CS165 — Computer Security

Heap Attacks
February 6, 2024

Heap Memory
]

- What is heap memory?

writsbis; not ezecutable Stack | W
|
writable; not executable Static Data Intialized when process starts
Read-only; not execetable Literals Initializad when process starts

Resd-ony. ereculable Instructions Initialieed when process starts

Heap Memory

Another region of memory that may be vulnerable to
attacks is heap memory
Attacks similar to those on stack memory, such as buffer
overflows, are possible

Although the attack techniques differ somewhat
Target metadata — kinds of similar, but different effect
Target data — data may include code pointers

Heap Memory

-1 Another region of memory that may be vulnerable to
attacks is heap memory

However, the complexity of managing heap memory
brings other attacks into consideration

Some are rather complex (e.g., heap spraying)

o Today, we will look at the new attack types and
attack techniques for the heap

Just a couple of simpler ones

Heap Memory

.
7 What is heap memory?

The heap memory region is where dynamic memory
allocations take place

t is a contiguous region of virtual memory (can expand)

Heap Heap
Low High

Heap Memory

What is heap memory?

The heap memory region is where dynamic memory
allocations take place

An allocation is assigned a contiguous range of virtual
memory within the heap (e.g., on malloc)

Obj
A

Heap Heap
Low High

Heap Memory
]
7 What is heap memory?

The heap memory region is where dynamic memory
allocations take place

An allocation is assigned a contiguous range of virtual
memory within the heap (e.g., on malloc)

Obj
A

Obj
C

Heap Heap

Low High

Heap Memory

What is heap memory?

The heap memory region is where dynamic memory

allocations take place

Memory from a specific allocation may be deallocated
and reclaimed when no longer needed (e.g., on “free”)

Obj
A

Obj

C

Heap
Low

Heap
High

Heap Memory

7 What is heap memory?

The heap memory region is where dynamic memory

allocations take place

Memory from a specific allocation may be reclaimed
when no longer needed (e.g., on “free”) and reused

Obj
A

Obj

C

Heap
Low

Heap
High

Heap Memory
]
7 What is heap memory?

The heap memory region is where dynamic memory
allocations take place

If you forget to reclaim memory no longer in use, that
memory region is lost (i.e., memory leak)

Heap Heap

Low High

Review: Stack Buffer Overflow

-1 Suppose that PacketRead causes an overflow on the
memory region of the variable “packet” below

What is the potential impact?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;
}
1f (authenticated)
ProcessPacket (packet) ;

Stack Buffer Overflow

71 Suppose that PacketRead causes an overflow on the
memory region of the variable “packet” below

124

What is the potential impact? “authenticated” may be set

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;
}
1f (authenticated)
ProcessPacket (packet) ;

Heap Buffer Overflow

What happens if we allocate “packet” on the heap?

A buffer overflow of a buffer allocated on the heap is
called a heap overflow — Impact?

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;
}
1f (authenticated)
ProcessPacket (packet) ;

Heap Buffer Overflow

1 While a heap overflow may impact heap memory
regions, it won’t impact stack memory (directly)

“authenticated” is unaffected, but something else may be affected

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead (packet) ;
1f (Authenticate (packet))
authenticated = 1;

}
1f (authenticated)

ProcessPacket (packet);

Heap Memory Layout

7 The Heap Memory Layout below is idealized

Depends on the heap allocator

Many heap allocators store metadata with objects on
the heap to manage the heap region

Obj
C

Obj
A

Heap Heap
Low High

Heap Memory Layout

.
1 The Heap Memory Layout often includes metadata

Depends on the heap allocator

Metadata is often placed between objects to store
information needed to manage allocation state —e.g.,
sizes and status

Obj
C

Obj
A

HeaP Metadata HeaP
Low High

Attacks on Heap Metadata
TR e

-1 Overflow heap memory to modify metadata

Heap Metadata Heap
Low High

Attacks on Heap Metadata

-1 Overflow heap memory to modify metadata

Obj

Heap

Low

Obj
C

Heap
High

Attacks on Heap Metadata
TR e

-1 Overflow heap memory to modify metadata

Heap Metadata Heap
Low High

Heap Metadata Maintains Chunks
]

-1 Allocators maintain a doubly linked list of allocated
and free “chunks”

Each allocated region (chunk) references...

m The prior chunk (back)
m The next chunk (forward)

Chunks1, 2, and 3 are joined by a doubly-linked list
/’_\ /_\

~ N

ps | sz | fd”] bk&hunk’] ps | sz \fd/))k\c\hunKZ ps | sz [Yd | bk |chunk3

- P

\—/\—’/

®» Chunk 2 forward = address of Chunk 3
® Chunk 2 back = address of Chunk 1

Remove a Chunk

Allocators maintain a doubly linked list of allocated
and free “chunks”

Free a chunk by resetting the forward pointer of the
back chunk and the back pointer of the forward chunk

Chunk2 may be unlinked by rewriting 2 pointers

—
D

IpS’SZI 1D hunkﬂ :pSISZ[fdlbklchunKZI ’ps sz |d k]chunkB‘

Chunk 1 forward = address of Chunk 3
Chunk 3 back = address of Chunk 1

Remove a Chunk

Allocators maintain a doubly linked list of allocated
and free “chunks”

Free a chunk by resetting the forward pointer of the
back chunk and the back pointer of the forward chunk

Chunk?2 is now unlinked

‘ ps ‘ sz l f 7 bk 7 phunk1: l ps] sz fd k ‘chunk3‘

Chunk 1 forward = address of Chunk 3
Chunk 3 back = address of Chunk 1

Remove a Chunk

Allocators maintain a doubly linked list of allocated
and free “chunks”

Free a chunk by resetting the forward pointer of the
back chunk and the back pointer of the forward chunk

Chunk?2 is now unlinked

P .

N

ps | sz fd//bk\c\hunk‘l ps | sz [¥d | bk \chunk3

-

\‘-/

(Chunk1’s fd) Chunk2=>bk=>fd = Chunk2->fd; (Chunk3)
(Chunk3’s bk) Chunk2=2>fd->bk = Chunk2->bk; (Chunk1)

Attacks on Heap Metadata
]

1 How can you use a buffer overflow...
Say in Chunk1

7 To exploit a “free” operation of Chunk2?

Chunk
3

HeaP MetLdata / HeaP

Low High

Chu
I

Attacks on Heap Metadata
]

7 Modify the “fd” and “bk” pointer values of Chunk?2

1 Such that

Chunk2->bk is the location you want to write
m Offset by distance to “fd” field

Chunk2—2>fd is the value you want to write
In Chunk2—>bk—2>fd (location + fd) = Chunk2—->fd (value)

- Result: A “write-what-where” vulnerability!
Or “arbitrary write primitive”

What is a Defense?

How would you prevent this vulnerability?

Hint: What invariant would you expect for the forward
and back pointers of Chunk2 prior to freeing it?

What is a Defense?
I =

1 How would you prevent this vulnerability?
01 Chunk2—>bk—>fd = ???
01 Chunk2—>fd—>bk = ???

What is a Defense?

How would you prevent this vulnerability?
Chunk2—2>bk—=>fd = Chunk?2
Chunk2—=2>fd—2>bk = Chunk2

Thus, we check in every free(chunk)
assert (chunk=2>fd=2bk == chunk)
assert (chunk=2>fd=2bk == chunk)

To detect any tampering prior to free-ing

Heap Overflows
T e

-1 Can be useful and hard to prevent
struct x {

char buf[size];

data *obj;

volid (*fn) () ;
b

Heap Overflows
TR e

-1 Can be useful and hard to prevent
struct x {

char buf[size];

data *obj;

volid (*fn) () ;
b

Heap Overflows
T

7 What can an overflow of “buf” cause?
struct x {

char buf[size];

data *obj;

volid (*fn) () ;
b

Heap Overflows
]

7 What can an overflow of “buf” cause? Change “obj”
What attacks are possible?
struct x {
char buf[size];
data *obj;
void (*fn) ()

};
buf Obl

(size bytes) (ptr) .

Heap Overflows
]

7 What can an overflow of “buf” cause? Change “obj”
Read/write arbitrary locations defined by adversary

struct x {
char buf[size];
data *obj;
void (*fn) ()

b
buf Obl
(size bytes) (ptr)

Heap Overflows

What can an overflow of “buf” cause? Change “fn”
What attacks are possible?
struct x {
char buf[size];
data *obj;
vold (*fn) () ;

b
buf obj fn

(size bytes) (ptr) | (ptr)

Heap Overflows

What can an overflow of “buf” cause? Change “fn”
Execute adversary-chosen code
struct x {
char buf[size];
data *obj;
vold (*fn) () ;

b
buf obj fn

(size bytes) (ptr) | (ptr)

Defenses for Heap Overflows
TR e

1 None really — e.g., canaries are expensive
struct x {

char buf[size];

data *obj;

vold (*fn) () ;
b

Defenses for Heap Overflows
T
1 None really — e.g., ASLR doesn’t help — why not?

struct x {
char bufl[size];
data *obj;
volid (*fn) ()
bi

Defenses for Heap Overflows
T
1 None really — e.g., NX does not help — like ROP

struct x {
char bufl[size];
data *obj;
volid (*fn) ()
bi

Attacks on Memory Reuse

1 Attacks also exploit the inconsistencies caused in
the reuse of memory on the heap

1 Inconsistencies

Your program may reclaim memory
m And reuse that memory region for another object

But, the pointers to the original object (i.e., memory
location prior to reclamation) may remain
m And be used after the reuse

1 Example
Use-after-free

Use After Free

.
o Flaw: Program frees data on the heap, but then

references that memory as if it were still valid
E.g., pointer to Obj B (say “b”)
1 Accessible: Adversary can control data written
using the freed pointer
memcpy(b, adv-data, size);

o Exploit: Obtain a “write primitive”

Obj
C

Obj
A

Use After Free

Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

Accessible: Adversary can control data written
using the freed pointer

Exploit: Obtain a “write primitive”

Hold on: just using a reference to freed memory
isn’t really a problem, is it?

What is missing from above?

Use After Free

.
Flaw: Program frees data on the heap, but then

references that memory as if it were still valid
E.g., pointer to Obj B (say “b”)
Accessible: Adversary can control data written using
the freed pointer
memcpy(b, adv-data, size);
Exploit: Obtain a “write primitive” to a target object

Obj
C

Obj
A

Use After Free

Challenge: Get the program to allocate the
adversary-chosen target object in the same
location as the freed object

Need to cause the program to “malloc” a target
The location of allocation depends on the allocator
What can you do?

Obj
C

Obj

Use After Free

Challenge: Get the program to allocate the
adversary-chosen target data in the same location

as the freed object

What can you do?

Heap spraying: cause the allocation of lots of objects in
hope one lands where you (the adversary) wants

E.g., Get the program to run “malloc” for your object of
choice many times until target is likely allocated at B

Obj
C

Obj
A

Conclusions

Heap errors are now the most commonly exploited
vulnerabilities

Attacks on the heap may exploit the heap
metadata and/or data (spatially or temporally)

While these are similar in spirit to stack exploits,
heap attacks can be more varied

Due to the more complex allocation/deallocation
Major focus is to figure out how to prevent heap

attacks in a manner that is reliable, but not too
expensive

Questions
52 |

QA

