
Memory Errors
October 18, 2024

1

CS165 – Computer Security

Memory Errors

¨ Bugs in C/C++ programs can cause memory
errors
¤ C/C++ does not ensure memory safety

¨ Memory errors and the ability to exploit them
have been known for over 50 years
¤ And exploited in practice since the Morris worm (1988)

¨ Microsoft and Google report that over 70% of
vulnerabilities are still from memory errors

2

Cause of Memory Errors

¨ In C/C++, objects and their memory references
are separate things
¤ Memory references: Pointers
¤ Objects: Dynamically allocated on stack and heap

¨ Memory references and object allocations do not
always correspond to each other
¤ C/C++ (try to) use pointers to reference the memory

locations of memory objects
¤ The values (memory locations) of pointers may be

assigned independently from object allocations

3

Impact of Memory Errors
4

C/C++ Memory Model

¨ C allows programmers to access memory flexibly
¤ Like a giant array of virtual memory

¤ An object (in brown) can be allocated anywhere in the
array
n char *x = (char *)malloc(size);

¤ Your program gets a reference (pointer) to the location of
your object in the “array” that is virtual memory
n It is up to the programmer to set and use the pointer correctly

to access the object
n I.e., the programmer must keep them ”in sync”

0 2n-1

Memory and Type Safety

¨ Bugs in C/C++ programs can cause memory
errors
¤C/C++ does not ensure memory safety

nA pointer (reference) assigned to an object is not
restricted to that object’s memory region

¤C/C++ does not ensure type safety
nA pointer (reference) assigned to an object is not

restricted to that object’s data type

¨ We will look at the causes of memory errors
¤And a little bit about how to avoid them

6

C/C++ and Memory Safety

¤ An object (in brown) can be allocated anywhere in the
array
n char *x = (char *)malloc(size);

¤ Pointer arithmetic
n x = x+n;

¤ What happens?

0 2n-1

C/C++ and Memory Safety

¤ An object (in brown) can be deallocated at any time
n char *x = (char *)malloc(size);

¤ Deallocate memory associated with the pointer x
n free(x);

¤ What does the “free” command do?

0 2n-1

C/C++ and Memory Safety

¤ An object (in brown) can be deallocated at any time
n char *x = (char *)malloc(size);

¤ Deallocate memory associated with the pointer x
n free(x);

¤ What does the “free” command do?
n Allow the memory region at x to be reused by another

allocation

0 2n-1

C/C++ and Memory Safety

¤ An object (in brown) can be deallocated at any time
n char *x = (char *)malloc(size);

¤ Deallocate memory associated with the pointer x
n free(x);

¤ What happens when the following is run after the “free”?
n strcpy(x, “string”);

0 2n-1

C/C++ and Memory Safety

¤ An object (in brown) can be deallocated at any time
n char *x = (char *)malloc(size);

¤ Deallocate memory associated with the pointer x
n free(x);

¤ What happens when the follow is run after the “free”?
n strcpy(x, “string”);

¤ ”string” is written at location x, even if something else has
been allocated there

0 2n-1

C/C++ and Type Safety

¤ An object (in brown) can be assigned a type
n char *x = (char *)malloc(size);

¤ More specifically, the pointer is assigned a type
n In this case, an array of 1-byte objects

¤ Used to interpret the values in the memory region
n E.g., as a string

0 2n-1

C/C++ and Type Safety

¤ An object (in brown) can be assigned a type
n char *x = (char *)malloc(size);

¤ But, we can assign another pointer to reference the same
memory using a different type (type cast)
n int *y = (int *)x;

¤ Say an integer is 4 bytes, so the value is the first 4
characters assigned to the “string”
n Nothing limits you in C
n Other languages do prevent this kind of type cast

0 2n-1

C/C++ and Type Safety

¤ An object (in brown) can be assigned a type
n char *x = (char *)malloc(size);

¤ But, we can assign another pointer to reference the same
memory using a different type (type cast)
n int *y = (int *)x;

¤ Say an integer is 4 bytes, so the value is the first 4
characters assigned to the “string”
n So, you cannot trust that a memory region’s type (i.e., of the

values assigned there) corresponds to the type of the pointer
used to access the region – not type safe

0 2n-1

Memory Safety Classes

¤ Are typically defined in terms of three classes
n char *x = (char *)malloc(size);

¤ Spatial safety: Accesses within bounds (space)
n x = x+n;

¤ Type safety: Accesses comply with object format
n strcpy(x, “foo”);
n int *y = (int *)x;
n y = y+1;

¤ Temporal safety: Access are within object lifetime (time)
n free(x);
n y = y+1;

0 2n-1

Spatial Error Vulnerability

¨ This code has a flaw
16

Spatial Error Vulnerability

¨ Suppose an adversary can provide “source”
¤ May be larger than the memory space of “buffer”

17

What Is Happening?

¨ Fill buffer to length of allocated buffer (10)
¤ scanf – Has no termination

What is happening?

¨ Fill buffer to length of allocated buffer (10)
¤ scanf – input a string (source) of length 5

¤ Null termination of string (optional)

What is happening?

¨ But, the string source may be >=10 bytes
¤ 10 bytes – no room for the terminator byte

¤ Write beyond the end of the allocated memory for buffer

¤ Nothing stops that
n What is beyond the end of one allocated region?

What is happening?

¨ But, the string source may be >=10 bytes
¤ 10 bytes – no room for the terminator byte

¤ Write beyond the end of the allocated memory for buffer

¤ Nothing stops that
n What is beyond the end of one allocated region?

n Other objects that should not be accessed
n Called a spatial memory error

More Complex Vulnerability

¨ Another flaw
22

What Is Going Wrong?

¨ Both of these functions process “strings”?
¤ What is a string?

What Is Going Wrong?

¨ Both of these functions process “strings”?
¨ What is a string?

¤ Sequence of bytes terminating with a null byte
¨ But, C/C++ do not differentiate strings from

arrays of bytes (char *)
¤ Which need not be null-terminated
¤ What happens then?

What Is Going Wrong?

¨ Both of these functions process “strings”?
¨ What is a string?

¤ Sequence of bytes terminating with a null byte
¨ But, C/C++ do not differentiate strings from arrays

of bytes (char *)
¤ Need not be null-terminated
¤ What happens when you read a string w/o a null-

terminating byte?
¨ String functions keep reading until they hit a null

byte

String Issues

¨ Issues with C/C++ arrays of bytes
¤ May be longer than memory region (bounds)
¤ May not be terminated by a null byte (bounds)
¤ May be terminated before expected (truncate)

¨ Each of these issues may lead to problems
¤ If undetected

Obvious Solution in C

¨ “Obvious” solution is to always enforce bounds

Function w/o Bounds Checks

¨ gets(3) – reads input without checking. Don’t use it!
¨ strcpy(3) – strcpy(dest, src) – copies from src to dest

¤ If src longer than dest buffer, keeps writing!
¨ strcat(3) – strcat(dest, src) – appends src to dest

¤ If src+data-in-dest longer than dest buffer, keeps writing!
¨ Many other dangerous functions, e.g.:

¤ realpath(3), getopt(3), getpass(3)
¤ streadd(3), strecpy(3), and strtrns(3)

¨ Don’t use these!

Traditional Solutions

¨ Depend mostly on strncpy(3), strncat(3), sprintf(3)
¤ Can be hard to use correctly
¤ char *strncpy(char *DST, const char *SRC, size_t LENGTH)

n Copy bytes from SRC to DST
n Up to LENGTH bytes; if less, NULL-fills

¨ If LENGTH is the size of the DST memory region
¤ Can fill memory region without null-terminator

n Thus, does not guarantee creating a C string
¤ Can truncate “in the middle,” leaving malformed data

n Yet difficult to detect when it happens
¨ Not a correct solution

strncpy(buffer, “0123456789”, 10)

¨ Strncpy stops the copy after 10 bytes
¤ Since buffer is 10 bytes – no room for the terminator byte

¤ Prevents any write beyond the end of the allocated
memory for buffer if the “size” argument is correct

¤ But, nothing guarantees that

Traditional Solution – That Works!

¨ Available now: snprintf(3), vsnprintf(3)
¤ Essentially the same functions, although arg format differs

¨ int snprintf(char *S, size_t N, const char *FORMAT, ...);
¤ So, you should use this for safe programming today
¤ Replaces strcpy and others directly

Traditional Solution – That Works!

¨ int snprintf(char *S, size_t N, const char *FORMAT, ...);
¤ Writes output to buffer S up to N chars (bounds check)
¤ Always writes ‘\0’ at end if N>=1 (terminate)
¤ Returns “length that would have been written” or negative

if error (reports truncation or error)
¨ Thus, achieves goals of correct bounds checking

¤ Enforces bounds, ensures correct C string, and reports
truncation or error
n len = snprintf(buf, buflen, "%s", original_value);
n if (len < 0 || len >= buflen) … // handle error/truncation

Scanf and Friends

¨ What about other functions like scanf?
¤ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf

n all unsafe by default

Scanf and Friends

¨ What about other functions like scanf?
¤ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf

n all unsafe by default
¤ Fortunately, these can be made safe quite easily

n By leveraging auto-resizing option

Scanf and Friends

¨ What about other functions like scanf?
¤ scanf, fscanf, sscanf, vscanf, vsscanf, vfscanf

n all unsafe by default
¤ Instead, use “%ms” to auto-resize

n char *buffer = NULL; // Must be set to NULL
n scanf(buffer, “%ms”);

¤ Allocates memory for the buffer dynamically to hold input
safely – null-terminated, no truncation required

¨ Note: also, can use for other functions that process
input like getline

¨ Note: You need to deallocate when completely done

38

Type Errors

¨ Errors that permit access to memory according to a
multiple, incompatible formats
¤ These are called type errors
¤ Access using a different “type” than used to format the

memory
¨ Most of these errors are permitted by simple

programming flaws
¤ Of the sort that you are not taught to avoid
¤ Let’s see how such errors can be avoided

¨ Some of the changes are rather simple

Other Error Prone Type Casts

¨ Downcasts – Cast to a larger type; allows overflow
¤ t1 *p, t2 *q; // declare pointers
¤ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p
¤ pàfield = value; // suppose this is an int field
¤ q = (t2 *)p; // downcast, t2 is a larger type
¤ qàextra= value2; // overflow memory of object

¨ E.g., t2 is a child type of t1
¤ So, the size of type t2 is greater than the size of type t1
¤ “extra” field is added to the type t1 to create type t2

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ Only memory large enough for t1 is allocated

Int
F3

Int
F2

Int
F1

“p”

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ But, if we assign a pointer of type t2 to the object

¨ This is what can be referenced by “q”
¤ ”q” of type t2 thinks it is referencing a larger region

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

Exploiting Type Errors

¨ “p” is assigned to an object of type t1

¨ But, if we assign a pointer of type t2 to the object

¨ What will happen when the program accesses
“qàextra”?

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

What Can Go Wrong?

¨ Downcasts – Cast to a larger type; causes overflow
¤ t1 *p, t2 *q; // declare pointers
¤ p = (t1 *) malloc(sizeof (t1)); // allocate t1 object, define p
¤ pàfield = value; // suppose this is an int field
¤ q = (t2 *)p; // down cast, t2 is a larger type
¤ qàextra = value2; // overflow memory of object

¨ By downcasting to the larger type t2 with the “extra”
field, gives the adversary the ability to read/write
beyond the memory region allocated
¤ Memory region is “sizeof(t1)” in size

44

Type Confusion

¨ Many effective attacks exploit data of another type
struct A {

struct C *c;
char buffer[40];

};

struct B {
int B1;

int B2;
char info[32];
};

45

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;
char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {
int B1;

int B2;
char info[32];

};

46

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;

char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];
};

¨ Arbitrary Write Primitive!
¤ Adversary controls the value to write and the location of the write
¤ Allow adversary to write an arbitrary value to an arbitrary location

Exploiting Type Errors

¨ Type A is unrelated to type B

char[40]
buffer

C *
c“x”

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ Why could this become a problem?

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ The code allows assignment of field B1

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

Exploiting Type Errors

¨ Type A is unrelated to type B

¨ Type casting “x” to be referenced by “y” of type B

¨ The code allows assignment of field B1 of y, which
corresponds to field c of x

char[40]
buffer

C *
c“x”

char[32]
buffer

int
B1“y”

int
B2

51

Type Confusion

¨ Adversary can abuse ambiguity to control writes
struct A { x = (struct A *)malloc(sizeof(struct A));

struct C *c; y = (struct B *)x;

char buffer[40]; y->B1 = adversary-controlled-value;

}; x->c->field = adversary-controlled-value-also;

struct B {

int B1;

int B2;

char info[32];
};

¨ Arbitrary Write Primitive!
¤ Adversary controls the value to write and the location of the write
¤ Allow adversary to write an arbitrary value to an arbitrary location

52

Who Would Do That?!

¨ How could such an error happen?

53

Who Would Do That?!

¨ How could such an error happen?
¨ Several ways

¤ Type casts
¤ Unions – use the same memory with multiple formats
¤ Use-before-initialization (UBI)
¤ Use-after-free (UAF)

¨ The last two are due to bugs created because
C/C++ requires the programmer manage memory
¤ Temporal errors

54

Unions

¨ Example of a union data structure

http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-
data/union.html#:~:text=A%20union%20data%20structure%20is,variables%20at%20any%20one%20time

1/29/24, 10:34 PM

Page 1 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

The union data type

The union data type

Syntax to define a union data structure:

 union UnionName
 {
 datatype1 varName1; // List of variables
 datatype2 varName2;

...
 };

Meaning:

A union data structure is a number of memory cells used to store any one of the variables specified in the union structure

In other words:

The same memory cell(s) are used to store one of the variables in the list of variables at any one time

It is not possible to store more than one of the variables given in the list of variable at the same time

Defining a union typed variable:

Just like a struct data type, you can define variables of a union data type after you have defined the structure of a union
data type

Example:

 union myExample // Union definition
 {
 int a;
 double b;
 short c;
 char d;
 };

 union myExample x; // Define a variable of the type union myExample

How the different variables in a union typed variable are stored in memory:

Example union definition:

 union myExample
 {
 int a;
 double b;
 short c;
 char d;
 };

How the different variable in the type union myExample are stored in memory:

1/29/24, 10:34 PM

Page 2 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

Observe that:

Every member variable in a union typed variable start at the same memory address

The number of bytes used to store a member variable depends on the size (= data type) of the member
variable,

a uses 4 because it is an int type variable
b uses 8 because it is an double type variable
And so on.

The size of a union typed variable is equal to the size of the largest component variable

A C program that shows the facts of the union data structure

We can easily show the above facts with the following C program:

 union myUnion // Union structure
 {
 int a;
 double b;
 short c;
 char d;
 };

 struct myStruct // Struct with the same member variables
 {
 int a;
 double b;
 short c;
 char d;
 };

 int main(int argc, char *argv[])
 {
 struct myStruct s; // Define a struct
 union myUnion u; // and a union variable

 // Print the size and the address of each component

 printf("Structure variable:\n");
 printf("sizeof(s) = %d\n", sizeof(s));
 printf("Address of s.a = %u\n", &(s.a));
 printf("Address of s.b = %u\n", &(s.b));

55

Unions

¨ Example of a union data structure

http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-
data/union.html#:~:text=A%20union%20data%20structure%20is,variables%20at%20any%20one%20time

1/29/24, 10:34 PM

Page 2 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

Observe that:

Every member variable in a union typed variable start at the same memory address

The number of bytes used to store a member variable depends on the size (= data type) of the member
variable,

a uses 4 because it is an int type variable
b uses 8 because it is an double type variable
And so on.

The size of a union typed variable is equal to the size of the largest component variable

A C program that shows the facts of the union data structure

We can easily show the above facts with the following C program:

 union myUnion // Union structure
 {
 int a;
 double b;
 short c;
 char d;
 };

 struct myStruct // Struct with the same member variables
 {
 int a;
 double b;
 short c;
 char d;
 };

 int main(int argc, char *argv[])
 {
 struct myStruct s; // Define a struct
 union myUnion u; // and a union variable

 // Print the size and the address of each component

 printf("Structure variable:\n");
 printf("sizeof(s) = %d\n", sizeof(s));
 printf("Address of s.a = %u\n", &(s.a));
 printf("Address of s.b = %u\n", &(s.b));

1/29/24, 10:34 PM

Page 3 of 4http://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-dat…union%20data%20structure%20is,variables%20at%20any%20one%20time

 printf("Address of s.c = %u\n", &(s.c));
 printf("Address of s.d = %u\n", &(s.d));

 putchar('\n');

 printf("Union variable:\n");
 printf("sizeof(u) = %d\n", sizeof(u));
 printf("Address of u.a = %u\n", &(u.a));
 printf("Address of u.b = %u\n", &(u.b));
 printf("Address of u.c = %u\n", &(u.c));
 printf("Address of u.d = %u\n", &(u.d));
 }

Output:

 Structure variable:
 sizeof(s) = 24
 Address of s.a = 4290768696
 Address of s.b = 4290768704
 Address of s.c = 4290768712
 Address of s.d = 4290768714

 Union variable:
 sizeof(u) = 8
 Address of u.a = 4290768688 (Same location !!!)
 Address of u.b = 4290768688
 Address of u.c = 4290768688
 Address of u.d = 4290768688

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link(s) and save in a scratch directory

To compile: gcc union1.c
To run: ./a.out

The use of union variables

Common uses of union typed variables:

1. As a buffer to store a value for an user-specified operation

The user-specified operation can receive different types of values.

2. You can use multiple struct variables of the same size inside a union variable to re-map the different bits to make
accessing the bit information easier

This technique is commonly used in network programming to process different message headers

This topic is beyond the scope of this course....

Personal anecdote:

56

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

57

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

¨ Allocate memory that includes all the fields that
will be accessed by any pointer

Allocating the Largest Type Used

¨ Type t1

¨ Type t2

¨ If we allocate an object of type t2
¤ Then accesses via ”p” and ”q” are within bounds and

access the same fields

Int
F3

Int
F2

Int
F1

“p”

Int
extra

Int
F3

Int
F1

“q” Int
F2

59

Safe Casts

¨ Are there any type casts that are type safe?
¤ What do we mean by “type safe”?

¨ Allocate memory that includes all the fields that
will be accessed by any pointer
¤ In this case, all casts are an “upcast” of the allocated

type (i.e., have the same or fewer fields)
¤ And all the fields are in the corresponding locations

and have the same type
¤ Like casting a child class to a parent class in OOP

60

Temporal Memory Errors

¨ Exploit inconsistencies in the assignment of
pointers to memory regions
¤ Use-before-initialization

n Prior to a pointer being assigned to an object (memory
region)

¤ Use-after-free
n Use a pointer in a statement after the memory region to

which has been assigned has been deallocated
n And something has been allocated there in its place

¨ The most common vector for exploits today

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

Memory Life Cycle

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ Normal lifecycle between a pointer and object
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ free(p); // deallocate object

What Is Going Wrong?

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object

Use-Before-Initialization (UBI)

¨ A pointer may reference a memory region that does
not hold a defined (assigned) object

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ len = snprintf(p, size, "%s", original_value); // use pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object

¨ Called “use before initialization” (UBI)
¤ Allows an adversary to reference a value that happens to

be at the location that “p” is declared (not an assignment)
¤ Could be anywhere

Why UBI Is A Problem

¨ Use before initialization

¨ Questions to explore
¤ Where is the pointer allocated in memory?

n Can the adversary control what is written to that location
¤ What is the pointer’s value at initialization?

n Can this reference a useful target object to attack?

Ptr

Why UBI Is A Problem

¨ Use before initialization

¨ Assume function “A” calls functions “B” and “C”
¤ When function “B” is called, a new stack frame is created
¤ Using memory in the stack region
¤ Suppose there is a string “buffer” built from adversary

input
¤ Then, function ”B” returns

Buffer

Why UBI Is A Problem

¨ Use before initialization

¨ Assume function “A” calls functions “B” and “C”
¤ When function “C” is called, a new stack frame is created
¤ Using memory in the stack region – used by function “B”
¤ Suppose there is a local variable pointer “ptr” declared in

function “C”
¤ But, ”ptr” is not initialized – what is the value of “ptr”?

Buffer ptr

69

Prevent UBIs

¨ Is there a way to prevent UBI vulnerabilities?

70

Prevent UBIs

¨ Is there a way to prevent UBI vulnerabilities?
¤ Simple: initialize your variables
¤ Pointers and data

What Is Going Wrong?

¨ We have objects (memory regions) and references
(pointers)
¤ What goes wrong in temporal errors?

¨ A pointer may reference (use) a memory region that
does not hold the object to which the pointer was
assigned

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object – release memory for reuse
¤ len = snprintf(p, size, "%s", original_value); // use pointer

Use-After-Free (UAF)

¨ A pointer may reference a memory region that does
not hold a defined (assigned) object

¨ What does ”p” reference upon use?
¤ char *p; // declare pointer
¤ p = (char *) malloc(size); // define pointer to object
¤ free(p); // deallocate object – release memory for reuse
¤ len = snprintf(p, size, "%s", original_value); // use pointer

¨ Called “use after free” (UAF)
¤ Allows an adversary to reference a memory region that

may be allocated to a different object
¤ I.e., imagine a malloc between the free and use

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ Focus on object ”B”
¤ You have a reference to “B” – say pointer “b”

Obj
A

Obj
B

Obj
C

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ Object ”B” is deallocated
¤ And you still have a reference to “B” – e.g., pointer “b”
¤ And, pointer “b” may have “uses” after the deallocation of

object ”B”
¤ But, the allocator is free to reuse the memory region

Obj
A

Obj
C

Why Is UAF a Problem

¨ Use after free

¨ Assume you have a heap as shown
¤ The allocator chooses to use the memory region for object

“D”
¤ So, a “use” of pointer “b” will access the object ”D” instead
¤ Leak: Can read information in Obj D (even if another user’s)
¤ Attack: Can modify information in Obj D (maybe pointers!)

Obj
A

Obj
C

Obj
D

76

Prevent UAFs

¨ Is there a way to prevent UAF vulnerabilities?

77

Prevent UAFs

¨ Is there a way to prevent UAF vulnerabilities?
¤ Simple: zero pointers when freeing them
¤ Their use (after freeing) will cause a crash, but cannot

be exploited

Conclusions

¨ Memory errors are still the most common cause of
vulnerabilities

¨ They are caused by C/C++ allows objects (memory
regions) and pointers (references to memory
locations) to be defined and managed separately

¨ Thus, C/C++ are neither memory safe nor type safe
¨ Which leads to spatial, type, and temporal errors

78

Questions
79

