
Dynamic (Fuzz) Testing
November 4, 2024

1

CS165 – Computer Security

Our Goal

2

¨ We want to develop techniques to detect
vulnerabilities automatically before they are
exploited
¤ What’s a vulnerability?
¤ How to find them?

Vulnerability

3

¨ How do you define computer ‘vulnerability’?
¤ Flaw
¤ Accessible to an adversary

¤ Adversary has ability to exploit

Problem

4

¨ How do we know if your program has a flaw?
¤ May be likely, but not guaranteed

¨ More importantly, how do we locate a flaw?
¤ To assess whether it is vulnerable
¤ Or better yet, to fix the flaw

Example

5

¨ Can you find the flaw(s)?

Flaw Evidence

6

¨ What indicates that your program has a flaw?

Flaw Evidence

7

¨ What indicates that your program has a flaw?
¨ A crash (i.e., memory error)

¤ Means that an instruction accessed an illegal memory
location

¤ First example – read/write beyond bounds

¨ A hang (i.e., infinite loop)
¤ Some loop condition check has an error
¤ Second example - Not check for EOF

Find Flaws

8

¨ How can we find flaws?
¤ Run the program
¤ When it hangs/crashes, we have found a flaw

¨ Challenge
¤ Flaw may only be triggered by particular inputs
¤ The task of producing inputs to test your program for

flaws is called dynamic analysis

Dynamic Analysis Options

9

¨ Regression Testing
¤ Run program on many normal inputs and look for bad

behavior in the responses
n Typically looking for behavior that differs from expected –

e.g., a previous version of the program

¨ Fuzz Testing
¤ Run program on many abnormal inputs and look for

bad behavior in the responses
n Looking for behaviors that may cause the program to stop

executing at all – crash or hang

Fuzz Testing

10

¨ Fuzz Testing
¤ Idea proposed by Bart Miller at Wisconsin in 1988

¨ Problem: People assumed that utility programs
could correctly process any input values
¤ But, untrusted programs could run them
¤ Supply any inputs they wanted (command line)

¨ Found that they could crash 25-33% of UNIX utility
programs

Fuzz Testing

11

¨ Fuzz Testing
¤ Idea proposed by Bart Miller at Wisconsin in 1988

¨ Approach
¤ Generate random inputs
¤ Run lots of programs using random inputs
¤ Identify crashes of these programs
¤ Correlate with the random inputs that caused the

crashes

¨ Problems: Crashes and hangs

Example Found

12

¨ Fuzz Testing
¤ Produce random inputs for processing

format.c (line 276):
...
while (lastc != ’\n’) {
rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0
while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

¤ Eventually produce line with EOF in the middle

Fuzz Testing

13

¨ Idea: Search for flaws in a program by running the
program under a variety of inputs

¨ Challenge: Selecting input values for the program
¤ What should be the goals in choosing input values for

fuzz testing?

Challenges

14

¨ Idea: Search for flaws in a program by running the
program under a variety of inputs

¨ Challenge: Selecting input values for the program
¤ What should be the goals in choosing input values for

fuzz testing?
¤ Find as many exploitable flaws as possible

¨ Implies
¤ Maximize code coverage (branches)
¤ Generate inputs that cause crash/hang

Black Box Fuzzing

¨ Like Miller – Feed the program random inputs
and see if it crashes

¨ Pros: Easy to configure
¨ Cons: May not search efficiently

¤ May re-run the same path over again (low coverage)
¤ May be very hard to generate inputs for certain

paths (checksums, hashes, restrictive conditions)
¤ May cause the program to terminate for logical

reasons – fail format checks and stop

15

Black Box Fuzzing

¨ May be difficult to pass “authenticate_user”
with random inputs
function(char *name, char *passwd, char *buf)

{

if (authenticate_user(name, passwd)) {

if (check_format(buf)) {

update(buf);

}

}

}

16

Mutation-Based Fuzzing

¨ Supply a well-formed input
¤ Generate random changes to that input

¨ No assumptions about modified input
¤ Only assumes that variants of the well-formed input

will be effective in fuzzing

¨ Example: zzuf
¤ https://fuzzing-project.org/tutorial1.html
¤ Reading: The Beginners’ Guide to Fuzzing

17

Mutation-Based Fuzzing

¨ Example: zzuf
¤ https://fuzzing-project.org/tutorial1.html

¨ The Beginners’ Guide to Fuzzing
¤ zzuf -s 0:1000000 -c -C 0 -q -T 3
objdump -x win9x.exe

¤ Fuzzes the program objdump using the sample
input executable win9x.exe

¤ Try 1M seed values (-s) from command line (-c) and
keep running if crashed (-C 0) with timeout (-T 3)

18

Mutation-Based Fuzzing

¨ Easy to setup, and not dependent on program
details

¨ But may be strongly biased by the initial input
¨ Still prone to some problems

¤ May re-run the same path over again (same test)
¤ May be very hard to generate inputs for certain paths

(checksums, hashes, restrictive conditions)
¤ May not generate a legal value for executable (e.g., not

constrained to legal instruction)

Grey Box Fuzzing

¨ Rather than treating the program as a black box,
instrument the program to track the paths run

¨ Save inputs that lead to new paths
¤ Associated with the paths they exercise
¤ To bias toward running new paths

¨ Example
¤ American Fuzzy Lop (AFL)

¨ “State of the practice” at this time

Grey Box Fuzzing

¨ Logical operation – instrument conditionals to record
inputs that caused particular branches to run

if x > 0

if y > 0

x = 3

Grey Box Fuzzing

¨ Logical operation – instrument conditionals to record
inputs that caused particular branches to run

if x > 0

if y > 0

if a > 0

x = 3

x = 3, y = 7

Grey Box Fuzzing

¨ Logical operation – instrument conditionals to record
inputs that caused particular branches to run

if x > 0

if y > 0 if y > 0

if a > 0 if z > 0

x = -5x = 3

x = 3, y = 7 x = -5, y = -2

x = 3, y = 7, a = 12 x = 3, y = 7, z = 1

Track the branch coverage and generate inputs to explore new branches

AFL

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

24

AFL

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

¨ See
¤ http://lcamtuf.coredump.cx/afl/

25

AFL Build

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

¨ Replace the gcc compiler in your build process with
afl-gcc

¨ For example, in the Makefile
¤ CC=path-to/afl-gcc

¨ Then build your target program with afl-gcc
¤ Generates a binary instrumented for AFL fuzzing

26

AFL Use

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

¨ Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

¨ For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc447-p3 set user passwd @@

¨ Where
¤ input/ directory with the input file
¤ output/ is the directory where the AFL results will be

placed
27

AFL Use

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

¨ Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

¨ For example
path-to/afl-fuzz –i input/ -o output/ ./cmpsc497-p1 set user passwd @@

¨ Where
¤ @@ shows that the last arg (input file) will be fuzzed
¤ Can also fuzz “user” and “passwd”

28

AFL Display

¨ Tracks the execution of the fuzzer

¨ Key information are
¤ “total paths” – number of different execution paths tried
¤ “unique crashes” – number of unique crash locations

30

AFL Output

¨ Shows the results of the fuzzer
¤ E.g., provides inputs that will cause the crash

¨ File “fuzzer_stats” provides summary of stats – UI
¨ File “plot_data” shows the progress of fuzzer
¨ Directory “queue” shows inputs that led to paths
¨ Directory “crashes” contains input that caused crash
¨ Directory “hangs” contains input that caused hang

31

AFL Operation

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt

¨ The instrumentation captures branch (edge) coverage,
along with coarse branch-taken hit counts.
¤ shared_mem[cur_location ^ prev_location]++;

¨ Record branches taken (previous branch to current
branch) with low collision rate

¨ Enables distinguishing unique paths

34

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Operation

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt

¨ “When a mutated input produces an execution trace
containing new tuples, the corresponding input file is
preserved and routed for additional processing”
¤ Otherwise, input is discarded

¨ “Mutated test cases that produced new state
transitions [as above] are added to the input queue and
used as a starting point for future rounds of fuzzing”

35

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Operation

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt

¨ Fuzzing strategies
¤ Highly deterministic at first – bit flips, add/sub integer

values, and choose interesting integer values
¤ Then, non-deterministic choices – insertions, deletions,

and combinations of test cases

36

http://lcamtuf.coredump.cx/afl/technical_details.txt

Grey Box Fuzzing

¨ Finds flaws, but still does not understand the program
¨ Pros: Much better than black box testing

¤ Essentially no configuration
¤ Lots of crashes have been identified

¨ Cons: Still a bit of a stab in the dark
¤ May not be able to execute some paths
¤ Searches for inputs independently from the program

¨ Need to improve the effectiveness further

37

Conclusions

¨ It is important to detect vulnerabilities in your
programs before adversaries find them

¨ Dynamic testing has long been a way to find
problems in your programs
¤ But, we need a more comprehensive form of testing

to detect vulnerabilities to memory errors
¨ Fuzz testing is designed to find memory errors in

your programs
¤ Generate inputs that: (1) run as much of the program

as possible and (2) try values that may cause
crash/hang

38

Questions
39

