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CS165 – Computer Security



Our Goal
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¨ We want to develop techniques to detect 
vulnerabilities automatically before they are 
exploited 
¤ What’s a vulnerability?
¤ How to find them?



Without Running the Program
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¨ Can we find vulnerabilities without running the 
program?
¤ Why would that be beneficial?



Limitations of Dynamic Testing
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¨ Time consuming
¤ Have to run the program many, many times

¨ Some configuration
¤ Need to choose the inputs to initiate mutation
¤ Some setup 

¨ Under-approximate
¤ While a crash/hang found is real,…
¤ Cannot test all paths and inputs in practice

n I.e., dynamic testing is intractable



Static Analysis

¨ Explore all possible executions of a program
¤ All possible inputs 
¤ All possible states
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Forms of Testing

¨ Static analysis is an alternative to dynamic testing
¨ Dynamic

¤ Select concrete inputs 
¤ Find results of the execution given those inputs
¤ Apply many concrete inputs (i.e., run many tests)

¨ Static 
¤ Select abstract inputs (set of inputs)
¤ Find impact created by executing all abstract inputs
¤ One “run”
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Static Analysis

¨ Provides an approximation of program behavior
¨ “Run in the aggregate”

¤ Rather than executing concretely one run at a time
¤ Finite-sized descriptors representing a collection of values

¨ “Run in non-standard way”
¤ Run in fragments
¤ Stitch them together to cover all paths

¨ Runtime testing is inherently incomplete, but static 
analysis can cover all paths
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Static Vulnerability Tools

¨ Quite a few commercial tools for vulnerability 
detection – for different languages, types of flaws, etc.
¤ Checkmarx
¤ SonarQube
¤ Veracode
¤ Snyk
¤ Acunetix
¤ Fortify
¤ Coverity

¨ And compiler tools (LLVM Static Checker) and 
research tools galore 8



Static Analysis Example

¨ Can we find a use-after-free flaw with static analysis?
int main(int argc, char **argv) {   

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}
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Static Analysis Example

1
0

¨ Pointers have 2 values: (malloc, free)
int main(int argc, char **argv) {   

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}
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malloc

free

malloc

malloc

use

free



Static Analysis Example

1
1

¨ Pointers have 3 ops: (malloc, use, free)
int main(int argc, char **argv) {   

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}
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malloc

free

malloc

malloc

use

free



Static Analysis Example

1
2

¨ A free pointer cannot have a use op
int main(int argc, char **argv) {   

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}
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malloc

free

malloc

malloc

use

free



Static Analysis Example

1
3

¨ A free pointer cannot have a use op
int main(int argc, char **argv) {   

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free



Static Analysis Example Summary

¨ Provides an approximation of program behavior
¨ Approximate values based on analysis goals

¤ We only care about whether pointers are assigned to objects
(malloc) or not (free) – not specific pointer addresses

¨ Consider operations in terms of those abstract values
¤ Malloc à changes pointer value to “malloc”
¤ Free à changes pointer value to “free”
¤ Use does not change pointer value

¨ Then, check all executions against a rule
¤ Cannot have a “use” op on a pointer whose value is “free”

¨ Only one execution path here, but may be many14



Static Analysis

¨ There, you completed your first static analysis!
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What Do We Want to Find?

¨ Often whether one value affects another (taint)
¨ Secrecy – Does a secret value x affect a public value y

¤ Can we leak x?
¨ Integrity – Does an adversary-controlled value x affect 

a critical (i.e., high integrity) value y
¤ Can an adversary attack y?

¨ Problem statement:
¤ Given an x we care about…
¤ Is there any execution path in the program where the data 

assigned to x may be assigned to y (x taints y)
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One Type of Leak

• Consider the simple program below, where x is a 
secret value 

y = x;

output( y );

• If x is a secret value, is its value leaked?
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Another Type of Leak

• Consider the simple program below

if ( x == 0 ) 

b = 1;

else 

b = 2;

output( b );

• If x is a secret value, is its value leaked?



Information Flows

• What is going on here?
‣ Dorothy Denning captured the essence in 1976
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Implicit and Explicit Flows

¨ Explicit Flow
¤ Direct assignment from a to b (e.g., b=a)

¨ Implicit Flow
¤ Indirect assignment where value of b may depend on a indirectly (via 

a conditional)
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Implicit and Explicit Flows

¨ Explicit Flow
¤ Direct assignment from a to b (e.g., b=a)

¨ Implicit Flow
¤ Indirect assignment where value of b may depend on a indirectly (via 

a conditional)

¨ Compute these flows and determine whether they leak a value
¤ Could be a combination of explicit and implicit flows

23



Information Flow Secuity

¨ So, what does “secure” mean in information flow?
¤ Cannot create an “information flow” from secret to public
¤ Explicit flow: No assignment “x=y” where x is public and y 

is secret
¤ Implicit flow: No conditional based on secret data that 

impacts the value of a public variable
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Flow Checking

¨ Program is secure iff:
¤ Explicit flow from S is secure
¤ Explicit flow from all statements in a sequence are secure (e.g., 

S1, …, Sm)
¤ Conditional c: B1, …., Bn is secure if:

n The explicit flows of all branches: Bi: S1, …, Sm are secure
n The implicit flows between c and B1, …, Bn are secure

¨ These are all forms of taint flows
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Static Analysis Approach

¨ Possible values of a variable: secret, public, none
¤ We don’t care what the specific value is

¨ Operations
¤ Explicit flow (b = a) or Implicit flow if (if(a) b = any)

n If b’s value is none, then assign b to the value of a
n If b’s value is public and a’s value is public or none, leave b’s value 

unchanged as public
n If b’s value is public and a’s value is secret, report an error

¨ Do this for the entire program
¤ All execution paths, although can optimize
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Example

void fn( char *buf, int len )

{

char public[SIZE];

char secret[SIZE];

copy( public, “MSG”, SIZE);

if ( len < SIZE ) 

copy( secret, buf, len );

else

send( public );    // a public sink

} 27



Example

void fn( char *buf, int len )

{

char public[SIZE];

char secret[SIZE];

copy( public, “MSG”, SIZE);

if ( len < SIZE ) 

copy( secret, buf, len );

else

send( public );    // a public sink

} 28

public
secret



Flow of Public

void fn( char *buf, int len )

{

char public[SIZE];

char secret[SIZE];

copy( public, “MSG”, SIZE);

if ( len < SIZE ) 

copy( secret, buf, len );

else

send( public );    // a public sink

} 29

public
secret



Flow of Secret

void fn( char *buf, int len )

{

char public[SIZE];

char secret[SIZE];

copy( public, “MSG”, SIZE);

if ( len < SIZE ) 

copy( secret, buf, len );

else

send( public );    // error here

} 30

public
secret



Is Static Analysis a Miracle?

• Limitation: If we try to find all vulnerabilities via 
static analysis (i.e., over-approximate the program 
operations), then there will likely be false positives
• False positive: violate an analysis rule in the 

approximation, but not in the real program execution
• Is every explicit/implicit flow a leak?

• Should we be able to send an error message?
• Also, more subtle cases due to the complexity of 

programs
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What Can We Do with Static Analysis?

• Used to detect many types of vulnerabilities
• And show the absence of vulnerabilities in some

cases
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Memory Safety Validation

• Identify the objects whose accesses must all satisfy 
spatial, type, and temporal safety (all classes of 
memory safety)
• Why care?
• Protect those objects from accesses that may cause 

memory errors
• If we identify these statically, we can protect without

runtime checks

33



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object

34

Object



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Object

Is Object safe from exploitation via memory errors? 



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Object

Is Object safe from exploitation via memory errors? No



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Object

Suppose Object is isolated from all accesses to 
unsafe objects: Is Object safe from exploitation? 



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Object

Suppose Object is isolated from accesses to 
unsafe objects: Is Object safe from exploitation? YES



Isolate Safe Stack Objects

• Compute all possible aliases of an object, and if all 
uses satisfy spatial, type, and temporal safety
• Isolate those objects from accesses to unsafe objects

40

Safe Stack 
(OSDI 2014)

Unsafe Stack Original
Stack

Region



Memory Safety Validation

• Objects may have many aliases 
• Alias: pointer that may be assigned (defined) to the 

object
Suppose all aliases of Object only make safe accesses
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Object

So, it is worth determining which objects must be safe
from all memory errors and isolating them from unsafe



Impact of Memory Safety Validation

¨ 91.45% of stack objects are shown to be safe w.r.t. spatial, type, and temporal errors.

¨ 50% and 70% unsafe stack objects to CCured and Safe Stack are found safe by 
DataGuard.

¨ 3% and 6.3% safe stack objects by CCured and Safe Stack are not provably safe in 
DataGuard



Conclusions

¨ Memory safety validation is a typical static analysis
¤ Assign values to pointers (e.g., in bounds)
¤ Find operations that change those values 
¤ Detect violations of analysis rules

¨ Static analysis is a common technique to detect 
vulnerabilities and prove their absence 

¨ Can find all vulnerabilities in a program, although 
may have false positives
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Questions
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