
Heap Attacks
February 6, 2024

1

CS165 – Computer Security

2

Heap Memory

• What is heap memory?

3

Heap Memory

¨ Another region of memory that may be vulnerable to
attacks is heap memory
¤ Attacks similar to those on stack memory, such as buffer

overflows, are possible
n Although the attack techniques differ somewhat

n Target metadata – kinds of similar, but different effect
n Target data – data may include code pointers

4

Heap Memory

¨ Another region of memory that may be vulnerable to
attacks is heap memory
¤ However, the complexity of managing heap memory

brings other attacks into consideration
¤ Some are rather complex (e.g., heap spraying)

¨ Today, we will look at the new attack types and
attack techniques for the heap
¤ Just a couple of simpler ones

5

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ It is a contiguous region of virtual memory (can expand)

Heap
Low

Heap
High

6

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ An allocation is assigned a contiguous range of virtual

memory within the heap (e.g., on malloc)

Heap
Low

Heap
High

Obj
A

7

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ An allocation is assigned a contiguous range of virtual

memory within the heap (e.g., on malloc)

Heap
Low

Heap
High

Obj
A

Obj
B

Obj
C

8

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ Memory from a specific allocation may be deallocated

and reclaimed when no longer needed (e.g., on “free”)

Heap
Low

Heap
High

Obj
A

Obj
C

9

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ Memory from a specific allocation may be reclaimed

when no longer needed (e.g., on “free”) and reused

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

10

Heap Memory

¨ What is heap memory?
¤ The heap memory region is where dynamic memory

allocations take place
¤ If you forget to reclaim memory no longer in use, that

memory region is lost (i.e., memory leak)

Heap
Low

Heap
High

Obj
D

11

Review: Stack Buffer Overflow

¨ Suppose that PacketRead causes an overflow on the
memory region of the variable “packet” below
¤ What is the potential impact?

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))

authenticated = 1;
}
if (authenticated)

ProcessPacket(packet);

12

Stack Buffer Overflow

¨ Suppose that PacketRead causes an overflow on the
memory region of the variable “packet” below
¤ What is the potential impact? ”authenticated” may be set

int authenticated = 0;
char packet[1000];

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))

authenticated = 1;
}
if (authenticated)

ProcessPacket(packet);

13

Heap Buffer Overflow

¨ What happens if we allocate “packet” on the heap?
¤ A buffer overflow of a buffer allocated on the heap is

called a heap overflow – Impact?

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))

authenticated = 1;
}
if (authenticated)

ProcessPacket(packet);

14

Heap Buffer Overflow

¨ While a heap overflow may impact heap memory
regions, it won’t impact stack memory (directly)
¤ “authenticated” is unaffected, but something else may be affected

int authenticated = 0;
char *packet = (char *)malloc(1000);

while (!authenticated) {
PacketRead(packet);
if (Authenticate(packet))

authenticated = 1;
}
if (authenticated)

ProcessPacket(packet);

15

Heap Memory Layout

¨ The Heap Memory Layout below is idealized
¤ Depends on the heap allocator
¤ Many heap allocators store metadata with objects on

the heap to manage the heap region

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

16

Heap Memory Layout

¨ The Heap Memory Layout often includes metadata
¤ Depends on the heap allocator
¤ Metadata is often placed between objects to store

information needed to manage allocation state – e.g.,
sizes and status

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

18

Attacks on Heap Metadata

¨ Overflow heap memory to modify metadata

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

19

Attacks on Heap Metadata

¨ Overflow heap memory to modify metadata

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

20

Attacks on Heap Metadata

¨ Overflow heap memory to modify metadata

Heap
Low

Heap
High

Obj
A

Obj
C

Obj
D

Metadata

Heap Metadata Maintains Chunks

¨ Allocators maintain a doubly linked list of allocated
and free “chunks”
¤ Each allocated region (chunk) references…

n The prior chunk (back)
n The next chunk (forward)

n Chunk 2 forward = address of Chunk 3
n Chunk 2 back = address of Chunk 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Remove a Chunk

¨ Allocators maintain a doubly linked list of allocated
and free “chunks”
¤ Free a chunk by resetting the forward pointer of the

back chunk and the back pointer of the forward chunk

n Chunk 1 forward = address of Chunk 3
n Chunk 3 back = address of Chunk 1

Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Remove a Chunk

¨ Allocators maintain a doubly linked list of allocated
and free “chunks”
¤ Free a chunk by resetting the forward pointer of the

back chunk and the back pointer of the forward chunk

n Chunk 1 forward = address of Chunk 3
n Chunk 3 back = address of Chunk 1Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Remove a Chunk

¨ Allocators maintain a doubly linked list of allocated
and free “chunks”
¤ Free a chunk by resetting the forward pointer of the

back chunk and the back pointer of the forward chunk

n (Chunk1’s fd) Chunk2àbkàfd = Chunk2àfd; (Chunk3)
n (Chunk3’s bk) Chunk2àfdàbk = Chunk2àbk; (Chunk1)Systems and Internet Infrastructure Security (SIIS) Laboratory Page

Process Address Space

• Text: static code

• Data: also called heap

‣ static variables

‣ dynamically allocated data
(malloc, new)

• Stack: program
execution stacks

Text

Data

Stack

lower
memory
address

higher
memory
address

CSE543 - Introduction to Computer and Network Security Page

Heap Overflows

• http://www.sans.edu/student-files/presentations/heap_overflows_notes.pdf

�X

• Heap allocators maintain a doubly-linked list of allocated
and free chunks

• malloc() and free() modify this list

Attacks on Heap Metadata

¨ How can you use a buffer overflow…
¤ Say in Chunk1

¨ To exploit a “free” operation of Chunk2?

25

Heap
Low

Heap
High

Chunk
1

Chunk
3

Chunk
2

Metadata

Attacks on Heap Metadata

¨ Modify the “fd” and “bk” pointer values of Chunk2
¨ Such that

¤ Chunk2àbk is the location you want to write
n Offset by distance to “fd” field

¤ Chunk2àfd is the value you want to write
¤ In Chunk2àbkàfd (location + fd) = Chunk2àfd (value)

¨ Result: A “write-what-where” vulnerability!
¤ Or “arbitrary write primitive”

26

What is a Defense?

¨ How would you prevent this vulnerability?
¤ Hint: What invariant would you expect for the forward

and back pointers of Chunk2 prior to freeing it?

28

What is a Defense?

¨ How would you prevent this vulnerability?
¤ Chunk2àbkàfd = ???
¤ Chunk2àfdàbk = ???

29

What is a Defense?

¨ How would you prevent this vulnerability?
¤ Chunk2àbkàfd = Chunk2
¤ Chunk2àfdàbk = Chunk2

¨ Thus, we check in every free(chunk)
assert(chunkàfdàbk == chunk)

assert(chunkàfdàbk == chunk)

¨ To detect any tampering prior to free-ing

30

32

Heap Overflows

¨ Can be useful and hard to prevent
struct x {

char buf[size];
data *obj;

void (*fn)();

};

33

Heap Overflows

¨ Can be useful and hard to prevent
struct x {

char buf[size];
data *obj;

void (*fn)();

};

buf
(size bytes)

obj
(ptr)

fn
(ptr)

34

Heap Overflows

¨ What can an overflow of “buf” cause?
struct x {

char buf[size];
data *obj;

void (*fn)();

};

buf
(size bytes)

obj
(ptr)

fn
(ptr)

35

Heap Overflows

¨ What can an overflow of “buf” cause? Change “obj”
¤ What attacks are possible?

struct x {

char buf[size];
data *obj;

void (*fn)();

};
buf

(size bytes)
obj

(ptr)
fn

(ptr)

36

Heap Overflows

¨ What can an overflow of “buf” cause? Change “obj”
¤ Read/write arbitrary locations defined by adversary

struct x {

char buf[size];
data *obj;

void (*fn)();

};
buf

(size bytes)
obj

(ptr)
fn

(ptr)

37

Heap Overflows

¨ What can an overflow of “buf” cause? Change “fn”
¤ What attacks are possible?

struct x {

char buf[size];
data *obj;

void (*fn)();

};
buf

(size bytes)
obj

(ptr)
fn

(ptr)

38

Heap Overflows

¨ What can an overflow of “buf” cause? Change “fn”
¤ Execute adversary-chosen code

struct x {

char buf[size];
data *obj;

void (*fn)();

};
buf

(size bytes)
obj

(ptr)
fn

(ptr)

39

Defenses for Heap Overflows

¨ None really – e.g., canaries are expensive
struct x {

char buf[size];
data *obj;

void (*fn)();

};

buf
(size bytes)

obj
(ptr)

fn
(ptr)

40

Defenses for Heap Overflows

¨ None really – e.g., ASLR doesn’t help – why not?
struct x {

char buf[size];
data *obj;

void (*fn)();

};

buf
(size bytes)

obj
(ptr)

fn
(ptr)

41

Defenses for Heap Overflows

¨ None really – e.g., NX does not help – like ROP
struct x {

char buf[size];
data *obj;

void (*fn)();

};

buf
(size bytes)

obj
(ptr)

fn
(ptr)

42

Attacks on Memory Reuse

¨ Attacks also exploit the inconsistencies caused in
the reuse of memory on the heap

¨ Inconsistencies
¤ Your program may reclaim memory

n And reuse that memory region for another object
¤ But, the pointers to the original object (i.e., memory

location prior to reclamation) may remain
n And be used after the reuse

¨ Example
¤ Use-after-free

43

Use After Free

¨ Flaw: Program frees data on the heap, but then
references that memory as if it were still valid
¤ E.g., pointer to Obj B (say “b”)

¨ Accessible: Adversary can control data written
using the freed pointer
¤ memcpy(b, adv-data, size);

¨ Exploit: Obtain a “write primitive”

Obj
A

Obj
B

Obj
C

44

Use After Free

¨ Flaw: Program frees data on the heap, but then
references that memory as if it were still valid

¨ Accessible: Adversary can control data written
using the freed pointer

¨ Exploit: Obtain a “write primitive”

¨ Hold on: just using a reference to freed memory
isn’t really a problem, is it?
¤ What is missing from above?

45

Use After Free

¨ Flaw: Program frees data on the heap, but then
references that memory as if it were still valid
¤ E.g., pointer to Obj B (say “b”)

¨ Accessible: Adversary can control data written using
the freed pointer
¤ memcpy(b, adv-data, size);

¨ Exploit: Obtain a “write primitive” to a target object

Obj
A

Obj
C

target

46

Use After Free

¨ Challenge: Get the program to allocate the
adversary-chosen target object in the same
location as the freed object
¤ Need to cause the program to “malloc” a target
¤ The location of allocation depends on the allocator
¤ What can you do?

Obj
A target

Obj
C

47

Use After Free

¨ Challenge: Get the program to allocate the
adversary-chosen target data in the same location
as the freed object
¤ What can you do?

n Heap spraying: cause the allocation of lots of objects in
hope one lands where you (the adversary) wants

n E.g., Get the program to run “malloc” for your object of
choice many times until target is likely allocated at B

Obj
A target

Obj
C

Conclusions

¨ Heap errors are now the most commonly exploited
vulnerabilities

¨ Attacks on the heap may exploit the heap
metadata and/or data (spatially or temporally)

¨ While these are similar in spirit to stack exploits,
heap attacks can be more varied
¤ Due to the more complex allocation/deallocation

¨ Major focus is to figure out how to prevent heap
attacks in a manner that is reliable, but not too
expensive

51

Questions
52

