
Filesystem Security
March 5, 2024

1

CS165 – Computer Security

File Open

¨ Problem: Processes need resources from system
¤ Just a simple open(filepath, …) right?
¤ But, adversaries can cause victims to access resources of their

choosing
¤ And if your program has some valuable privileges, an

adversary may want to trick you into using them to
implement a malicious operation

2

A Webserver’s Story …

¨ Consider a university department webserver …

3

GET /~student1/index.html HTTP/1.1

Apache
Webserver

student2/
public_html

student1/
public_html

faculty1/
public_html

/etc/
passwd

Link

Attack Video

What Just Happened?

¨ Program acts as a confused deputy
¤ when expecting
¤ when expecting

Webserver

Password
File Web Pages

Authenticate

Passwd
File

Web PagesAuthenticate

OK Not
OK

Passwd
File

Web PagesServe
Webpage

OK
Not
OK

Serve
Webpage

Talk Outline
¨ Problem: Processes need resources from system

6

CSE543 - Introduction to Computer and Network Security Page

Integrity (and Secrecy) Threat
• Confused Deputy
‣ Process is tricked into performing an operation on

an adversary’s behalf that the adversary could not
perform on their own
• Write to (read from) a privileged file

�X

Confused Deputy Attacks

7

Untrusted Search Path
CWE-426

Untrusted Library Load
CWE-426

File / IPC squatting
CWE-283

Directory Traversal
CWE-22

PHP File Inclusion
CWE-98

Link Following
CWE-59

TOCTTOU Races
CWE-362

Signal Races
CWE-479

Confused
Deputy
Attacks

Lesson

¨ Opening a file is fraught with danger
¤ We must be careful when using an input that may

be adversary controlled when opening a file
n Or anything else…

8

Name Resolution

¨ Processes often use names to obtain access to system resources
¨ A nameserver (e.g., OS) performs name resolution using a

namespace (e.g., directories) to convert a name (e.g.,
pathname) into a system resource (e.g., file)
¤ Filesystem, System V IPC, …

9

/ var mail rootP open(“/var/
mail/root”)

Name
(pathname)

Directories

Resource (file)

Namespace (filesystem)

/ var mail root

mailvar

Link Traversal Attack

¨ Adversary controls links to direct a victim to a
resource not normally accessible to the adversary

¨ Victim expects one resource, gets another instead

10

open(“/var/
mail/root”)

/ rootvar mailvar mail/

etc passwdpasswd

rootrootVroot

Amail

File Squatting Attack

¨ Adversary predicts a resource to be created by a
victim – creates that resource in advance

¨ Victim accesses a resource controlled by an
adversary instead

11

mailvaropen(“/var/
mail/root”)

/ rootvar mailvar mail/ root

owner rootowner mail

root

Amail

Vroot

Common Threat

¨ What is the threat that enables link traversal and
file squatting attacks?
¤ Common to both

Common Threat

¨ What is the threat that enables link traversal and
file squatting attacks?
¤ Common to both

¨ In both cases, the adversary has write
permission to a directory that a victim uses in
name resolution
¤ Could be any directory used in resolution, not just

the last one
¤ Enables the adversary to plant links and/or

files/directories where they can write

Threat Example

¨ An adversary may be authorized to write to a directory
you use in resolving a file path

¨ E.g., groups and others may have write permission to
a directory
¤ Consider the directory /tmp
¤ ls –la /tmp

n drwxrwxrwx --- root root --- .
n Means?

14

Threat Example

¨ Suppose your program wants to create a new file
at “/tmp/just_a_normal_file_here”
¤ What file will you create/open?

16

File Squatting

¨ Suppose your program wants to create a new file
at “/tmp/just_a_normal_file_here”
¤ What file will you open?

n An adversary could have created this file already (file
squat) and given you permissions, so that you can use it

n Can be difficult to verify the origins of a file

¤ Causes your program to use a file under adversary
control when you expect your own file

17

Threat Example

¨ Suppose your program is asked to open the file path
“/tmp/just_a_normal_file_here”
¤ What file will you open?

18

Link Traversal

¨ Suppose your program is asked to open the file path
“/tmp/just_a_normal_file_here”
¤ What file will you open?

n An adversary could have created this as a symbolic link to
any file in the system that you can access

n And it is difficult/expensive to verify that this is not a
symbolic link

n stat – provides file system information – e.g., permissions
n lstat – provides file system information (like “stat”) for the link,

rather than the file/directory the link refers to

¤ Causes your program to access an adversary-chosen file

19

Check and Use

¨ Some system calls enable checking of the file (check)
¤ Does the requesting party have access to the file? (stat,

access)
¤ Is the file accessed via a symbolic link? (lstat)

¨ Some system calls use the file (use)
¤ Convert the file name to a file descriptor (open)
¤ Modify the file metadata (chown, chmod)

¨ Can an adversary modify the filesystem in between
check and use system calls?

TOCTTOU Races

¨ Time-of-check-to-time-of-use (TOCTTOU) Race Attacks
¨ Some system calls enable checking of the file (check)

¤ Does the requesting party have access to the file? (stat,
access)

¤ Is the file accessed via a symbolic link? (lstat)
¨ Some system calls use the file (use)

¤ Convert the file name to a file descriptor (open)
¤ Modify the file metadata (chown, chmod)

¨ Can an adversary modify the filesystem in between
check and use system calls? Yes. Pretty reliably.

Current Defenses

¨ Are there defenses to prevent such attacks?
¤ Yes, but the defenses are not comprehensive

Defenses

¨ Variants of the “open” system call
¤ Flag “O_NOFOLLOW” – do not follow any symbolic links

(prevent link traversal)
n Does not help if you may need to follow symbolic links
n May not be available on your system

¤ Flag “O_EXCL” and “O_CREAT” – do not open unless the
new file is created (prevent file squatting)
n Does not help if you if your program does not know whether the

file may need to be created

¨ These lack flexibility for protection in general

More Advanced Defenses

¨ The “openat” system call
¤ Can open the directory (dirfd) separately from opening the file

(path) to check the safety of that part of the name resolution
n int openat(int dirfd, const char *path, int oflag, ...);

¤ Control some aspects of opening “path” (e.g., no links)
n E.g., used in libc

libc_open (const char *file, int oflag, …)
to

return SYSCALL_CANCEL (openat, AT_FDCWD, file, oflag, …);

¨ The “openat2” system call
¤ More flags limiting “how” name resolution is done for “path”
¤ Not standard

Openat Usage Example

¨ Suppose you want to open “/var/mail/root” safely with “openat”
¤ How would you do it?
int openat(int dirfd, const char *path, int oflag, ...);

¨ Three steps
¤ (1) Open “/var/mail” to obtain a “dirfd”
¤ (2) Validate that the resulting file descriptor refers to “/var/mail”
¤ (3) Open the file “root” using “openat” using options to protect the open

from attacks
n O_NOFOLLOW to prevent use of symbolic links (i.e., prevent link traversal)
n O_EXCL with O_CREAT to ensure a fresh file is created (i.e., to prevent file squatting)

¨ Two options for obtaining a valid “dirfd” value for “/var/mail”
¤ (a) If you can run the program from “/var/mail/” then you can use AT_FDCWD

for “dirfd” – guaranteed by the OS
n openat(AT_FDCWD, “root” , O_NOFOLLOW | O_EXCL | O_CREAT);

¤ (b) Open and validate “/var/mail/” yourself and then use as the “dirfd”
n openat(dirfd, “root” , O_NOFOLLOW | O_EXCL | O_CREAT);

Validating directories

¨ How do you validate a directory for “dirfd”?
¨ Three steps

¤ (1) Open “/var” to obtain its “fd”
¤ (2) Collect the “stat” structure for this “fd”

n From the file descriptor using fstat
int fstat(int fd, struct stat *buf);

¤ (3) Check that this “fd” refers to a directory
S_ISDIR(mode_t buf.st_mode); // see ”struct stat” format

¤ (4) Repeat (1-3) for “mail” opened from this “fd” (i.e., “/var”)
int openat(int fd, const char “mail”, int oflag, ...);

Vulnerabilities Easily Overlooked

¨ Manual checks can
easily overlook
vulnerabilities

¨ Misses file squat at
line 03!

40

01 /* filename = /var/mail/root */
02 /* First, check if file already exists */
03 fd = open (filename, flg);
04 if (fd == -1) {
05 /* Create the file */
06 fd = open(filename, O_CREAT|O_EXCL);
07 if (fd < 0) {
08 return errno;
09 }
10 }
11 /* We now have a file. Make sure
12 we did not open a symlink. */
13 struct stat fdbuf, filebuf;
14 if (fstat (fd, &fdbuf) == -1)
15 return errno;
16 if (lstat (filename, &filebuf) == -1)
17 return errno;
18 /* Now check if file and fd reference the same file,
19 file only has one link, file is plain file. */
20 if ((fdbuf.st_dev != filebuf.st_dev
21 || fdbuf.st_ino != filebuf.st_ino
22 || fdbuf.st_nlink != 1
23 || filebuf.st_nlink != 1
24 || (fdbuf.st_mode & S_IFMT) != S_IFREG)) {
25 error (_("%s must be a plain file
26 with one link"), filename);
27 close (fd);
28 return EINVAL;
29 }
30 /* If we get here, all checks passed.
31 Start using the file */
32 read(fd, ...)

Squat during
create (resource)

Symbolic link

Hard link,
race conditions

Find Filesystem Vulnerabilities

¨ How do we detect when
¤ One of these filesystem attacks is possible?
¤ And whether the program is vulnerable?

Find Filesystem Vulnerabilities

¨ How do we detect when
¤ One of these filesystem attacks is possible?

n Accessible
¤ And whether the program is vulnerable?

n Flaw that is exploitable

Dynamic Testing [STING]

¨ We actively change the namespace whenever an
adversary can write to a directory that is actually used
in a name resolution
¤ Fundamental problem: adversaries may be able to write

directories used in name resolution

44

VDetect Adversary
Access

Detect Exploit
Success

open(name, …)
fd to /etc/passwd

read(fd, …)
Using malicious fd

Use of fd ~=
Vulnerable!

Create
Attack

root

STING Launch Phase

Adversary
(group mail)

fd = open(“/var/mail/root”, O_APPEND)

/

var

root
(symbolic link)

etc

passwd

mail

Victim
(user root)

User-space

Kernel

4. Continue system call

delete(“/var/mail/root”);
symlink(“/etc/passwd”,

“/var/mail/root”)

1. Find directories in resolution
2. Find adversary access
3. Launch attack
(modify namespace)

root

STING Detect Phase

write(fd)

/

var

root
(symbolic link)

passwd

etc

passwd

mail

Victim
(user root)

User-space

Kernel

1. Victim accepts resource
2. Record vulnerability
3. Rollback namespace
4. Restart system call

STING Detects TOCTTOU Races

¨ STING can deterministically create races, as it is in
the OS

AdversaryVictim

Results – Vulnerabilities - 2012

48

Both old and
new programs

Special users
to root

Known
but
unfixed!

Results – Vulnerabilities - 2024

TABLE II: Part of Real-world FHVulns Detected by JERRY
and Confirmed by Developers. The abbreviations Ins, Uni, Up, Rep,
SU and Us represent Installation, Uninstallation, Updating, Repairing, Starting
Up and Usage, respectively. The abbreviations PC, IL, RD, CT, MV and
DT represent Process Creation, Image Loading, Reading, Creating, Moving
and Deleting, respectively. The Symbol “F” indicates that the corresponding
software is pre-installed.

No. Software Name # Download Stage Operation Status
1 Adobe Reader DC 465,124,436 Ins CT Confirmed

2 Adobe Reader DC 465,124,436 Uni DT Confirmed

3 Chrome 97,544,900 Ins CT CVE-2023-2939

4 Chrome 97,544,900 Ins RD Fixed

5 Firefox 40,111,618 Uni DT CVE-2023-4052

6 JRE8 24,394,580 Ins CT Fixed

7 Visual Studio 10,670,579 Ins CT CVE-2023-21567

8 Visual Studio 10,670,579 Us PC Confirmed

9 Git for Windows 10,256,420 Ins PC CVE-2022-31012

10 Git for Windows 10,256,420 SU RD CVE-2022-24765

11 Git for Windows 10,256,420 Us PC CVE-2022-41953

12 Git for Windows 10,256,420 Us PC CVE-2023-23618

13 Git for Windows 10,256,420 SU PC CVE-2023-29012

14 Git for Windows 10,256,420 SU RD CVE-2023-29011

15 Openssh for Windows 5,884,392 SU RD CVE-2022-26558

16 Sysinternals 5,859,086 SU IL Confirmed

17 Nodejs 5,353,689 SU RD Confirmed

18 DellCommandUpdate 4,210,082 Ins DT CVE-2023-23698

19 DellCommandUpdate 4,210,082 Ins CT CVE-2023-28071

20 Visual Studio Code 4,172,599 Us PC CVE-2022-38020

21 Dotnet SDK 3,016,753 SU IL CVE-2023-28260

22 Dotnet SDK 3,016,753 Us IL CVE-2023-33126

23 Dotnet SDK 3,016,753 Us RD CVE-2023-33135

24 iTunes for Windows 2,382,592 SU IL CVE-2023-32351

25 Dropbox 2,290,276 Uni DT Confirmed

26 Azure Cli 1,197,993 SU IL Fixed

27 Gvim 1,897,408 Ins PC CVE-2022-37172

28 Php 1,665,675 Ins PC CVE-2022-45307

29 Azure pipeline agent 1,376,209 Ins PC CVE-2022-45306

30 Ruby 1,369,541 Ins PC CVE-2022-45301

31 Ruby 1,369,541 SU RD Fixed

32 StrawberryPerl 1,187,107 Ins PC CVE-2022-36564

33 Intel Software 1 945,347 Ins CT Fixed

34 Intel Software 1 945,347 Ins DT Fixed

35 VMWare Tools 819,878 SU RD CVE-2022-22977

36 VMWare Tools 819,878 SU DT Fixed

37 Msys2 683,078 Ins PC CVE-2022-37172

38 Bazel 314,066 SU RD Confirmed

39 MySQL 278,425 SU PC CVE-2022-39403

40 MySQL 278,425 SU RD CVE-2022-39402

41 MySQL 278,425 SU RD CVE-2022-39404

42 Github Cli 226,930 SU PC Fixed

43 ZeroTierOne 177,047 SU IL CVE-2022-1316

44 WPS Office 122,094 Ins IL Fixed

45 WPS Office 122,094 Ins IL Fixed

46 WPS Office 122,094 SU IL Fixed

47 Intel Software 2 F Ins CT Fixed

48 Intel Software 3 F Ins PC Fixed

49 Intel Software 4 F Ins PC Fixed

50 Intel Software 5 F SU IL Fixed

51 Dell Command Intel
vPro

F Uni DT CVE-2023-23697

52 Dell Command Inte-
gration Suite

F Uni DT CVE-2023-24572

53 Dell Command Moni-
tor

F Uni DT CVE-2023-24573

54 Dell Command Moni-
tor

F Uni DT CVE-2023-28049

TABLE III: Average Running Time (s) of JERRY-NoInfer
and JERRY. The columns Ins, Uni, Upd, Rep, and SU mean Installation,
Uninstallation, Updating, Repairing, and Starting Up, respectively.

Tool Ins Uni Upd Rep SU Usage

JERRY-NoInfer 8039.4 1417.6 3871.9 1206.9 556.17 33.8
JERRY 1128.1 414.2 893.5 254.7 115.5 15.8

by Gem. Since C:\ProgramData\gemrc contains a URL to the
central repositories, this FHVuln affects thousands of software
packages built with Ruby. In other words, attackers can hijack
links that lead to software package downloads. By redirecting
these links to repositories under their control, attackers can
plant malicious code in the software within the repositories.
This nefarious activity has the potential to cause significant
damage to the software supply chain.

However, all existing methods are unable to detect it as
they can only be performed on existing files.

D. Efficiency

In addition to the effectiveness of JERRY, another im-
portant evaluation metric is the time it takes to detect these
vulnerabilities. In this section, we evaluated the efficiency of
JERRY by performing an ablation study on all 489 software
programs from the benchmark and real world. In particular, we
considered JERRY-NoInfer, which does not use our proposed
path type inference and tested these paths which cannot decide
whether file or directory by our heuristics directly one by one.
Our experience shows that the strategies we used can increase
speed without reducing false positives.

The results of this evaluation are shown in TABLE III. As
we can see here, in terms of average running time, JERRY
achieved at least 2.14 faster in the usage stage and 7.13 faster
in the installation stage because there are only a few paths
that can be hijacked in the usage stage, but in the installation
stage, there are much more paths that can be hijacked than
other stages. Therefore, overall, JERRY significantly reduces
its running time while ensuring the same effect.

E. Responsible Disclosure

As demonstrated in Section II, FHVulns can lead to se-
vere consequences, such as arbitrary code execution, privilege
escalation, data loss, and open redirect attacks. In light of
these risks, we took the responsibility of disclosing all the 339
vulnerabilities we identified in 176 software programs with
a detailed report and Proof of Concept (PoC) to vendors of
the affected software. We reported 48 of these vulnerabilities
via third-party vulnerability coordination platforms, including
HackerOne [43], Bugcrowd [34], and Intigriti [46]. Further-
more, we reached out to 107 companies or organizations
to report 291 vulnerabilities through their dedicated email
addresses and forms for reporting security vulnerabilities.
As per responsible disclosure practices, we will not publicly
release any unfixed vulnerabilities until the developers address
them. It is worth noting that all vulnerabilities with detailed
information in our paper have been fixed by developers. At
present, 84 of the identified vulnerabilities have been either
confirmed or fixed, and 51 CVE identifiers have been assigned
to these issues.

10

339 new vulnerabilities
detected!

Local Exploits

¨ Attacks on filesystems, such as link traversal and
file squatting often require that an adversary
already controls code running on the host
¤ Often called “local exploits”

¨ Can be achieved by downloading malware or
hijacking a running process
¤ So, defenders are often less concerned about these

attacks, although these are often used
¨ But, in some systems, local exploits are a first-level

issue

Android Threat Model

¨ Executing untrusted code on
a host system is not ideal…

¨ But, that is the default
business model for mobile
phone systems like Android
¤ Called third-party applications

Balance Sharing and Security

Find Where Attacks Are Possible

¨ How can we find where attacks may be possible?

Find Where Attacks Are Possible

¨ How can we find where attacks may be possible?
¤ Use information flow

¨ Question: Can an adversary of a victim process
write to a directory used in name resolution (i.e.,
is readable) by the victim?

Access Control Policy Analysis

¨ Access control policies determine what files and
directories can be read and written by each subject

Subject can read Object Subject can write object

¨ Look for cases where an adversary subject can
write a directory that can be read by a victim

Read-like Information Flow

Subj Obj

Write-like Information Flow

Subj Obj

Victim AdvObj
Write-likeRead-like

Information Flow from Adversary (Adv) to Victim

Who’s An Adversary?

¨ Good question
¤ Every other program? May trust some…
¤ Only known untrusted? How do you know?

¨ Hard to get perfect, but many programs need
not be trusted
¤ In case they become adversarial

Android Privilege Levels

¨ Android defines process privilege levels roughly based on
provided of the app – 3rd party T1, OEM T2-T3, Google T4-T5
¤ Each program is assigned a privilege level

¨ Can assume program of a lower privilege level is adversarial
¤ E.g., a program a T1 is an adversary of T2

Back to Access Control Policy Analysis

¨ Look for cases where an adversary subject can
write a directory that can be read by a victim

¨ How do we use the Android Privilege Levels to help?

T2+ T1Obj
Write-likeRead-like

Information Flow from Adversary (Adv) to Victim

Back to Access Control Policy Analysis

¨ Look for cases where an adversary subject can
write a directory that can be read by a victim

¨ How do we use the Android Privilege Levels to help?
¤ Find any directory (Obj) that a T1 program has write

permission for and a T2+ program has read/execute
permission for - check for vulnerability at runtime (STING)

T2+ T1Obj
Write-likeRead-like

Information Flow from Adversary (Adv) to Victim

Conclusions

¨ Adversaries can attack your use of the filesystem
¨ Local exploit on shared access to the filesystem that

your program may use in name resolution
¤ If an adversary has write permission to any directory

used
n File squatting can control file content used by your program
n Link traversal can redirect your program to other files

¨ Can identify the resources (directories) prone to
such attacks via access control analysis
¤ Remains a major problem

60

Questions
61

