
Access Control
March 7, 2024

1

CS165 – Computer Security

Authentication and Access Control

¨ Authentication
¤ Verifying the identity of a principal/subject

n Passwords
n Cryptography
n E.g., User, process, host

¨ Access Control
¤ Limit the accesses that a principal can perform

n Access: Object and operation

3

Access Control

¨ Why do we need access control?
4

Access Control

¨ Why do we need access control?
¤ Systems often run processes on behalf of multiple

users or applications
¤ May have objects with confidentiality, integrity,

and/or availability concerns

5

Accidental Access

¨ What are we protecting data from?
¤ Another user or application may run a process to

accidentally overwrite, delete, leak your data
n No reason for another user’s errors to impact your data

¨ Access control can prevent another user or
application from accessing your data

7

Malware

¨ What are we protecting data from?
¤ Malware
¤ Malicious code installed on your host may try to

attack your system
n Virus – modify binary files
n Ransomware – encrypt data files
n Trojan horse – steal passwords, contacts, photos, etc.

¨ Access control can confine malware to protect it
from accessing/misusing your data

8

Compromised Processes

¨ What are we protecting data from?
¤ Compromised processes
¤ Adversaries may hijack a benign process

n To exploit those permissions – advanced persistent threat
n To escalate privileges through – local exploits
n To compromise the host and spread – worm

¨ Access control can confine compromised
processes to limit their impact

9

Protection System

¨ A protection system enforces access control policies
¤ A program that enforces access control invokes the

protection system to determine whether a subject can
perform a security-sensitive operation
n E.g., an operating system queries its protection system to

determine whether a process running under a specific
userid may write to a particular file

n Lots of server programs enforce their own access control
¤ The protection system checks whether the access

control policy authorizes a subject (e.g., userid), object
(e.g., file), and operation (e.g., write) combo

10

Access Matrix

¨ One way of viewing an
access control policy is
view an access matrix
¤ Columns: Objects
¤ Rows: Subjects
¤ Cells: Operations (allowed)

¨ Shows:
¤ Subj2 can read Obj2

11

Obj1 Obj2 Obj3

Subj1 R RWX RW

Subj2 R

Subj3 RW

Access Matrix

¨ An access matrix can be
interpreted from two
perspectives
¤ From the object’s

perspective
n Access Control List (red)
n Subjects that can access that

particular object
¤ From the subject’s

perspective
n Capabilities (green)
n Objects a subject can access

12

Obj1 Obj2 Obj3

Subj1 R RWX RW

Subj2 R

Subj3 RW

UNIX File Permissions

¨ Each file is assigned its own ACL encoding (called
mode bits) of permissions to authorize subjects
¤ Run ls –la

¨ What does all this mean?

14

UNIX File Permissions

¨ Each file has an owner and group owner, userids
that have special permissions to a file

15

Users and Userids

¨ In Linux, each user is assigned a unique userid
¨ Userids are stored in /etc/passwd

¨ Find a userid

¨ Each process run has a userid

UNIX File Permissions

¨ The permissions of a file designate the permissions
of the file’s owner
¤ The only permissions are read (r), write (w), execute (x)

17

UNIX Groups

¨ Represents a group of userids
¨ Assigns permissions based on group
¨ A user can belong to multiple groups
¨ A user’s primary group is in /etc/passwd

UNIX File Permissions

¨ The permissions of a file designate the permissions
of the file’s group owner too
¤ A process may belong to multiple groups, so just need

one to be the group owner of this file to get group

19

UNIX File Permissions

¨ What about users who are neither the file’s owner
nor a member of the file’s group owner?
¤ They are authorized using the other permissions

20

UNIX Permission Semantics

¨ Types of access on files
¤ read (r): user can view the contents of the file
¤ write (w): user can change the contents of the file
¤ execute (x): user can execute or run the file if it is a

program or script
¨ Types of access on directories

¤ read (r): user can list the contents of the directory (e.g.,
files in the directory)

¤ write (w): user can create files and sub-directories inside
the directory

¤ execute (x): user can enter that directory (e.g., using ‘cd’)

Default File Permissions

¨ umask: determines the default permissions
assigned to new files
¤ You probably live with these permission assignments

Umask Example

UNIX File Permission Changes

¨ A file owner can change its permissions
¤ chmod – change the mode bits value of a file

n chmod 644 xyz or chmod +r xyz

24

File Descriptors

¨ After you are authorized to open a file, your
process receives a form of a capability, called a file
descriptor, to perform operations on the file

File Descriptors

¨ After you are authorized to open a file, your
process receives a form of a capability, called a
file descriptor, to perform operations on the file

¨ A file descriptor identifies the permissions that
may be exercised on the file when presented on
subsequent system calls (i.e., to the OS)
¤ write(fd, buffer, size)

n Allowed if the file descriptor fd has the write permission,
based on opening the file read-write (O_RDWR)

¨ In a pure capability system, a file descriptor could
be given to another process – more limited here

POSIX Capabilities

¨ Divide the root privilege into smaller privilege units
¨ Known as POSIX capabilities – not capabilities in

the traditional sense
¤ Just identifiers for sets of permissions
¤ Use “man capabilities” to find all the capabilities

Does Access Control Ensure Security?

¨ E.g., Solve basic security problems
¤ Can UNIX/Windows protection systems ensure that a

particular permission is never granted to a particular
subject?

¤ Answer: No (proven in 1976)
¨ As a result, we cannot solve many security

problems with UNIX protection systems
¤ It can prevent accidents, but cannot enforce security

Can I Confine Malware?

¨ Can I define a UNIX policy that confines an
untrusted program to no file access?

Can I Confine Malware?

¨ Can I define a UNIX policy that confines an
untrusted program to no file access?
¤ Answer: No
¤ Remember “others” rights to files

¨ E.g., Malware can execute many programs (root)

Can I Prevent Secrets from Being Leaked?

¨ Can I define a UNIX policy that ensures that a
process with access to a file cannot leak the file
contents to another process?
¤ The Trojan horse problem

n You download a program and give it access to a secret file.
n Can you ensure that the program does not leak the file?

Can I Prevent Secrets from Being Leaked?

¨ Can I define a UNIX policy that ensures that a
process with access to a file cannot leak the file
contents to another process?
¤ The Trojan horse problem
¤ Answer: No way

¨ A process can create an object (i.e., become the
owner) and grant the other process read access

UNIX Defenses

¨ There are actually some ad hoc attempts to enable
UNIX to enforce such policies
¤ E.g., chroot

¨ But, they don’t really work

Mandatory Access Control

¨ Consists of two goals
¨ (1) Provide a fixed (i.e., system-defined) access

control policy to express security requirements
¤ E.g., to confine processes and prevent leaks

¨ (2) Ensure that the access control policy is
enforced correctly and comprehensively
¤ To guarantee the policy enables its goals

Fixed Access Matrix

¨ Can still express policies as
an access matrix
¤ Columns: Objects
¤ Rows: Subjects
¤ Cells: Operations (allowed)

¨ But, what if the set of
objects changes?

¨ But, what if a user runs
multiple programs?
¤ Trusted and untrusted

40

Obj1 Obj2 Obj3

Subj1 R RWX RW

Subj2 R

Subj3 RW

Fixed Access Matrix

¨ But, what if the set of
objects changes?

¨ But, what if a user runs
multiple programs?
¤ Trusted and untrusted

¨ Can fix both the same way
¤ Use a fixed set of labels for

subjects and objects
¤ Subject labels are often

program-specific (confine)

41

Public Httpd
Objects

Httpd
Code

httpd R RW RX

sshd R

untrust R

Access Control for Security

¨ In practice, mandatory access control is used in
two ways to express security requirements

¨ Least privilege
¤ Confine malware
¤ Confine compromised processes

n In particular, network-facing daemons

¨ Multi-level Security (MLS)
¤ Prevent leakage

n Basically, a form of information flow

Least Privilege

¨ Only the permissions necessary to operate
¤ ”Confine” by preventing use of unnecessary

permissions
¤ This idea is old (Multics: Saltzer & Schroeder 1975)

¨ How do we determine least privilege permissions
for a program?

Least Privilege

¨ How do we determine least privilege permissions
for a program?
¤ Run the program
¤ Log the permissions used
¤ Grant only those permissions

¨ Linux program to do this called audit2allow

Issues with Least Privilege

¨ Did we find all the permissions that may be used?
¤ Multiple runs
¤ Multiple configurations
¤ Not easy to find all uses – RHEL notes for Apache

n https://www.serverlab.ca/tutorials/linux/web-servers-
linux/configuring-selinux-policies-for-apache-web-servers/

¨ Did we ensure confinement of the process?
¤ Access control is configured based on functionality
¤ So, if the program uses a dangerous permission, an

adversary may exploit that

https://www.serverlab.ca/tutorials/linux/web-servers-linux/configuring-selinux-policies-for-apache-web-servers/
https://www.serverlab.ca/tutorials/linux/web-servers-linux/configuring-selinux-policies-for-apache-web-servers/

Least Privilege and Confinement

¨ Suppose we run the web server and it creates files
in the directory /var/www/html
¤ Root web server directory

¨ And crond can execute scripts in /var/www/html
¤ crond is a daemon to execute scheduled commands
¤ crond runs as root and has a lot of uses/privileges

n Hard to confine

¨ What can an adversary do?

Least Privilege and Confinement

¨ Suppose we run the web server and it creates files
in the directory /var/www/html
¤ Root web server directory

¨ And crond can execute scripts in /var/www/html
¤ crond is a daemon to execute scheduled commands
¤ crond runs as root and has a lot of uses/privileges

n Hard to confine

¨ What can an adversary do?
¤ Compromise the web server (network daemon) to

inject code into /var/www/html for crond to run

Preventing Leakage

¨ Classic Threat: Trojan horse
¤ You download a program and give it access to a secret

file.
n The program may perform a valuable service, but also have

additional function that is adversarial
¤ Can you ensure that the program does not leak the

file with mandatory access control? How?

Lattice Security Model (Info Flow)

¨ Formalizes security based on information flow models
¤ FM = {N, P, SC, /, >}

¨ Information flow model instances form a lattice
¤ What’s a lattice?

n Graph where every node has a LUB and a GLB

¨ N are objects, P are processes, and each are assigned a
security class SC
¤ {SC, >} is a partial ordered set
¤ SC, the set of security classes, is finite
¤ SC has a lower bound
¤ and / is a LUB operator

52

High

Low

Med-Left Med-Right

Subjects and Objects
Are Assigned SCs

Multi-Level Security (MLS)

¨ An operation is only authorized if:
¤ Read: SCSubject >= SCObject

¤ Write: SCSubject <= SCObject

¨ To ensure that operations cannot
leak data either by:
¤ Reading up
¤ Writing down

53

Top Secret

Unclassified

Secret

Multi-Level Security (MLS)

¨ An operation is only authorized if:
¤ Read: SCSubject >= SCObject

¤ Write: SCSubject <= SCObject

¨ Suppose a Trojan horse is run to
access Top Secret data
¤ Can it leak that data?

n E.g., Write to an unclassified file

54

Top Secret

Unclassified

Secret

Multi-Level Security (MLS)

¨ An operation is only authorized if:
¤ Read: SCSubject >= SCObject

¤ Write: SCSubject <= SCObject

¨ Suppose a Trojan horse is run to
access Top Secret data
¤ Can it leak that data?

n E.g., Write to an unclassified file

¨ Blocked by MLS enforcement

55

Top Secret

Unclassified

Secret

Issues with MLS

¨ Did we ensure confinement of the process?
¤ Yes!
¤ Access control is configured based on security
¤ So, no way to leak secrets assuming subject and object

labels are correct
n And no side channels (out of scope for the course)

¨ Did we allow a program its least privilege permissions?
¤ No!
¤ Cannot even have bi-directional communication

¨ As a result, MLS is used in limited cases (isolation)

56

Access Control Enforcement

¨ What do we need to do to enforce access control
correctly and comprehensively?
¤ Comprehensive: all security-sensitive operations
¤ Correctly: are checked against the expected policy

Reference Monitor Concept

¨ Describes the requirements for correct and
comprehensive enforcement

¨ Complete mediation: The reference validation
mechanism must always be invoked on each
security-sensitive operation.

¨ Tamperproof: The reference validation mechanism
must be tamperproof.

¨ Verifiable: The reference validation mechanism
must be small enough to be subject to analysis and
tests, the completeness of which can be assured.

Linux Security Modules

¨ Linux mechanism to enforce mandatory access
control (reference monitor)
¤ https://www.kernel.org/doc/html/v4.16/admin-

guide/LSM/index.html
¨ Main goal: confine network-facing daemons

¤ To make it difficult to compromise a host with one
vulnerability

¤ Main “modules” include: SELinux, AppArmor, Tomoyo
¨ Least privilege for root processes

¤ MLS can be used to isolate processing (VMs)

https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html

Conclusions

¨ Access control and authentication are the two
fundamental security mechanisms
¤ We have seen access control throughout this course

¨ UNIX access control uses Access Control Lists (mode
bits) per file to list authorized subjects
¤ Prevents accidents but cannot enforce security

¨ Linux now enforces mandatory access control
¤ Least privilege: Limits malware/compromised daemons
¤ Multilevel security: Prevents illegal info flows

61

Questions
62

