CS165 — Computer Security

Memory Error Defenses
February 20, 2024

Memory Error Defenses

We have discussed some
Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)
How do these defenses work? Or fail to work?

Review

Memory Error Defenses

We have discussed some

Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)

These defenses do not prevent ROP attacks
Why not?

Memory Error Defenses

We have discussed some
Canaries
Address Space Layout Randomization
Data Execution Protection (No Execute)

These defenses do not prevent ROP attacks

Why not?
Bypass canaries and ASLR

Disclose canary values on stack
Disclose stack pointer values (EBP) to determine ASLR base

DEP/NX does not prevent execution of code memory

Defense for ROP Attacks

71 There is a defense that prevents many ROP attacks
o1 Called control-flow integrity

Control Hijack

Two main ways that C/C++ allows code targets to be
computed at runtime

Return address (stack) — choose instruction to run on “ret”
(i.e., function return)

Why is the return address determined dynamically?

Function pointer (stack or heap) — chooses instruction to
run when invoked

Also called an indirect call

If adversary can change either they can hijack control

Difficult to prevent modification of code pointers
No broad defense at present (too expensive)

Indirect Call
I =

o A function call using a function pointer
1 What happens?

int F A()

{
int (*fp) ();

Control-Flow Integrity

Our Mechanism

% %

if(*fp != nop IMM,) halt
call fp if(*“esp != nop IMM,) halt

nop IMM, {————’__'return

é CFG excerpt
A > B,

call

NB: Need to ensure b?t patterns for nops IR, B
appear nowhere else in code memory

Indirect Call
I =

o A function call using a function pointer
1 What happens?

int F A()
{
int (*fp) ();

if (a > 0) fp = &F B;

else fp = &F C;

fp();

Control-Flow Integrity

More Complex CFGs

Maybe statically all we know is that CFG excerpt
F, can call any int— int function A » B,

FA call \ C1

% Fo| succlAa) = (B Ci
nop IMM,

if(*fp '= nop IMM) halt
call fp

|:
% nop IMM,

Construction: All targets of a computed jump must have
the same destination id (IMM) in their nop instruction

Control-Flow Integrity

Imprecise Return Information

Q: What if Fg can return CEG
excerpt
to many functions ? 2

A: Imprecise CFG Acall+1 1\

Dcall+1

%

if(**esp != nop IMM,) halt

succ(B,er) = {Acai+1> Deaie1}

CFG Integrity:

Changes to the

return PC are only to
valid successor
PCs, per succ().

Control-Flow Integrity

c 3 No “Zig-Zag” Imprecision

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

CFG excerpt CFG excerpt
B1 B1

Acall>< Acall \
C C
/ 1 1A

EcaII Ecall\ C1 E

Restricted Pointer Indexing

One table for call and return for each call/return site
Call Site 1 Callee |

Target Table 1
eax
. »| func_j — func_j:
call *%eax Target Table j
Ri:
\ [esp]
Rl < . \ ret

Limit an indirect call to a predefined set of functions
Possible assighnments to the function pointer for call site |

Limit a return to a predefined set of callers
Only the callers of Callee |

Limiting Returns

Can’t we do better for limiting returns

Don’t we know where a return should go?

Imprecise Return Information

Q: What if F5 can return CEG
excerpt
to many functions ?

A
A: Imprec CFG call+1
precise A \Bret

call+1

succ(Bg) = {Acaii+1: Deaniet}

CFG Integrity:
Changes to the
return PC are only to

valid successor
caII Fg PCs, per succ().

Shadow Stack

Store the return address in a secure (shadow) location
Then, check that the return address matches the shadow

% Imprecise Return Information

Q: What if F5 can return CEG
excerpt
to many functions ?

A
A: Imprec CFG call+1
precise A \Bret

call+1

succ(Bg) = {Acaii+1: Deaniet}

CFG Integrity:
Changes to the
return PC are only to

valid successor
caII Fg PCs, per succ().

CFl Policies

CFI limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

CFl Policies

CFI limits the indirect call and return targets
But there are multiple CFI policies that may be enforced
Coarse CFI

What code locations could you execute from on a call?
Or return?

CFl Policies

CFI limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

Coarse CFI

Any function start (for indirect calls)
That is, a function pointer can be used to call any function

Follow any call site (for returns)
A return address can return to any call site
Reduces the fraction of instructions significantly

But, does not prevent attacks in practice
Why?

CFl Policies

CFI limits the indirect call and return targets
But there are multiple CFI policies that may be enforced

Fine CFI

Want to reduce the set of indirect call and return targets
to those that are really possible

What can we do for calls/returns?

CFl Policies

]
7 Fine CFlI

For calls: match function pointers with functions of the
same function signature

m Signature: return type, number of arguments, argument types

CFl Policies

Fine CFI

For calls: match function pointers with functions of the
same function signature

Signature: return type, number of arguments, argument types

Suppose you have the function pointer declaration
void (*fun ptr) (int);
Which function could be a legal target?
vold *function(int Xx)
vold functionl (int *x)
vold functionZ2(int yl, 1int y2)
(

vold function3 (int z)

CFl Policies

Fine CFI

For calls: match function pointers with functions of the

same function signature

Signature: return type, number of arguments, argument types
Suppose you have the function pointer declaration

void (*fun ptr) (int);
Which function could be a legal target?

vold *function(int Xx)

vold functionl (int *x)
vold functionZ2(int yl, 1int y2)
vold function3 (

int z)

CFl Policies

- Fine CFlI

o1 For returns: Always return to the call site that invoked the
function

» How do we ensure that?

CFl Policies

Fine CFI

For returns: Always return to the call site invoked

Shadow stack
Record return address in a safe location
Check return address against shadow value on return
Now implemented in Intel CET hardware

CFl Policies

Fine CFI

For returns: Always return to the call site invoked
Shadow stack

Record return address in a safe location

Check return address against shadow value on return
Now implemented in Intel CET hardware

% Imprecise Return Information

. Q: What if Fg can return
Fa

CEG t
to many functions ? =2 excerpl

A: Imprecise CFG

CFG Integrity:
2 Changes to the

PC are only to
valid successor
call Fg PCs, per succ().

Prevent All ROP attacks?

TR e
-1 Does CFl prevent all ROP attacks?

Prevent All ROP attacks?

-1 Does CFl prevent all ROP attacks?
o1 No. CFl cannot detect attacks that use legal control flows

Prevent All ROP attacks?

Does CFl prevent all ROP attacks?
No. CFl cannot detect attacks that use legal control flows
E.g., change a data pointer value used in a system call
Consider open (char *file)

If we can change the “file” pointer to reference an
adversary-controlled string, we can achieve our goal

Without changing the program’s control flow

Shouldn’t we just fix memory errors?
I

-1 Can you find the flaw(s)?

int
im_vips2dz (IMAGE xin, const char xfilename) {
char »p, *q;
char name [FILENAME_MAX];
char mode [FILENAME_MAX];
char buf [FILENAME_MAX];

o=l B Y . S

=]

im_strncpy(name, filename, FILENAME_MAX);
if((p = strchr(name, ':'))){

*p — I\Ol’.

im_strncpy(mode, p + 1, FILENAME_MAX);
}

— e e e
W kW N = O

strcpy(buf, mode);
p = &buf[0];

—_— =
® 9 O
—

Dynamic Analysis Options

Regression Testing
Run program on many normal inputs and look for bad
behavior in the responses
Typically looking for behavior that differs from expected —
e.g., a previous version of the program

Fuzz Testing
Run program on many abnormal inputs and look for
bad behavior in the responses

Looking for behaviors that may cause the program to stop
executing at all — crash or hang

Dynamic Analysis Options
TR e

7 Why might fuzz testing be more appropriate for
finding vulnerabilities?

Dynamic Analysis Options
]

7 Why might fuzz testing be more appropriate for
finding vulnerabilities?

Memory errors often lead to crashes
Other errors may cause the program to hang

Fuzz Testing

Fuzz Testing
ldea proposed by Bart Miller at Wisconsin in 1988

Problem: People assumed that utility programs
could correctly process any input values
Accessible to all

Found that they could crash 25-33% of UNIX utility
programs

Fuzz Testing

Basic Approach
Generate random inputs
Run programs using lots of random inputs
Detect program crashes

Correlate with the random inputs that caused the
crashes

Detect inputs that cause crashes

Example Found

[
01 Fuzz Testing

Produce random inputs for processing

format.c (line 276) :
while (lastc !'= "\n’) {

rdc () ;
}

input.c (line 27):

rdc ()
{ do { readchar(); } // assigns ‘lastc’ to 0 on EOF
while (lastc == "' ' || lastc == "\t’); return (lastc);

}

Eventually produce line with EOF in the middle

Fuzz Testing

\dea: Search for flaws in a program by running the
program under a variety of inputs
Challenge: Selecting input values for the program

What should be the goals in choosing input values for
fuzz testing?

Challenges

|dea: Search for flaws in a program by running the
program under a variety of inputs
Challenge: Selecting input values for the program

What should be the goals in choosing input values for
fuzz testing!?

Find as many exploitable flaws as possible
With the fewest possible input values

How should these goals impact input choices!?

Black Box Fuzzing

Like Miller — Feed the program random inputs
and see if it crashes

Pros: Easy to configure

Cons: May not search efficiently

May re-run the same path over again (low coverage)

May be very hard to generate inputs for certain
paths (checksums, hashes, restrictive conditions)

May cause the program to terminate for logical
reasons (fail format checks and stop)

52

Black Box Fuzzing

May be difficult to pass “authenticate_user”

and “check format” with random inputs to get
to “update”

function (char *name, char *passwd, char *buf)
{
1f (authenticate user (name, passwd)) {
if (check format(buf)) {
update (buf);

Grey Box Fuzzing

Rather than treating the program as a black box,
instrument the program to track the paths run

Save inputs that lead to new paths

Mutate off those inputs to generate inputs
To bias toward running new paths

Example
American Fuzzy Lop (AFL)

“State of the practice” at this time

54

AFL

71 Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

0 See
o http://lcamtuf.coredump.cx/afl/ 55

AFL Instrumentation

Instrument conditional statements to track the paths
executed — and detect new paths

Input14'/v_>

How does AFL work?

b6

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

Instrument conditional statements to track the paths
executed — and detect new paths

|”put24'/_>

How does AFL work?

b7

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

Instrument conditional statements to track the paths
executed — and detect new paths

Input3
o

How does AFL work?

b8

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

Instrument conditional statements to track the paths
executed — and detect new paths

Input1

4.</

Input3

How does AFL work?

6o

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Use

Run the fuzzer using afl-fuzz

path-to/afl-fuzz —-i <input-dir> -o <output-dir> <path-to-bin> [args]

For example

path-to/afl-fuzz —-i input/ -o output/ ./csl65-p3 @R outfile
Where
input/ directory with the input file

output/ is the directory where the AFL results will be
placed

@@ shows that the arg (input file) to be fuzzed

Output stats about coverage and inputs for
hangs/crashes

61

AFL Results

I =
1 Shows the results of the fuzzer

o1 E.g., provides inputs that will cause the crash

(cmpsc497-pl)

overall results
cycles done : 0
total paths : 41
uniq crashes : 11
uniq hangs : 0

— process timing
run time :

last new path :
last uniq crash :
last uniq hang :

— cycle progress

@ days, 2 hrs, 16 min, 32 sec
@ days, @ hrs, 13 min, 31 sec
@ days, @ hrs, 43 min, 58 sec
none seen yet

map coverage
now processing : 3 (7.32%) map density : 0.11% / 0.40%
paths timed out : 0 (0.00%) count coverage : 1.62 bits/tuple
— stage progress findings in depth
now trying : arith 8/8 favored paths : 6 (14.63%)
stage execs : 12.3k/41.9k (29.31%) new edges on : 7 (17.07%)
total execs : 243k total crashes : 2479 (11 unique)
exec speed : 30.98/sec (slow!) total tmouts : 10 (5 unique)

— fuzzing strategy yields path geometry

bit flips : 7/15.4k, 32/15.4k, 0/15.4k levels : 3
byte flips : /1929, 0/1926, 0/1920 pending : 39
arithmetics : 8/71.7k, 4/5434, 0/0 pend fav : 5
known ints : ©/6938, 0/35.5k, 0/56.3k own finds : 40
dictionary : 0/0, 0/0, /1270 imported : n/a
havoc : 0/178, 0/0 stability : 17.69%
trim : 0.00%/930, 0.00%

[cpub0o:

19%]

Why Not Use Safe Languages?

1 A “type safe” language cannot have memory errors
E.g., Java (older) and Rust (recent)

o1 Also, “memory safe” versions of C have been
proposed

70

Why Not Use Safe Languages?

o A safe language is “safe” with respect to what
requirements?

71

Why Not Use Safe Languages?

A safe language is “safe” with respect to what
requirements?

Spatial, temporal, and type

Java programs must satisfy all three classes of safety

Via runtime checks (spatial and type) and garbage collection
(temporal)

Rust “safe” programs must satisfy all three classes too

Via runtime checks (spatial and type) and a specialized
mechanism to track the live pointers to an object (temporal)

May have “unsafe” Rust code also — no guarantees

72

Issues to Overcome

Usability
Early “memory safe” C languages were not popular
C# is still less popular than C/C++

Performance

Type-safe languages incur overhead from checks to ensure
safety

Java has a significant overhead compared to C
Story: JavaOS project

Functionality

May use unsafe C libraries
JVM is written in C

73

Rust

Usability

Has concepts to manage temporal safety (ownership)

Requires type-safe usage (more effort to program)
Performance

Has runtime checks to enforce spatial safety

But, appears to require fewer checks than for C
Functionality

Allows the definition of “unsafe” Rust modules

Uses C libraries

Efforts to replace some C code in Linux with Rust

74

C Is Getting Safer

o Likely due to fuzz testing, the fraction of C objects
whose accesses are all memory safe is increasing

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Fraction of Safe Stack Object (Percentage)
~] 00 00 00 00 00 00 OO0 00 OO0 00 VO O W O
OCORNWPAUUOAOANOOWOOOERLRNW

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Years from 2013 to 2023

—e—Nginx —e—Httpd —e—Firefox

0 Over 90+% of stack objects
o1 Over 75+% of heap objects likewise 75

Isolate Memory-Safe Objects

Memory safe objects can be protected by
isolation

All accesses in “safe” region] /
must be safe e
No references to safe region \

from “unsafe” objects/region

Safe Stack Original Unsafe Stack
(OSDI 2014) Stack

— Safe region is safe from Region
memory errors

Protected by ASLR or new hardware cheaply

Issue: May have to protect unsafe cases too 76

C Is Getting Safer, But...

o Likely due to fuzz testing, the fraction of C objects
whose accesses are all memory safe is increasing

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Fraction of Safe Stack Object (Percentage)

~J 00 00 00 00 00 00 00 00 00 00 © VO W ©
OCORNWRARARUONOWOORNW

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Years from 2013 to 2023

—o—Nginx —e—Httpd —e—Firefox

o1 But, manual code and Al-generated C code is currently
much less safe 77

Conclusions

Can improve resilience to attack on memory errors

Control-flow integrity

Limit control flows restrict ROP attacks
But, can still launch attacks that follow legal control flows

Fuzz testing

Systematic approach to test programs for crash/hang
But, cannot achieve complete coverage

Safe languages

Memory errors are not possible in these languages
But, impact on usability, performance, functionality

Questions
I e

QA

