
Static Analysis (Testing)
November 6, 2024

1

CS165 – Computer Security

Our Goal

2

¨ We want to develop techniques to detect
vulnerabilities automatically before they are
exploited
¤ What’s a vulnerability?
¤ How to find them?

Without Running the Program

3

¨ Can we find vulnerabilities without running the
program?
¤ Why would that be beneficial?

Limitations of Dynamic Testing

4

¨ Time consuming
¤ Have to run the program many, many times

¨ Some configuration
¤ Need to choose the inputs to initiate mutation
¤ Some setup

¨ Under-approximate
¤ While a crash/hang found is real,…
¤ Cannot test all paths and inputs in practice

n I.e., dynamic testing is intractable

Static Analysis

¨ Explore all possible executions of a program
¤ All possible inputs
¤ All possible states

5

Forms of Testing

¨ Static analysis is an alternative to dynamic testing
¨ Dynamic

¤ Select concrete inputs
¤ Find results of the execution given those inputs
¤ Apply many concrete inputs (i.e., run many tests)

¨ Static
¤ Select abstract inputs (set of inputs)
¤ Find impact created by executing all abstract inputs
¤ One “run”

6

Static Analysis

¨ Provides an approximation of program behavior
¨ “Run in the aggregate”

¤ Rather than executing concretely one run at a time
¤ Finite-sized descriptors representing a collection of values

¨ “Run in non-standard way”
¤ Run in fragments
¤ Stitch them together to cover all paths

¨ Runtime testing is inherently incomplete, but static
analysis can cover all paths

7

Static Vulnerability Tools

¨ Quite a few commercial tools for vulnerability
detection – for different languages, types of flaws, etc.
¤ Checkmarx
¤ SonarQube
¤ Veracode
¤ Snyk
¤ Acunetix
¤ Fortify
¤ Coverity

¨ And compiler tools (LLVM Static Checker) and
research tools galore 8

Static Analysis Example

¨ Can we find a use-after-free flaw with static analysis?
int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}
9

Static Analysis Example

1
0

¨ Pointers have 2 values: (malloc, free)
int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Static Analysis Example

1
1

¨ Pointers have 3 ops: (malloc, use, free)
int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Static Analysis Example

1
2

¨ A free pointer cannot have a use op
int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Static Analysis Example

1
3

¨ A free pointer cannot have a use op
int main(int argc, char **argv) {

char *buf1R1;

char *buf2R1;

char *buf2R2;

char *buf3R2;

buf1R1 = (char *) malloc(BUFSIZER1);

buf2R1 = (char *) malloc(BUFSIZER1);

free(buf2R1);

buf2R2 = (char *) malloc(BUFSIZER2);

buf3R2 = (char *) malloc(BUFSIZER2);

strncpy(buf2R1, argv[1], BUFSIZER1-1);

free(buf1R1);

free(buf2R2);

free(buf3R2);

}

malloc

malloc

free

malloc

malloc

use

free

Static Analysis Example Summary

¨ Provides an approximation of program behavior
¨ Approximate values based on analysis goals

¤ We only care about whether pointers are assigned to objects
(malloc) or not (free) – not specific pointer addresses

¨ Consider operations in terms of those abstract values
¤ Malloc à changes pointer value to “malloc”
¤ Free à changes pointer value to “free”
¤ Use does not change pointer value

¨ Then, check all executions against a rule
¤ Cannot have a “use” op on a pointer whose value is “free”

¨ Only one execution path here, but may be many14

Static Analysis

¨ There, you completed your first static analysis!

15

17

What Do We Want to Find?

¨ Often whether one value affects another (taint)
¨ Secrecy – Does a secret value x affect a public value y

¤ Can we leak x?
¨ Integrity – Does an adversary-controlled value x affect

a critical (i.e., high integrity) value y
¤ Can an adversary attack y?

¨ Problem statement:
¤ Given an x we care about…
¤ Is there any execution path in the program where the data

assigned to x may be assigned to y (x taints y)

19

One Type of Leak

• Consider the simple program below, where x is a
secret value

y = x;

output(y);

• If x is a secret value, is its value leaked?

20

Another Type of Leak

• Consider the simple program below

if (x == 0)

b = 1;

else

b = 2;

output(b);

• If x is a secret value, is its value leaked?

Information Flows

• What is going on here?
‣ Dorothy Denning captured the essence in 1976

21

Implicit and Explicit Flows

¨ Explicit Flow
¤ Direct assignment from a to b (e.g., b=a)

¨ Implicit Flow
¤ Indirect assignment where value of b may depend on a indirectly (via

a conditional)

22

Implicit and Explicit Flows

¨ Explicit Flow
¤ Direct assignment from a to b (e.g., b=a)

¨ Implicit Flow
¤ Indirect assignment where value of b may depend on a indirectly (via

a conditional)

¨ Compute these flows and determine whether they leak a value
¤ Could be a combination of explicit and implicit flows

23

Information Flow Secuity

¨ So, what does “secure” mean in information flow?
¤ Cannot create an “information flow” from secret to public
¤ Explicit flow: No assignment “x=y” where x is public and y

is secret
¤ Implicit flow: No conditional based on secret data that

impacts the value of a public variable

24

Flow Checking

¨ Program is secure iff:
¤ Explicit flow from S is secure
¤ Explicit flow from all statements in a sequence are secure (e.g.,

S1, …, Sm)
¤ Conditional c: B1, …., Bn is secure if:

n The explicit flows of all branches: Bi: S1, …, Sm are secure
n The implicit flows between c and B1, …, Bn are secure

¨ These are all forms of taint flows

25

Static Analysis Approach

¨ Possible values of a variable: secret, public, none
¤ We don’t care what the specific value is

¨ Operations
¤ Explicit flow (b = a) or Implicit flow if (if(a) b = any)

n If b’s value is none, then assign b to the value of a
n If b’s value is public and a’s value is public or none, leave b’s value

unchanged as public
n If b’s value is public and a’s value is secret, report an error

¨ Do this for the entire program
¤ All execution paths, although can optimize

26

Example

void fn(char *buf, int len)

{

char public[SIZE];

char secret[SIZE];

copy(public, “MSG”, SIZE);

if (len < SIZE)

copy(secret, buf, len);

else

send(public); // a public sink

} 27

Example

void fn(char *buf, int len)

{

char public[SIZE];

char secret[SIZE];

copy(public, “MSG”, SIZE);

if (len < SIZE)

copy(secret, buf, len);

else

send(public); // a public sink

} 28

public
secret

Flow of Public

void fn(char *buf, int len)

{

char public[SIZE];

char secret[SIZE];

copy(public, “MSG”, SIZE);

if (len < SIZE)

copy(secret, buf, len);

else

send(public); // a public sink

} 29

public
secret

Flow of Secret

void fn(char *buf, int len)

{

char public[SIZE];

char secret[SIZE];

copy(public, “MSG”, SIZE);

if (len < SIZE)

copy(secret, buf, len);

else

send(public); // error here

} 30

public
secret

Is Static Analysis a Miracle?

• Limitation: If we try to find all vulnerabilities via
static analysis (i.e., over-approximate the program
operations), then there will likely be false positives
• False positive: violate an analysis rule in the

approximation, but not in the real program execution
• Is every explicit/implicit flow a leak?

• Should we be able to send an error message?
• Also, more subtle cases due to the complexity of

programs

31

What Can We Do with Static Analysis?

• Used to detect many types of vulnerabilities
• And show the absence of vulnerabilities in some

cases

32

Memory Safety Validation

• Identify the objects whose accesses must all satisfy
spatial, type, and temporal safety (all classes of
memory safety)
• Why care?
• Protect those objects from accesses that may cause

memory errors
• If we identify these statically, we can protect without

runtime checks

33

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object

34

Object

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

35

Object

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

36

Object

Is Object safe from exploitation via memory errors?

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

37

Object

Is Object safe from exploitation via memory errors? No

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

38

Object

Suppose Object is isolated from all accesses to
unsafe objects: Is Object safe from exploitation?

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

39

Object

Suppose Object is isolated from accesses to
unsafe objects: Is Object safe from exploitation? YES

Isolate Safe Stack Objects

• Compute all possible aliases of an object, and if all
uses satisfy spatial, type, and temporal safety
• Isolate those objects from accesses to unsafe objects

40

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

Memory Safety Validation

• Objects may have many aliases
• Alias: pointer that may be assigned (defined) to the

object
Suppose all aliases of Object only make safe accesses

41

Object

So, it is worth determining which objects must be safe
from all memory errors and isolating them from unsafe

Impact of Memory Safety Validation

¨ 91.45% of stack objects are shown to be safe w.r.t. spatial, type, and temporal errors.

¨ 50% and 70% unsafe stack objects to CCured and Safe Stack are found safe by
DataGuard.

¨ 3% and 6.3% safe stack objects by CCured and Safe Stack are not provably safe in
DataGuard

Conclusions

¨ Memory safety validation is a typical static analysis
¤ Assign values to pointers (e.g., in bounds)
¤ Find operations that change those values
¤ Detect violations of analysis rules

¨ Static analysis is a common technique to detect
vulnerabilities and prove their absence

¨ Can find all vulnerabilities in a program, although
may have false positives

45

Questions
46

