
Memory Error Defenses
February 20, 2024

1

CS165 – Computer Security

3

Memory Error Defenses

¨ We have discussed some
¤ Canaries
¤ Address Space Layout Randomization
¤ Data Execution Protection (No Execute)

¨ How do these defenses work? Or fail to work?
¤ Review

4

Memory Error Defenses

¨ We have discussed some
¤ Canaries
¤ Address Space Layout Randomization
¤ Data Execution Protection (No Execute)

¨ These defenses do not prevent ROP attacks
¤ Why not?

5

Memory Error Defenses

¨ We have discussed some
¤ Canaries
¤ Address Space Layout Randomization
¤ Data Execution Protection (No Execute)

¨ These defenses do not prevent ROP attacks
¤ Why not?

n Bypass canaries and ASLR
n Disclose canary values on stack
n Disclose stack pointer values (EBP) to determine ASLR base

n DEP/NX does not prevent execution of code memory

6

Defense for ROP Attacks

¨ There is a defense that prevents many ROP attacks
¤ Called control-flow integrity

7

Control Hijack

¨ Two main ways that C/C++ allows code targets to be
computed at runtime
¤ Return address (stack) – choose instruction to run on “ret”

(i.e., function return)
n Why is the return address determined dynamically?

¤ Function pointer (stack or heap) – chooses instruction to
run when invoked
n Also called an indirect call

¨ If adversary can change either they can hijack control
¨ Difficult to prevent modification of code pointers

¤ No broad defense at present (too expensive)

10

Indirect Call

¨ A function call using a function pointer
¤ What happens?

int F_A()

{

int (*fp)();

…

fp = &F_B;

…

fp();

…

}

11

Control-Flow Integrity

8

Our Mechanism

FA FB

return
call fp

Acall

Acall+1

B1

Bret

CFG excerpt

nop IMM1

if(*fp != nop IMM1) halt

nop IMM2

if(**esp != nop IMM2) halt

NB: Need to ensure bit patterns for nops
appear nowhere else in code memory

12

Indirect Call

¨ A function call using a function pointer
¤ What happens?

int F_A()

{

int (*fp)();

…

if (a > 0) fp = &F_B;

else fp = &F_C;

…

fp();

…

}

13

Control-Flow Integrity

9

More Complex CFGs

Maybe statically all we know is that
FA can call any int int function

FA

FB

call fp

Acall
B1

CFG excerpt

C1

FC

nop IMM1

if(*fp != nop IMM1) halt

nop IMM1

Construction: All targets of a computed jump must have

the same destination id (IMM) in their nop instruction

succ(Acall) = {B1, C1}

14

Control-Flow Integrity

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

15

Control-Flow Integrity

11

No “Zig-Zag” Imprecision

Acall
B1

CFG excerpt

C1

Ecall

Solution I: Allow the imprecision Solution II: Duplicate code
to remove zig-zags

Acall
B1

CFG excerpt

C1A

Ecall C1E

18

Restricted Pointer Indexing

¨ One table for call and return for each call/return site

¨ Limit an indirect call to a predefined set of functions
¤ Possible assignments to the function pointer for call site I

¨ Limit a return to a predefined set of callers
¤ Only the callers of Callee j

func_j

Ri

call *%eax
Ri:

func_j:

ret

[esp]

eax

Call Site i Callee j

(a) Traditional indirection call

Ri:
call *%eax

 Ri

func_j

ret

func_j:

Target Table i

eax

[esp]
Target Table j

Call Site i Callee j

(b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call in HyperSafe (Note Ri is the return address of the indirect call)

instrumented to convert the index back to the destination
address (e.g., by looking up the index in the table). For that,
we need to take the following two steps:
First, the instructions that introduce the control data into

the hypervisor program must be converted to use the indexes
instead. For simplicity, we call these instructions source
instructions. The source instruction for a return address is
the related call that pushes the return address onto the stack.
As a result, the call instruction will be instrumented into
two instructions: one pushes the index onto the stack and
another jmps to the function entry point. For an indirect
call, its source instruction is an earlier instruction that loads
the function address to the register or memory. Unlike the
return address case, the function pointer can possibly appear
in the data section (e.g., as a member of an initialized global
object or variable). As a result, we can leverage the compiler
to identify and convert them.
Second, the instructions that consume the control data

from the hypervisor program must be converted to translate
the indexes back to their destination addresses. Similarly,
we call these instructions sink instructions. Return addresses
will be used by the ret instructions while function pointers
will be consumed by indirect call/jmp instructions. During
instrumentation, a ret will be converted to a sequence of
instructions to pop the index off the stack, convert it into the
return address, and then return to it. An indirect call/jmp will
be converted to use the index to locate the function entry
point and then continue execution there.
Based on the above instrumentation, an indirect call acts

as a sink instruction for the consumed function pointer
and a source instruction for the dynamically-pushed return
address. Therefore, it will be instrumented twice. There may
also exist other instructions that access the control data but
are not the source and sink instructions. Among them, some
instructions can be left intact if the contents of the control
data are not explicitly examined by them. One example
is the mov instruction that copies the index to and from
registers or memory. Instructions that compare two function
addresses do not need instrumentation either if we assign the
pointer indexes in the order of their addresses. On the other
hand, instructions that examine the contents of control data
must be expanded to convert indexes into original control
data. A general solution is to discover and convert all such
instructions, ideally by the compiler. Fortunately, very few

instructions will touch return addresses on the stack. If they
do, most likely they are implemented in assembly and thus
we can instrument them manually. For function pointers,
most accessing instructions are mov or cmp. In this case,
the contents of the function pointers are not examined and
we can safely keep these instructions as is.
In Figure 3, we show the control flow for an instrumented

call/ret pair in HyperSafe when compared to the original
pair. In the figure, the original call has been instrumented
to fetch the index from eax, convert it to a function entry
point by indexing into its target table, and then jump
to the function. By substituting indexes for control data,
HyperSafe limits the destination of a runtime control transfer
to only those explicitly specified in the target table. In
other words, indirect instructions can only transfer control
to the targets allowed by the CFG. Moreover, because all
the destination addresses are known beforehand from the
hypervisor program binary, these target tables can be pre-
computed offline. At runtime, they are protected by directly
applying the memory lockdown technique.
Furthermore, with the help of the target tables, HyperSafe

can flexibly control the precision of control-flow integrity.
In one extreme case, we can simply use two big tables:
one is for all the ret instructions (with all valid return
addresses) and the other one is for all the indirect call
instructions (with all possible indirectly-called functions’
entry points). This scheme provides the least precision,
resulting in coarse protection: namely a ret can return to
any valid return address in the hypervisor program; and an
indirect call can call any indirectly-called function. On the
other extreme, each indirect call has its own target table,
and all ret instructions inside the same function share one
target table. In other words, each function has a dedicated
table for all of its returns. By doing so, we can provide
the finest control over what targets indirect instructions can
transfer control to. Note that there is no need to use one
target table per return instruction since all the ret instructions
in a function always have the same set of return addresses.
As pointed out in [1], the major factor that impairs the

precision of control-flow integrity is the so called destination
equivalence effect. That is, two destinations are considered
to be equivalent if they connect to a common source in
the CFG. Further, the equivalence relation is transitive. In
Figure 4, we show an example of the destination equivalence

19

Limiting Returns

¨ Can’t we do better for limiting returns
¤ Don’t we know where a return should go?

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

20

Shadow Stack

¨ Store the return address in a secure (shadow) location
¤ Then, check that the return address matches the shadow

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

21

CFI Policies

¨ CFI limits the indirect call and return targets
¤ But there are multiple CFI policies that may be enforced

22

CFI Policies

¨ CFI limits the indirect call and return targets
¤ But there are multiple CFI policies that may be enforced

¨ Coarse CFI
¤ What code locations could you execute from on a call?
¤ Or return?

23

CFI Policies

¨ CFI limits the indirect call and return targets
¤ But there are multiple CFI policies that may be enforced

¨ Coarse CFI
¤ Any function start (for indirect calls)

n That is, a function pointer can be used to call any function
¤ Follow any call site (for returns)

n A return address can return to any call site

¨ Reduces the fraction of instructions significantly
¤ But, does not prevent attacks in practice
¤ Why?

24

CFI Policies

¨ CFI limits the indirect call and return targets
¤ But there are multiple CFI policies that may be enforced

¨ Fine CFI
¤ Want to reduce the set of indirect call and return targets

to those that are really possible
¤ What can we do for calls/returns?

25

CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the

same function signature
n Signature: return type, number of arguments, argument types

26

CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the

same function signature
n Signature: return type, number of arguments, argument types

¤ Suppose you have the function pointer declaration
n void (*fun_ptr)(int);

¤ Which function could be a legal target?
n void *function(int x)
n void function1(int *x)
n void function2(int y1, int y2)
n void function3(int z)

27

CFI Policies

¨ Fine CFI
¤ For calls: match function pointers with functions of the

same function signature
n Signature: return type, number of arguments, argument types

¤ Suppose you have the function pointer declaration
n void (*fun_ptr)(int);

¤ Which function could be a legal target?
n void *function(int x)
n void function1(int *x)
n void function2(int y1, int y2)
n void function3(int z)

28

CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site that invoked the

function
n How do we ensure that?

29

CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site invoked

n Shadow stack
n Record return address in a safe location
n Check return address against shadow value on return
n Now implemented in Intel CET hardware

30

CFI Policies

¨ Fine CFI
¤ For returns: Always return to the call site invoked

n Shadow stack
n Record return address in a safe location
n Check return address against shadow value on return
n Now implemented in Intel CET hardware

10

Imprecise Return Information

Q: What if FB can return

 to many functions ?

Bret

Acall+1

CFG excerpt

Dcall+1

FB

FA

return

call FB

FD

call FB

nop IMM2

if(**esp != nop IMM2) halt

nop IMM2

succ(Bret) = {Acall+1, Dcall+1}

CFG Integrity:

Changes to the
PC are only to
valid successor
PCs, per succ().

A: Imprecise CFG

31

Prevent All ROP attacks?

¨ Does CFI prevent all ROP attacks?

32

Prevent All ROP attacks?

¨ Does CFI prevent all ROP attacks?
¤ No. CFI cannot detect attacks that use legal control flows

33

Prevent All ROP attacks?

¨ Does CFI prevent all ROP attacks?
¤ No. CFI cannot detect attacks that use legal control flows

¨ E.g., change a data pointer value used in a system call
¤ Consider open(char *file)
¤ If we can change the “file” pointer to reference an

adversary-controlled string, we can achieve our goal
n Without changing the program’s control flow

Shouldn’t we just fix memory errors?

43

¨ Can you find the flaw(s)?

Dynamic Analysis Options

44

¨ Regression Testing
¤ Run program on many normal inputs and look for bad

behavior in the responses
n Typically looking for behavior that differs from expected –

e.g., a previous version of the program

¨ Fuzz Testing
¤ Run program on many abnormal inputs and look for

bad behavior in the responses
n Looking for behaviors that may cause the program to stop

executing at all – crash or hang

Dynamic Analysis Options

45

¨ Why might fuzz testing be more appropriate for
finding vulnerabilities?

Dynamic Analysis Options

46

¨ Why might fuzz testing be more appropriate for
finding vulnerabilities?
¤ Memory errors often lead to crashes
¤ Other errors may cause the program to hang

Fuzz Testing

47

¨ Fuzz Testing
¤ Idea proposed by Bart Miller at Wisconsin in 1988

¨ Problem: People assumed that utility programs
could correctly process any input values
¤ Accessible to all

¨ Found that they could crash 25-33% of UNIX utility
programs

Fuzz Testing

48

¨ Basic Approach
¤ Generate random inputs
¤ Run programs using lots of random inputs
¤ Detect program crashes
¤ Correlate with the random inputs that caused the

crashes

¨ Detect inputs that cause crashes

Example Found

49

¨ Fuzz Testing
¤ Produce random inputs for processing
format.c (line 276):
...
while (lastc != ’\n’) {
rdc();
}
...

input.c (line 27):
rdc()
{ do { readchar(); } // assigns ‘lastc’ to 0 on EOF
while (lastc == ’ ’ || lastc == ’\t’); return (lastc);
}

¤ Eventually produce line with EOF in the middle

Fuzz Testing

50

¨ Idea: Search for flaws in a program by running the
program under a variety of inputs

¨ Challenge: Selecting input values for the program
¤ What should be the goals in choosing input values for

fuzz testing?

Challenges

51

¨ Idea: Search for flaws in a program by running the
program under a variety of inputs

¨ Challenge: Selecting input values for the program
¤ What should be the goals in choosing input values for

fuzz testing?
¤ Find as many exploitable flaws as possible
¤ With the fewest possible input values

¨ How should these goals impact input choices?

Black Box Fuzzing

¨ Like Miller – Feed the program random inputs
and see if it crashes

¨ Pros: Easy to configure
¨ Cons: May not search efficiently

¤ May re-run the same path over again (low coverage)
¤ May be very hard to generate inputs for certain

paths (checksums, hashes, restrictive conditions)
¤ May cause the program to terminate for logical

reasons (fail format checks and stop)

52

Black Box Fuzzing

¨ May be difficult to pass “authenticate_user”
and “check format” with random inputs to get
to “update”
function(char *name, char *passwd, char *buf)

{

if (authenticate_user(name, passwd)) {

if (check_format(buf)) {

update(buf);

}

}

} 53

Grey Box Fuzzing

¨ Rather than treating the program as a black box,
instrument the program to track the paths run

¨ Save inputs that lead to new paths
¤ Mutate off those inputs to generate inputs
¤ To bias toward running new paths

¨ Example
¤ American Fuzzy Lop (AFL)

¨ “State of the practice” at this time

54

AFL

¨ Provides compiler wrappers for gcc to instrument
target program to collect fuzzing stats

¨ See
¤ http://lcamtuf.coredump.cx/afl/ 55

AFL Instrumentation

¨ Instrument conditional statements to track the paths
executed – and detect new paths

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt56

Input1

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

¨ Instrument conditional statements to track the paths
executed – and detect new paths

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt57

Input2

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

¨ Instrument conditional statements to track the paths
executed – and detect new paths

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt58

Input3

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Instrumentation

¨ Instrument conditional statements to track the paths
executed – and detect new paths

¨ How does AFL work?
¤ http://lcamtuf.coredump.cx/afl/technical_details.txt59

Input3

Input1

http://lcamtuf.coredump.cx/afl/technical_details.txt

AFL Use

¨ Run the fuzzer using afl-fuzz
path-to/afl-fuzz –i <input-dir> -o <output-dir> <path-to-bin> [args]

¨ For example
path-to/afl-fuzz –i input/ -o output/ ./cs165-p3 @@ outfile

¨ Where
¤ input/ directory with the input file
¤ output/ is the directory where the AFL results will be

placed
¤ @@ shows that the arg (input file) to be fuzzed

¨ Output stats about coverage and inputs for
hangs/crashes

61

AFL Results

¨ Shows the results of the fuzzer
¤ E.g., provides inputs that will cause the crash

65

Why Not Use Safe Languages?

¨ A “type safe” language cannot have memory errors
¤ E.g., Java (older) and Rust (recent)

¨ Also, “memory safe” versions of C have been
proposed

70

Why Not Use Safe Languages?

¨ A safe language is “safe” with respect to what
requirements?

71

Why Not Use Safe Languages?

¨ A safe language is “safe” with respect to what
requirements?
¤ Spatial, temporal, and type

¨ Java programs must satisfy all three classes of safety
¤ Via runtime checks (spatial and type) and garbage collection

(temporal)

¨ Rust “safe” programs must satisfy all three classes too
¤ Via runtime checks (spatial and type) and a specialized

mechanism to track the live pointers to an object (temporal)

¨ May have ”unsafe” Rust code also – no guarantees
72

Issues to Overcome

¨ Usability
¤ Early “memory safe” C languages were not popular
¤ C# is still less popular than C/C++

¨ Performance
¤ Type-safe languages incur overhead from checks to ensure

safety
¤ Java has a significant overhead compared to C
¤ Story: JavaOS project

¨ Functionality
¤ May use unsafe C libraries
¤ JVM is written in C

73

Rust

¨ Usability
¤ Has concepts to manage temporal safety (ownership)
¤ Requires type-safe usage (more effort to program)

¨ Performance
¤ Has runtime checks to enforce spatial safety
¤ But, appears to require fewer checks than for C

¨ Functionality
¤ Allows the definition of “unsafe” Rust modules
¤ Uses C libraries

¨ Efforts to replace some C code in Linux with Rust
74

C Is Getting Safer

¨ Likely due to fuzz testing, the fraction of C objects
whose accesses are all memory safe is increasing

¨ Over 90+% of stack objects
¤ Over 75+% of heap objects likewise 75

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cumulative Distribution of the Fraction of Safe Stack Objects
and Safe Heap Allocations on Linux Packages

DataGuard Uriah

FIGURE 3. Cumulative Distribution of the Fraction of
Protected Safe Stack Objects and Safe Heap Allocations
for All Analyzed Linux Packages. The X-axis represents
the percentage of analyzed Linux packages. The Y-axis rep-
resents the percentage of safe stack objects and safe heap
allocations found by DataGuard and Uriah. The figure can be
understood as “(1 - X-axis)% of analyzed packages have at
least Y-axis% of safe stack objects or safe heap allocations."

This translates to analyzing roughly 266 million source
lines of code (SLOC), which constitutes 77.8% of
the total 342 million SLOC. However, 378 packages
remain unanalyzable due to compatibility issues, such
as conflicts with the LLVM version used by DataGuard
and Uriah. Uriah is able to analyze and harden all 202
Linux Packages that make use of heap allocations, with
its original tool chain.

Second, we investigate DataGuard and Uriah’s po-

tential to automatically protect stack and heap objects

against memory errors. We compute the safe objects
within a Linux distribution. Among all the packages
analyzed, DataGuard validates that all accesses to
12,484,971 out of 14,627,355 (85.4%) stack objects
satisfy all three classes of memory errors comprehen-
sively. These objects can all be protected by stack
isolation. Uriah validates that all accesses to objects
produced in 425,317 out of 545,560 heap allocation
sites (77.96%) satisfy spatial and type safety. These
objects are protected from attacks on temporal mem-
ory errors and memory accesses from unsafe objects
using the Uriah runtime allocation scheme. We note
that this is a slightly greater fraction of the protected
heap objects than in the Uriah paper [5]. One reason
is that these Linux packages are the most recent
versions, so heap use tends to be safer than for older
SPEC CPU2006 programs. Also, some of the SPEC
benchmarks that were evaluated originally in Uriah
have a limited number of heap allocations and a large
fraction are unsafe, which biases the results.

Third, we assess the security impact by analyzing

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023Fr
ac

tio
n

of
 S

af
e

St
ac

k
Ob

je
ct

 (P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

the fraction of protected stack and heap objects vali-

dated. Figure 2 shows the distribution of the fractions
of safe stack objects (i.e., allocation sites for the heap)
across the Ubuntu packages. As we can see, using the
memory safety validation of DataGuard and Uriah, a
majority of the Ubuntu packages have more than 70%
of stack and heap objects protected comprehensively
from memory safety errors. The cumulative distribution
(Figure 3) also shows a similar finding. Specifically,
DataGuard protects more than 70% of the stack ob-
jects for 97% of the packages (i.e., at 3% in the figure)
and more than 80% of the stack objects for 75% (i.e., at
25%) of the packages. Uriah protects more than 60%
of the heap allocation sites for 90% of the packages
(i.e., at 10% in the figure) and more than 70% of
the heap allocation sites for 60% (i.e., at 40%) of the
packages.

Assessing Memory Safety over Time
We perform a longitudinal study using DataGuard and
Uriah to assess how memory safety has evolved in
progams over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and Fire-
fox (21-115), spanning ten years (Jan 2013 - May
2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to satisfy memory safety comprehensively,
is trending upwards over the past ten years for all
three programs. We observe a few brief reductions in
the fraction of safe stack objects, such as year 2016
for Firefox and year 2018 for Nginx and Httpd. We
note that major updates of the corresponding programs

Month 2023 Publication Title 5

Isolate Memory-Safe Objects

¨ Memory safe objects can be protected by
isolation
¤ All accesses in ”safe” region

must be safe
¤ No references to safe region

from “unsafe” objects/region
¤à Safe region is safe from

memory errors

¨ Protected by ASLR or new hardware cheaply
¨ Issue: May have to protect unsafe cases too 76

Safe Stack
(OSDI 2014)

Unsafe Stack Original
Stack

Region

C Is Getting Safer, But…

¨ Likely due to fuzz testing, the fraction of C objects
whose accesses are all memory safe is increasing

¨ But, manual code and AI-generated C code is currently
much less safe 77

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cumulative Distribution of the Fraction of Safe Stack Objects
and Safe Heap Allocations on Linux Packages

DataGuard Uriah

FIGURE 3. Cumulative Distribution of the Fraction of
Protected Safe Stack Objects and Safe Heap Allocations
for All Analyzed Linux Packages. The X-axis represents
the percentage of analyzed Linux packages. The Y-axis rep-
resents the percentage of safe stack objects and safe heap
allocations found by DataGuard and Uriah. The figure can be
understood as “(1 - X-axis)% of analyzed packages have at
least Y-axis% of safe stack objects or safe heap allocations."

This translates to analyzing roughly 266 million source
lines of code (SLOC), which constitutes 77.8% of
the total 342 million SLOC. However, 378 packages
remain unanalyzable due to compatibility issues, such
as conflicts with the LLVM version used by DataGuard
and Uriah. Uriah is able to analyze and harden all 202
Linux Packages that make use of heap allocations, with
its original tool chain.

Second, we investigate DataGuard and Uriah’s po-

tential to automatically protect stack and heap objects

against memory errors. We compute the safe objects
within a Linux distribution. Among all the packages
analyzed, DataGuard validates that all accesses to
12,484,971 out of 14,627,355 (85.4%) stack objects
satisfy all three classes of memory errors comprehen-
sively. These objects can all be protected by stack
isolation. Uriah validates that all accesses to objects
produced in 425,317 out of 545,560 heap allocation
sites (77.96%) satisfy spatial and type safety. These
objects are protected from attacks on temporal mem-
ory errors and memory accesses from unsafe objects
using the Uriah runtime allocation scheme. We note
that this is a slightly greater fraction of the protected
heap objects than in the Uriah paper [5]. One reason
is that these Linux packages are the most recent
versions, so heap use tends to be safer than for older
SPEC CPU2006 programs. Also, some of the SPEC
benchmarks that were evaluated originally in Uriah
have a limited number of heap allocations and a large
fraction are unsafe, which biases the results.

Third, we assess the security impact by analyzing

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023Fr
ac

tio
n

of
 S

af
e

St
ac

k
Ob

je
ct

 (P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

the fraction of protected stack and heap objects vali-

dated. Figure 2 shows the distribution of the fractions
of safe stack objects (i.e., allocation sites for the heap)
across the Ubuntu packages. As we can see, using the
memory safety validation of DataGuard and Uriah, a
majority of the Ubuntu packages have more than 70%
of stack and heap objects protected comprehensively
from memory safety errors. The cumulative distribution
(Figure 3) also shows a similar finding. Specifically,
DataGuard protects more than 70% of the stack ob-
jects for 97% of the packages (i.e., at 3% in the figure)
and more than 80% of the stack objects for 75% (i.e., at
25%) of the packages. Uriah protects more than 60%
of the heap allocation sites for 90% of the packages
(i.e., at 10% in the figure) and more than 70% of
the heap allocation sites for 60% (i.e., at 40%) of the
packages.

Assessing Memory Safety over Time
We perform a longitudinal study using DataGuard and
Uriah to assess how memory safety has evolved in
progams over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and Fire-
fox (21-115), spanning ten years (Jan 2013 - May
2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to satisfy memory safety comprehensively,
is trending upwards over the past ten years for all
three programs. We observe a few brief reductions in
the fraction of safe stack objects, such as year 2016
for Firefox and year 2018 for Nginx and Httpd. We
note that major updates of the corresponding programs

Month 2023 Publication Title 5

Conclusions

¨ Can improve resilience to attack on memory errors
¨ Control-flow integrity

¤ Limit control flows restrict ROP attacks
n But, can still launch attacks that follow legal control flows

¨ Fuzz testing
¤ Systematic approach to test programs for crash/hang

n But, cannot achieve complete coverage

¨ Safe languages
¤ Memory errors are not possible in these languages

n But, impact on usability, performance, functionality

78

Questions
79

