CS165 — Computer Security

Access Control
March 7, 2024

Authentication and Access Control

[3 |
7 Authentication
Verifying the identity of a principal/subject
m Passwords
m Cryptography
m E.g., User, process, host

1 Access Control

Limit the accesses that a principal can perform
m Access: Object and operation

Access Control

I
71 Why do we need access control?

Access Control

5
71 Why do we need access control?

Systems often run processes on behalf of multiple
users or applications

May have objects with confidentiality, integrity,
and/or availability concerns

Accidental Access

What are we protecting data from?

Another user or application may run a process to
accidentally overwrite, delete, leak your data

No reason for another user’s errors to impact your data

Access control can prevent another user or
application from accessing your data

Malware

What are we protecting data from?

Malware

Malicious code installed on your host may try to
attack your system

Virus — modify binary files

Ransomware — encrypt data files

Trojan horse — steal passwords, contacts, photos, etc.

Access control can confine malware to protect it
from accessing/misusing your data

Compromised Processes

What are we protecting data from?

Compromised processes

Adversaries may hijack a benign process
To exploit those permissions —advanced persistent threat
To escalate privileges through — local exploits
To compromise the host and spread — worm

Access control can confine compromised
processes to limit their impact

Protection System

A protection system enforces access control policies

A program that enforces access control invokes the
protection system to determine whether a subject can
perform a security-sensitive operation

E.g., an operating system queries its protection system to
determine whether a process running under a specific
userid may write to a particular file

Lots of server programs enforce their own access control
The protection system checks whether the access

control policy authorizes a subject (e.g., userid), object
(e.g., file), and operation (e.g., write) combo

Access Matrix

1 One way of viewing an
access control policy is
View an access matrix

1 Columns: Objects Subj] R RWX RW
1 Rows: Subjects

1 Cells: Operations (allowed)

1 Shows: Subi2 R

=1 Subj2 can read Obj2

Subj3 RW

Access Matrix

An access matrix can be
interpreted from two
perspectives
From the object’s
perspective

Access Control List (red)

Subjects that can access that
particular object

From the subject’s
perspective

Capabilities (green)

Objects a subject can access

Subjl

Subj2

Subj3

RWX

RW

RW

UNIX File Permissions

Each file is assigned its own ACL encoding (called
mode bits) of permissions to authorize subjects

Run 1s —1a

permissions
A

-rrvyx rwx rw;(seed abc 1802 Feb 6 11:39 «xyz

owner | | owner
group group owner file name
other

What does all this mean?

UNIX File Permissions

-1 Each file has an owner and group owner, userids
that have special permissions to a file

permissions

-rrvyx rwx rw;(seed abc 1802 Feb 6 11:39 «xyz

owner | i |owner] :

gro'up [8r0ub owner} file néme
other

Users and Userids

In Linux, each user is assigned a unique userid
Userids are stored in /etc/passwd

root:x:0:0:root:/root:/bin/bash
seed:x:1000:1000:SEED,,, : /home/seed: /bin/bash

Find a userid

seed@VM: " $ id
uid=1000 (seed) gid=1000 (seed) groups=1000 (seed)

root@VM: " # id
uid=0 (root) gid=0 (root) groups=0 (root)

Each process run has a userid

UNIX File Permissions

The permissions of a file designate the permissions
of the file’s owner

The only permissions are read (r), write (w), execute (x)

permissions
A

-rrvyx rwx rw;(seed abc 1802 Feb 6 11:39 «xyz

owner|i i |owner| |

gro'up group owner file name
other

UNIX Groups

Represents a group of userids

Assigns permissions based on group

A user can belong to multiple groups

A user’s primary group is in /etc/passwd

root:x:0:0:¥00t:/root: /bin/bash
seed:x:1000:1000:SEED, ,, : /home/seed: /bin/bash
bob:x:1001:1001:Bob, ,, :/home/beb: /bin/bash
alice:x:1002:1003:Alice,,, :/home/alice:/bin/bash

UNIX File Permissions

1 The permissions of a file designate the permissions
of the file’s group owner too
A process may belong to multiple groups, so just need
one to be the group owner of this file to get group

permissions

A

- rwx rwxrwx seed abc 1802 Feb 6 11:39 xyz

owner i i owner

[8FOUFEJ ownerJ file n;me

other

UNIX File Permissions

What about users who are neit
nor a member of the file’s grou

They are authorized using the ot

permissions
A

- rwx rwx rwx seed abc 1802 Feb
owner | | owner
gro'up group owner

ner the file’s owner
0 owher?

ner permissions

6 11:39 xyz

file name

UNIX Permission Semantics

Types of access on files
read (r): user can view the contents of the file
write (w): user can change the contents of the file
execute (x): user can execute or run the file if it is a
program or script

Types of access on directories

read (r): user can list the contents of the directory (e.g.,
files in the directory)

write (w): user can create files and sub-directories inside
the directory

execute (x): user can enter that directory (e.g., using ‘cd’)

Default File Permissions

7 umask: determines the default permissions
assigned to new files

You probably live with these permission assignments

Initial (0666) rw— Yw— rw-—

110 110 110
umask (0022) 000 010 010
Final permission 110 100 100

Umask Example

S umask
0002
$ touch tl1

umask 0022
touch t2
umask 0777
touch t3

0N n U

$ 1s -1 t=*

—-rw—-rw-r—— 1 seed seed 0 Feb 6 16:23 t1l
—-rw-r——-r—— 1 seed seed 0 Feb 6 16:24 t2
—————————— 1 seed seed 0 Feb 6 16:24 t3

UNIX File Permission Changes

24
-1 A file owner can change its permissions

chmod — change the mode bits value of a file
w chmod 644 xyz or chmod +r xyz

permissions

-rwxrwx rwx seed abc 1802 Feb 6 11:39 xyz

owner|i | |owner

gro'up group owner file name
other

File Descriptors

After you are authorized to open a file, your
process receives a form of a capability, called a file
descriptor, to perform operations on the file

File Descriptors

After you are authorized to open a file, your
process receives a form of a capability, called a
file descriptor, to perform operations on the file

A file descriptor identifies the permissions that
may be exercised on the file when presented on
subsequent system calls (i.e., to the OS)

write (fd, buffer, size)

Allowed if the file descriptor £d has the write permission,
based on opening the file read-write (O RDWR)

In a pure capability system, a file descriptor could
be given to another process — more limited here

POSIX Capabilities

Divide the root privilege into smaller privilege units

Known as POSIX capabilities — not capabilities in
the traditional sense

Just identifiers for sets of permissions
Use “man capabilities” to find all the capabilities

CAP_CHOWN : Make arbitrary changes to file UIDs and GIDs.
CAP_DAC_OVERRIDE: Bypass file read/write/execute permission checks.
CAP_DAC_READ_SEARCH: Bypass file read permission checks ...
CAP_NET_RAW: Use RAW and PACKET sockets ...

Does Access Control Ensure Security?

E.g., Solve basic security problems

Can UNIX/Windows protection systems ensure that a
particular permission is never granted to a particular
subject?

Answer: No (proven in 1976)

As a result, we cannot solve many security
problems with UNIX protection systems

It can prevent accidents, but cannot enforce security

Can | Confine Malware?

-1 Can | define a UNIX policy that confines an
untrusted program to no file access?

Can | Confine Malware?

-1 Can | define a UNIX policy that confines an
untrusted program to no file access?

Answer: No
Remember “others” rights to files

permissions

_}wx rwx rvy;(seed abc 1802 Feb 6 11:39 xyz

owner . owner | :
group group owner file name

o E.g., Malware can execute many programs (root)

Can | Prevent Secrets from Being Leaked?

-1 Can | define a UNIX policy that ensures that a
process with access to a file cannot leak the file
contents to another process?

The Trojan horse problem
m You download a program and give it access to a secret file.
m Can you ensure that the program does not leak the file?

Can | Prevent Secrets from Being Leaked?

-1 Can | define a UNIX policy that ensures that a
process with access to a file cannot leak the file
contents to another process?

The Trojan horse problem
Answer: No way

-1 A process can create an object (i.e., become the
owner) and grant the other process read access

UNIX Defenses

There are actually some ad hoc attempts to enable
UNIX to enforce such policies

E.g., chroot
But, they don’t really work

Mandatory Access Control

Consists of two goals

(1) Provide a fixed (i.e., system-defined) access

control policy to express security requirements
E.g., to confine processes and prevent leaks

(2) Ensure that the access control policy is
enforced correctly and comprehensively

To guarantee the policy enables its goals

Fixed Access Matrix

71 Can still express policies as
an access matrix

1 Columns: Objects
1 Rows: Subjects Subjl R RWX RW
1 Cells: Operations (allowed)

1 But, what if the set of

objects changes? P ¥
o But, what if a user runs
i ?
multiple programs: . W

= Trusted and untrusted

Fixed Access Matrix

But, what if the set of
objects changes?

But, what if a user runs
multiple programs? hitpd
Trusted and untrusted

Can fix both the same way

Use a fixed set of labels for
subjects and objects

Subject labels are often
program-specific (confine)

untrust

RW

RX

Access Control for Security

In practice, mandatory access control is used in
two ways to express security requirements

Least privilege
Confine malware

Confine compromised processes
In particular, network-facing daemons

Multi-level Security (MLS)

Prevent leakage
Basically, a form of information flow

Least Privilege

]
0 Only the permissions necessary to operate

”Confine” by preventing use of unnecessary
permissions

This idea is old (Multics: Saltzer & Schroeder 1975)

7 How do we determine least privilege permissions
for a program?

Least Privilege

How do we determine least privilege permissions
for a program?

Run the program

Log the permissions used

Grant only those permissions

Linux program to do this called audit2allow

Issues with Least Privilege

Did we find all the permissions that may be used?
Multiple runs
Multiple configurations
Not easy to find all uses — RHEL notes for Apache

Did we ensure confinement of the process?
Access control is configured based on functionality

So, if the program uses a dangerous permission, an
adversary may exploit that

https://www.serverlab.ca/tutorials/linux/web-servers-linux/configuring-selinux-policies-for-apache-web-servers/
https://www.serverlab.ca/tutorials/linux/web-servers-linux/configuring-selinux-policies-for-apache-web-servers/

Least Privilege and Confinement

Suppose we run the web server and it creates files
in the directory /var/www/html

Root web server directory
And crond can execute scripts in /var/www/html

crond is a daemon to execute scheduled commands

crond runs as root and has a lot of uses/privileges
Hard to confine

What can an adversary do?

Least Privilege and Confinement

Suppose we run the web server and it creates files
in the directory /var/www/html

Root web server directory
And crond can execute scripts in /var/www/html

crond is a daemon to execute scheduled commands

crond runs as root and has a lot of uses/privileges
Hard to confine

What can an adversary do?

Compromise the web server (network daemon) to
inject code into /var/www/html for crond to run

Preventing Leakage

I
-1 Classic Threat: Trojan horse

You download a program and give it access to a secret
file.

m The program may perform a valuable service, but also have
additional function that is adversarial

Can you ensure that the program does not leak the
file with mandatory access control? How?

Lattice Security Model (Info Flow)

Formalizes security based on information flow models
FM = {NI PI SCI /I >}
Information flow model instances form a lattice

What’s a lattice?
Graph where every node has a LUB and a GLB

N are objects, P are processes, and each are assigned a Subjects and Objects

security class SC Are Assigned SCs
{SC, >} is a partial ordered set High
SC, the set of security classes, is finite
SC has a lower bound /\
and /is a LUB operator Med-Lett Med-Right

\/

Low

Multi-Level Security (MLS)

o An operation is only authorized if:
O Read: SCSubject >= SCObject
o Write: SCSubject <= SCObject
-1 To ensure that operations cannot -

leak data either by:
_ Secret |
[Unclassifed

o1 Reading up

o1 Writing down

Multi-Level Security (MLS)

o An operation is only authorized if:

Read: SCSubject >= SCObjECt

WI’ItEZ SCSubject <= SCObject

. . Top S t
- Suppose a Trojan horse is run to i

aCcesSs Top Secret data
Secret

Can it leak that data? 3
m E.g., Write to an unclassified file

Unclassified

Multi-Level Security (MLS)

An operation is only authorized if:
Read: SCSubject >= SCObject

W“te: SCSubject <= SCObject

. . Top S t
Suppose a Trojan horse is run to P
access Top Secret data
. Secret
Can it leak that data? 3

E.g., Write to an unclassified file

Unclassified

Blocked by MLS enforcement

Issues with MLS

Did we ensure confinement of the process?
Yes!
Access control is configured based on security

So, no way to leak secrets assuming subject and object
labels are correct
And no side channels (out of scope for the course)

Did we allow a program its least privilege permissions?
No!
Cannot even have bi-directional communication

As a result, MILS is used in limited cases (isolation)

Access Control Enforcement

What do we need to do to enforce access control
correctly and comprehensively?

Comprehensive: all security-sensitive operations
Correctly: are checked against the expected policy

Reference Monitor Concept

Describes the requirements for correct and
comprehensive enforcement

Complete mediation: The reference validation
mechanism must always be invoked on each
security-sensitive operation.

Tamperproof: The reference validation mechanism
must be tamperproof.

Verifiable: The reference validation mechanism
must be small enough to be subject to analysis and
tests, the completeness of which can be assured.

Linux Security Modules

Linux mechanism to enforce mandatory access
control (reference monitor)

Main goal: confine network-facing daemons

To make it difficult to compromise a host with one
vulnerability

Main “modules” include: SELinux, AppArmor, Tomoyo

Least privilege for root processes
MILS can be used to isolate processing (VMs)

https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html
https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html

Conclusions

Access control and authentication are the two
fundamental security mechanisms

We have seen access control throughout this course

UNIX access control uses Access Control Lists (mode
bits) per file to list authorized subjects

Prevents accidents but cannot enforce security
Linux now enforces mandatory access control

Least privilege: Limits malware/compromised daemons
Multilevel security: Prevents illegal info flows

Questions
62 |

QA

