
History of Software Attacks
January 16, 2024

1

CS165 – Computer Security

Attacks!

¨ Even in the early days of computing, people
were worried about attacks on computer
systems

¨ Why were they concerned?

2

Early Concerns

¨ Significant early (1960s) computer systems were
funded for government use
¤ From single-user systems to timesharing, multi-user

systems
¤ Leakage of secrets was critical to the Allies success in

World War II – and the top concern in the Cold War
¨ So, when the US funded the development of a

general purpose, multi-user operating system
¤ Considered security issues as a first-class concept

3

4

Multics Project

¨ Major operating systems research project
¤ Information about the project is available online
¤ https://multicians.org/history.html

5

Multics Project

¨ Participants: MIT, Bell Labs, General Electric
¤ Bell Labs dropped out in 1969

n Later did a system you may be familiar with…
¤ General Electric sold out to Honeywell in 1970

¨ Started in 1965 and funded by the US government
(DARPA) for over $2M per year at the time
¤ Delivered systems to US Air Force
¤ Later sold to various governments and to auto makers,

universities, and commercial data processing services
¤ Last Multics system was shut down in 2000 (Canada)

6

Multics Project

¨ Why are we discussing a system that is no longer in
use?
¤ And only sold 80 installations
¤ But, at about $7M each

7

Multics Security

¨ Due to the interest in government deployments,
security was a key goal of the Multics project from
the outset

¨ They were concerned about two main problems
¤ Secrecy

n Prevent the unauthorized access to sensitive data
¤ Integrity

n Prevent the illicit modification of sensitive data

¨ Multics researchers already had a good idea about
the software security problems we would face

8

Process Compromise

¨ Can an adversary provide an input payload that
enables the adversary to hijack your program?
¤ Multics researchers knew this was possible in theory
¤ And demonstrated such attacks were possible in a

vulnerability analysis of Multics in 1974
n See retrospective in

https://www.acsac.org/2002/papers/classic-multics-
orig.pdf

n Among other attacks

¨ Does this attack violate secrecy or integrity?

https://www.acsac.org/2002/papers/classic-multics-orig.pdf
https://www.acsac.org/2002/papers/classic-multics-orig.pdf

9

Security in Theory

¨ How can you ensure that your program is secure?
¤ I.e., prevent process compromise

10

Security in Theory

¨ How can you ensure that your program is secure?
¤ No adversary can provide an input to your program

¨ Works but is often not practical
¤ Why not?

11

Program Input

¨ How does your program receive inputs?

12

System Calls Receive Input

¨ How does your program receive inputs?
¤ System calls

n Open and read a file
n Open and receive packets on a socket
n Open a pipe and receive input
n Open a shared memory region with another process
n Etc.

¨ How can an adversary impact these inputs?

13

At-Risk System Calls

¨ Which system calls does your program make that
are at risk of receiving adversary input?

14

System Calls and Resources

¨ Which system calls does your program make that
are at risk of receiving adversary input?
¤ Ones that may receive input that can be modified by

an adversary
¤ Suppose there are three system calls and three

resources:
n Files A and B
n Socket C

¤ Suppose an adversary can modify File B and the send
packets to Socket C
n Which system calls are at risk?

15

Depends

¨ Suppose there are three system calls and three
resources:
¤ Files A and B
¤ Socket C

¨ Suppose an adversary can modify File B and the
send packets to Socket C
¤ Which system calls are at risk?

¨ Kind of a trick question – depends on which system
calls are used to access adversary-modified
resources

16

Attack Surface

¨ Key term: Attack surface
¨ An attack surface is the set of system calls your

program makes that may access adversary-
controlled resources
¤ I.e., receive adversary input

¨ You will need to protect your program’s attack
surface
¤ More to come

19

Morris Worm

¨ Robert Morris, a 23-year-old Cornell PhD student
¤ Wrote a small (99 line) program
¤ Launched on November 3, 1988
¤ Simply disabled the Internet

¨ Used a buffer overflow in a program called fingerd
¤ To get adversary-controlled code running

¨ Then spread to other hosts – cracked passwords
and leveraged open LAN configurations

¨ Covered its tracks in a variety of ways

20

Morris Worm

¨ Fingerd
¤ A UNIX program you can use to determine who is logged

into a computer
¤ Send a network request to the daemon, which responds

with who is logged in and some other metadata
¤ I used this program to see if other students or my

advisor were online in grad school
¨ The fingerd program was known to have a flaw that

permitted an input payload to hijack execution
¤ We’ll learn this cause and its prevention later

21

Morris Worm

¨ Hijack Fingerd
¤ Caused to act as a malicious program that came to be

called a “computer worm”
¤ The computer worm hijacks the fingerd process

n Runs code chosen by the worm writer instead of fingerd
n To download other malicious programs to propagate the

attack to other computers in the same network (easy then)
n And then to other networks

¨ Computer worm: a malware program that
replicates itself to spread to multiple computers

22

Morris Worm

¨ Hijack Fingerd
¤ Besides the worm behaviors, the Morris worm used

multiple techniques to evade identification and ensure
that its propagation was not thwarted
n These techniques worked too well for the time

¤ Change the name of the processes created by a hijacked
fingerd to “sh”, avoid creating accurate “cores”

¤ Tried to propagate to the same computer multiple times
¨ Basically, created an Internet-scale denial-of-service

attack because many computers were running many
copies of the Morris worm simultaneously

23

Morris Worm

¨ Other than stealing CPU cycles galore,
¤ The Morris Worm did not perform any operations that

stole data or modified existing data on a compromised
host
n I.e., did not attack the secrecy and integrity of host data
n Although it certainly impacted the integrity of the fingerd

process

¨ Nonetheless, Morris faced punishments in the forms
of fines and prohibitions on computer use for a time
period

24

Morris Worm Reaction

¨ It was Morris’s fault
¤ Hands were rung, Morris was punished, few tangible

security changes happened in commercial systems
n Exceptions: Network security research

¤ And computer systems took more risks
n E.g., executable email attachments

25

The Internet

¨ Then, the Internet “happened”
¤ Actually, the World Wide Web took over in 1995 or so

¨ Everyone is (well, many people are) connected
¤ Not everyone is nice

¨ It didn’t take too long for new attacks like the Morris
worm to emerge
¤ But, these truly had malicious intent

26

Code Red

¨ Worm from 2001
¤ Attacked the Windows IIS web server
¤ Exploited a publicly known vulnerability

n A patch had been available a month before

¨ Same type of vulnerability as the Morris worm
¤ Called a buffer overflow

¨ Malicious activities
¤ Defaced websites and launched a DDoS against several

IPs, including the White House
¨ Code Red II later used the same vulnerability

27

SQL Slammer

¨ Worm from 2003
¤ Attacked the Windows SQL server (database server)
¤ Compromised approximately 75,000 hosts worldwide

n In about 10 minutes
¤ Also, exploited a publicly known vulnerability

n A patch had been available for six months

¨ Also used a buffer overflow
¨ Malicious activities

¤ None really – impact was mainly a denial of service
n And concern that a bad actor could “own” all Internet hosts

28

Worm Reactions

¨ Problem: known vulnerabilities are exploited on
unpatched machines
¤ Firewall and antivirus rules target such information

¨ Problem: one vulnerability enables an adversary to
control a host completely
¤ Reduce the permissions of network-facing daemons,

e.g., no longer run as “root” or “admin”
¨ Problem: buffer overflow allows an adversary to

“inject” their code into a compromised process
¤ Prevent executing data on the stack and randomize

memory locations of variables and code

39

Take Away

¨ The history of software attacks is rather complex
¨ Early systems designers were aware of the

importance of preventing software attacks (Multics)
¤ Knew about attacks that were possible
¤ Knew eliminating attack surfaces would prevent attacks

¨ The first attacks “in-the-wild” were worm attacks
¤ Exploit the network attack surface
¤ Defenses were proposed to protect the network attack

surface – more later
¨ We have been in reactive mode ever since

Questions
40

