs

The task of producing inputs to test your program for
flaws is called dynamic analysis

Dynamic Analysis Options

Regression Testing

Run program on many normal inputs and look for bad
behavior in the responses

Typically looking for behavior that differs from expected —
e.g., a previous version of the program

Fuzz Testing
Run program on many abnormal inputs and look for
bad behavior in the responses

Looking for behaviors that may cause the program to stop
executing at all — crash or hang

Fuzz Testing

Fuzz Testing
|dea proposed by Bart Miller at Wisconsin in 1988
: People assumed that utility programs
could correctly process any input values
But, untrusted programs could run them

Supply any inputs they wanted (command line)

Found that they could crash 25-33% of UNIX utility
programs

Fuzz Testing

Fuzz Testing
|dea proposed by Bart Miller at Wisconsin in 1988

Approach
Generate random inputs
Run lots of programs using random inputs
|dentify crashes of these programs

Correlate with the random inputs that caused the
crashes

Problems: Crashes and hangs

Example Found

Fuzz Testing

Produce random inputs for processing

while (lastc !'= "\n’) {
rdc () ;
}

input.c (line 27):

rdc ()
{ do { readchar(); } // assigns ‘lastc’ to O
while (lastc == "' ' || lastc == "\t’); return (lastc);

}

Eventually produce line with EOF in the middle

Fuzz Testing

|dea: Search for flaws in a program by running the
program under a variety of inputs
Challenge: Selecting input values for the program

What should be the goals in choosing input values for
fuzz testing!?

Challenges

|dea: Search for flaws in a program by running the
program under a variety of inputs

Challenge: Selecting input values for the program

What should be the goals in choosing input values for
fuzz testing!

Find as many exploitable flaws as possible
Implies
Maximize code coverage (branches)

Generate inputs that cause crash/hang

Black Box Fuzzing

Like Miller — Feed the program random inputs
and see if it crashes

Pros: Easy to configure

Cons: May not search efficiently

May re-run the same path over again (low coverage)

May be very hard to generate inputs for certain
paths (checksums, hashes, restrictive conditions)

May cause the program to terminate for logical
reasons — fail format checks and stop

15

Black Box Fuzzing

May be difficult to pass “authenticate_user”
with random inputs

function (char *name, char *passwd, char *buf)
{
if (authenticate user (name, passwd)) {
1f (check format(buf)) {
update (buf);

16

Mutation-Based Fuzzing

Supply a well-formed input

Generate random changes to that input

No assumptions about modified input

Only assumes that variants of the well-formed input
will be effective in fuzzing

Example: zzuf
https://fuzzing-project.org/tutorial | .html
Reading: The Beginners’ Guide to Fuzzing

17

Mutation-Based Fuzzing

Example: zzuf
https://fuzzing-project.org/tutorial | .html

The Beginners’ Guide to Fuzzing

zzuf -s 0:1000000 -¢ -C 0 -g -T 3
objdump -x win9x.exe

Fuzzes the program objdump using the sample
input executable win9x.exe

Try IM seed values (-s) from command line (-c) and
keep running if crashed (-C 0) with timeout (-T 3)

18

Mutation-Based Fuzzing

Easy to setup, and not dependent on program
details

But may be strongly biased by the initial input

Still prone to some problems
May re-run the same path over again (same test)

May be very hard to generate inputs for certain paths
(checksums, hashes, restrictive conditions)

May not generate a legal value for executable (e.g., not
constrained to legal instruction)

Grey Box Fuzzing

Rather than treating the program as a black box,
instrument the program to track the paths run

Save inputs that lead to new paths

Associated with the paths they exercise
To bias toward running new paths

Example
American Fuzzy Lop (AFL)

“State of the practice” at this time

Grey Box Fuzzing
T

7 Logical operation — instrument conditionals to record
inputs that caused particular branches to run

Grey Box Fuzzing
T

7 Logical operation — instrument conditionals to record
inputs that caused particular branches to run

Grey Box Fuzzing
T

7 Logical operation — instrument conditionals to record
inputs that caused particular branches to run

x=3,y=7,a=12 x=3,y=7,z=1

Track the branch coverage and generate inputs to explore new branches

AFL

-1 Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

24

AFL

Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

See
http://lcamtuf.coredump.cx/afl/

25

AFL Build

Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

Replace the gcc compiler in your build process with
afl-gcc

For example, in the Makefile
CC=path-to/afl-gcc

Then build your target program with afl-gcc
Generates a binary instrumented for AFL fuzzing

26

AFL Use

Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

Run the fuzzer using afl-fuzz

path-to/afl-fuzz —-i <input-dir> -o <output-dir> <path-to-bin> [args]

For example

path-to/afl-fuzz —-i input/ -o output/ ./cmpscd447-p3 set user passwd @@
Where
input/ directory with the input file

output/ is the directory where the AFL results will be
placed

27

AFL Use

Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

Run the fuzzer using afl-fuzz

path-to/afl-fuzz -i <input-dir> -o <output-dir> <path-to-bin> [args]

For example

path-to/afl-fuzz —-i input/ -o output/ ./cmpsc497-pl set user passwd Q@

Where

@@ shows that the last arg (input file) will be fuzzed
Can also fuzz “user” and “passwd”

28

AFL Display

Tracks the execution of the fuzzer

Key information are
“total paths” — number of different execution paths tried
“unique crashes” — number of unique crash locations

30

AFL Output

Shows the results of the fuzzer
E.g., provides inputs that will cause the crash

File “fuzzer stats” provides summary of stats — Ul
File “plot data” shows the progress of fuzzer
Directory “gueue” shows inputs that led to paths
Directory “crashes” contains input that caused crash
Directory “hangs” contains input that caused hang

31

AFL Operation
How does AFL work?

The instrumentation captures branch (edge) coverage,
along with coarse branch-taken hit counts.

shared mem[cur location © prev location]++;

Record branches taken (previous branch to current
branch) with low collision rate

Enables distinguishing unique paths

34

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Operation

How does AFL work?

“When a mutated input produces an execution trace
containing new tuples, the corresponding input file is
preserved and routed for additional processing”

Otherwise, input is discarded

“Mutated test cases that produced new state
transitions [as above] are added to the input queue and
used as a starting point for future rounds of fuzzing”

35

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Operation

How does AFL work?

Fuzzing strategies

Highly deterministic at first — bit flips, add/sub integer
values, and choose interesting integer values

Then, non-deterministic choices — insertions, deletions,
and combinations of test cases

36

http://lcamtuf.coredump.cx/afl/technical_details.txt

Grey Box Fuzzing

Finds flaws, but still does not understand the program
Pros: Much better than black box testing

Essentially no configuration
Lots of crashes have been identified

Cons: Still a bit of a stab in the dark

May not be able to execute some paths
Searches for inputs independently from the program

Need to improve the effectiveness further

37

Conclusions

t is important to detect vulnerabilities in your
orograms before adversaries find them

Dynamic testing has long been a way to find
oroblems in your programs
But, we need a more comprehensive form of testing
to detect vulnerabilities to memory errors
Fuzz testing is designed to find memory errors in
your programs

Generate inputs that: (1) run as much of the program
as possible and (2) try values that may cause

crash/hang

Questions
39 |

QA

