CS165 — Computer Security

Filesystem Security
March 5, 2024

File Open
TR e

= Problem: Processes need resources from system
o1 Just asimple open (filepath, ..) right?

o But, adversaries can cause victims to access resources of their
choosing

o And if your program has some valuable privileges, an
adversary may want to trick you into using them to
implement a malicious operation

A Webserver’s Story ...
TR e

-1 Consider a university department webserver ...

GET /~student1/index.html HTTP/1.1
|

Attack Video

® QuickTime Player File Edit View Window Help P — —

c

iPad Air iPad mini iPhone 503 & iTunes

B 'FESTIVAL

hayawardh@mantra: ~/cod... |

Put the ultim

Free iPad engraving.

Configure your new iMac.

Apple's Oppenheimer to Retire at End of September

Apple today announced that Peter Oppenheimer, Apple's senior vice

Questions? Advice?
president and CFO, will retire at the end of September. Luca Maestri

Singapore School Finds New Ways to Educate With iPad

Educators at one of Singapore's top public high schools have found that

using iPad in the classroom is helping students excel and changing the

i HEM i = O 8%EF Tueld:37AM Q

What Just Happened?

Serve
VVbbpage

Authenticate

Webserver]

/\

~
N—_

Password
File

SN~—

— TN
—_ —
Web Pages

— &

Program acts as a confused deputy

éSwhen expecting @
Q when expecting @

Not
OK oK
<> W >
Serve Web pages
File
Webpage
Not
P d Web Pages
Authenticate @ -

PENNSTAT

Integrity (and Secrecy) Threat =

* Confused Deputy

» Process is tricked into performing an operation on
an adversary's behalf that the adversary could not
perform on their own

* Write to (read from) a privileged file

Confused Deputy Attacks

Confused
Deputy
Attacks

e

Lesson

TR e
1 Opening a file is fraught with danger

1 We must be careful when using an input that may
be adversary controlled when opening a file

m Or anything else...

Name Resolution
1]

- Processes often use names to obtain access to system resources

o A nameserver (e.g., OS) performs name resolution using a
namespace (e.g., directories) to convert a name (e.g.,
pathname) into a system resource (e.g., file)

Filesystem, System V IPC, ...

Namespace (filesystem)

N—
P open (“/var/ root
mail/root”)
= A\ ™~
ame \ | | Resource (file)

(pathname) |
Directories

Link Traversal Attack

-1 Adversary controls links to direct a victim to a
resource not normally accessible to the adversary

o Victim expects one resource, gets another instead

open (“/var/
mail/root”)
Link

. 55 passwd

File Squatting Attack
L

-1 Adversary predicts a resource to be created by a

victim — creates that resource in advance

71 Victim accesses a resource controlled by an

adversary instead

open (“/var/
mail/root”)

-

owner maakl

root \

@

11

Common Threat
L]

0 What is the threat that enables link traversal and
file squatting attacks?

= Common to both

@‘*"‘@A

Common Threat

What is the threat that enables link traversal and
file squatting attacks?

Common to both

In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution

Could be any directory used in resolution, not just
the last one

Enables the adversary to plant links and/or
files/directories where they can write

Threat Example

An adversary may be authorized to write to a directory
you use in resolving a file path

E.g., groups and others may have write permission to
a directory

Consider the directory /tmp
ls —-la /tmp
drwxrwxrwx ——-— root root —---

Means?

14

Threat Example

Suppose your program wants to create a new file
at “/tmp/just_a_normal file_here”

What file will you create/open?

16

File Squatting

Suppose your program wants to create a new file
at “/tmp/just_a_normal file_here”

What file will you open?

An adversary could have created this file already (file
squat) and given you permissions, so that you can use it

Can be difficult to verify the origins of a file

Causes your program to use a file under adversary
control when you expect your own file

17

Threat Example

Suppose your program is asked to open the file path
“/tmp/just_a_normal_file _here”

What file will you open?

18

Link Traversal

Suppose your program is asked to open the file path
“/tmp/just_a_normal_file _here”

What file will you open?

An adversary could have created this as a symbolic link to
any file in the system that you can access

And it is difficult/expensive to verify that this is not a
symbolic link
stat — provides file system information — e.g., permissions

Istat — provides file system information (like “stat”) for the link,
rather than the file/directory the link refers to

Causes your program to access an adversary-chosen file

19

Check and Use

Some system calls enable checking of the file (check)

Does the requesting party have access to the file? (stat,
access)

Is the file accessed via a symbolic link? (lstat)

Some system calls use the file (use)
Convert the file name to a file descriptor (open)
Modify the file metadata (chown, chmod)

Can an adversary modify the filesystem in between
check and use system calls?

TOCTTOU Races

Time-of-check-to-time-of-use (TOCTTOU) Race Attacks

Some system calls enable checking of the file (check)

Does the requesting party have access to the file? (stat,
access)

Is the file accessed via a symbolic link? (lstat)
Some system calls use the file (use)

Convert the file name to a file descriptor (open)

Modify the file metadata (chown, chmod)

Can an adversary modify the filesystem in between
check and use system calls? Yes. Pretty reliably.

Current Defenses
e

-1 Are there defenses to prevent such attacks?
o1 Yes, but the defenses are not comprehensive

Defenses

Variants of the “open” system call

Flag “O_NOFOLLOW” — do not follow any symbolic links
(prevent link traversal)

Does not help if you may need to follow symbolic links

May not be available on your system

Flag “O_EXCL” and “O_CREAT” — do not open unless the
new file is created (prevent file squatting)

Does not help if you if your program does not know whether the
file may need to be created

These lack flexibility for protection in general

More Advanced Defenses

The “openat” system call

Can open the directory (dirfd) separately from opening the file
(path) to check the safety of that part of the name resolution

int openat(int dirfd, const char *path, int oflag, ...);
Control some aspects of opening “path” (e.g., no links)

E.g., used in libc

libc_open (const char xfile, int oflag, ..)
to
SYSCALL_CANCEL (openat, AT_FDCWD, file, oflag, ..);

The “openat2” system call
More flags limiting “how” name resolution is done for “path”
Not standard

Openat Usage Example

Suppose you want to open “/var/mail/root” safely with “openat”

How would you do it?
int openat(int dirfd, const char *path, int oflag, ...);

Three steps
(1) Open “/var/mail” to obtain a “dirfd”
(2) Validate that the resulting file descriptor refers to “/var/mai

(3) Open the file “root” using “openat” using options to protect the open
from attacks

O_NOFOLLOW to prevent use of symbolic links (i.e., prevent link traversal)
O_EXCL with O_CREAT to ensure a fresh file is created (i.e., to prevent file squatting)
Two options for obtaining a valid “dirfd” value for “/var/mail”

(a) If you can run the program from “/var/mail/” then you can use AT FDCWD
for “dirfd” — guaranteed by the OS

openat (AT FDCWD, “root” , O NOFOLLOW | O EXCL | O CREAT);

(b) Open and validate “/var/mail/” yourself and then use as the “dirfd”
openat (dirfd, “root” , O NOFOLLOW | O EXCL | O CREAT);

I”

Validating directories

How do you validate a directory for “dirfd”?

Three steps
(1) Open “/var” to obtain its “fd”
(2) Collect the “stat” structure for this “fd”

From the file descriptor using fstat
int fstat(int fd, struct stat *buf);

(3) Check that this “fd” refers to a directory

S ISDIR(mode t buf.st mode); // see "struct stat” format

(4) Repeat (1-3) for “mail” opened from this “fd” (i.e., “/var”)

int openat(int fd, const char “mail”, int oflag, ...);

Vulnerabilities Easily Overlooked

Manual checks can

easily overlook
vulnerabilities

Misses file squat at

line 03!

01
02
03

/* filename = /var/mail/root */
/* First, check if file already exists */
fd = open (filename, flg);

if (fd == -1) {

/* Create the file */
fd = open(filename, O_CREAT|O_EXCL);
iR I(Fd. W O)wl

Squat during
} return errno; Create (resou rCe)

}

/* We now have a file. Make sure

we did not open a symlink. */
struct stat fdbuf, filebuf;
if (fstat (fd, &fdbuf) == -1)
return errno;
if (lstat (filename, &filebuf) == -1) . .
return errno; SymbOIIC Ilnk
/* Now check if file and fd reference the same file,

if ((fdbuf.st_dev != filebuf.st_dev
Hard link,
| sEdlalemt s @ie_mildmnk = il
with one link"), filename);

file only has one link, file is plain file. */
|| fdbuf.st_ino != filebuf.st_ino
[IE fdbuf st nlink U= 1
|| (eabut.=t_mode & s_1RUT) 1= s_terec)) {| rAce conditions
error (_("%s must be a plain file
close (Id);
return EINVAL;

}

/* If we get here, all checks passed.
Start using the file */
read(fd, ...)

Find Filesystem Vulnerabilities
]

7 How do we detect when
One of these filesystem attacks is possible?
And whether the program is vulnerable?

Find Filesystem Vulnerabilities
]

7 How do we detect when
One of these filesystem attacks is possible?
m Accessible

And whether the program is vulnerable?
m Flaw that is exploitable

Dynamic Testing [STING]

1 We actively change the namespace whenever an
adversary can write to a directory that is actually used
in @ name resolution

o1 Fundamental problem: adversaries may be able to write
directories used in name resolution

read (£d4, ..)

Using malicious fd

open (name, ..
fd to /etc/passw

Create Use of fd ~=
Attack Vulnerable!

44

STING Launch Phase

Victim 1. Find directories in resolution
(user root) 2. Find adversary access
3. Launch attack
(modify namespace)

4. Continue system call

fd = open (“/var/mail/root”, O APPEND)
| User-space

Kernel

Adversary

(group mail)

delete (“/var/mail/root”);
symlink (“/etc/passwd”,
“/var/mail/root”)

root
(symbolic link)

STING Detect Phase

Victim 1. Victim accepts resource
2. Record vulnerability
3. Rollback namespace

4. Restart system call

(user root)

write (fd)
| User-space

Kernel

: - root

(symbolic link)

STING Detects TOCTTOU Races

STING can
the OS

SOCKET_DIR=/tmp/.X11l-unix

set_up_socket_dir (O {
if [" " 1= no]; then

~-d

chown root:root

chmod

do_restorecon

" " 1= no] && log_end_msg

|| return

,asitisin

‘Iiiiﬁiiiillllllll

ln -s /etc/passwd

/tmp/.X11-unix

Results — Vulnerabilities - 2012

[
Program Vuln. Priv. Escalation Distribution | Previously
Entry | DAC: uid->uid known
dbus-daemon 2 messagebus->root | Ubuntu Unknown
landscape 4 landscape->root Ubuntu Unknown
Startup scripts (3) | 4 various->root Ubuntu Unknown
mysql 2 mysql->root Ubuntu 1 Known
mysql-upgrade 1 mysql->root Ubuntu Unknown
tomcat script 2 tomcat6->root Ubuntu Known
lightdm 1 *->root Ubuntu Unknown
bluetooth-applet 1 *->user Ubuntu Unknown
java (openid_k) 1 *_>user Both Known
zeitgeist-daemon 1 *->user Both Unknown
mountall 1 *->root Ubuntu Unknown
mailutils 1 mail->root Ubuntu Unknown
bsd-mailx 1 mail->root Fedora Unknown
cupsd 1 cups->root Fedora Known
abrt-server 1 abrt->root Fedora Unknown
yum 1 sync->root Fedora Unknown
x2gostartagent 1 *_>user Extra Unknown
19 Programs 26 21 Unknown

48

Both old and
new programs

Special users
to root

Known
but
unfixed!

Results — Vulnerabilities - 2024

TABLE II: Part of Real-world FHVulns Detected by JERRY
and Confirmed by Developers. The abbreviations Ins, Uni, Up, Rep,
SU and Us represent Installation, Uninstallation, Updating, Repairing, Starting
Up and Usage, respectively. The abbreviations PC, IL, RD, CT, MV and
DT represent Process Creation, Image Loading, Reading, Creating, Moving
and Deleting, respectively. The Symbol “3” indicates that the corresponding
software is pre-installed.

No. Software Name # Download Stage Operation Status
1 Adobe Reader DC 465,124,436 Ins CT Confirmed
2 Adobe Reader DC 465,124,436 Uni DT Confirmed
3 Chrome 97,544,900 Ins CT CVE-2023-2939
4 Chrome 97,544,900 Ins RD Fixed
5 Firefox 40,111,618 Uni DT CVE-2023-4052
6 JRES 24,394,580 Ins CT Fixed
7 Visual Studio 10,670,579 Ins CT CVE-2023-21567
8 Visual Studio 10,670,579 Us PC Confirmed
9 Git for Windows 10,256,420 Ins PC CVE-2022-31012
10 Git for Windows 10,256,420 SU RD CVE-2022-24765
11 Git for Windows 10,256,420 Us PC CVE-2022-41953
12 Git for Windows 10,256,420 Us PC CVE-2023-23618
13 Git for Windows 10,256,420 SU PC CVE-2023-29012
14 Git for Windows 10,256,420 SU RD CVE-2023-29011
15 Openssh for Windows 5,884,392 SU RD CVE-2022-26558
16 Sysinternals 5,859,086 SU 1L Confirmed
17

Nodejs 5,353,689 SU RD Confirmed

339 new vulnerabilities
detected!

Local Exploits

-1 Attacks on filesystems, such as link traversal and
file squatting often require that an adversary
already controls code running on the host

Often called “local exploits”

1 Can be achieved by downloading malware or
hijacking a running process

So, defenders are often less concerned about these
attacks, although these are often used

71 But, in some systems, local exploits are a first-level
Issue

Android Threat Model

1 Executing untrusted code on
a host system is not ideal...

m But, that is the default
business model for mobile
phone systems like Android

Called third-party applications

Balance Sharing and Security
]

File Sharing Security
e Sharing media content between social apps e Sandboxing through traditional access control
e Document sharing between productivity apps (MAC, DAC)
e File/Data sharing between apps from the same * Fine-grained access control through

developer mechanism like Scoped Storage

Find Where Attacks Are Possible

1 How can we find where attacks may be possible?

Find Where Attacks Are Possible

7 How can we find where attacks may be possible?
Use information flow
1 Question: Can an adversary of a victim process

write to a directory used in name resolution (i.e.,
is readable) by the victim?

Access Control Policy Analysis
]

-1 Access control policies determine what files and
directories can be read and written by each subject

Read-like Information Flow Write-like Information Flow

ER— ER—

Subject can read Object Subject can write object

-1 Look for cases where an adversary subject can
write a directory that can be read by a victim

Information Flow from Adversary (Adv) to Victim

;
Read-like Write-like

Who’'s An Adversary?

1 Good question
Every other program? May trust some...
Only known untrusted? How do you know?

-1 Hard to get perfect, but many programs need
not be trusted

In case they become adversarial

Android Privilege Levels

Process Level Level Membership Requirements
Root Process (T5) Process running with UID root
System Process (T4) Process running with UID system
Service Process (T3) AOSP core service providers

Trusted Application Process (T2) AOSP default and vendor apps
Untrusted Application Process (T1) | Third-party applications
Isolated Process (TO) Processes assumed to be under adversary control

Android defines process privilege levels roughly based on
provided of the app — 3" party T1, OEM T2-T3, Google T4-T5

Each program is assigned a privilege level

Can assume program of a lower privilege level is adversarial

E.g., a program a T1 is an adversary of T2

Back to Access Control Policy Analysis
C—

-1 Look for cases where an adversary subject can
write a directory that can be read by a victim

Information Flow from Adversary (Adv) to Victim

]4 T1
Read-like Write-like -

7 How do we use the Android Privilege Levels to help?

Back to Access Control Policy Analysis
C—

-1 Look for cases where an adversary subject can
write a directory that can be read by a victim

Information Flow from Adversary (Adv) to Victim

]4 T1
Read-like Write-like -

7 How do we use the Android Privilege Levels to help?

Find any directory (Obj) that a T1 program has write
permission for and a T2+ program has read/execute
permission for - check for vulnerability at runtime (STING)

Conclusions

Adversaries can attack your use of the filesystem

Local exploit on shared access to the filesystem that
your program may use in name resolution

If an adversary has write permission to any directory
used

File squatting can control file content used by your program
Link traversal can redirect your program to other files

Can identify the resources (directories) prone to
such attacks via access control analysis

Remains a major problem

Questions
e |

QA

