
Introduction
January 9, 2024

1

CS165 – Computer Security

Outline

¨ Welcome!
¨ Goals of this course

¤ Get to know computer security
¤ Master a subset of critical skills in security

¨ Introduction to the class

2

Self intro

¨ Trent Jaeger, CSE Prof.
¨ Email: trentj@ucr.edu
¨ eLearn used for announcements, slides, assignments, forum
¨ Course webpage: https://www.cs.ucr.edu/~trentj/cs165-

w24/
¤ Link to the course schedule

¨ Office: Currently WCH 442 – may change
¨ Office Hours: 3-4pm Tu and 2-3pm W or by appointment
¨ TA: Zheng Zhang <zheng.zhang@ucr.edu>

3

mailto:trentj@cs.ucr.edu
https://www.cs.ucr.edu/~trentj/cs165-w24/
https://www.cs.ucr.edu/~trentj/cs165-w24/

Problem – Compromise the Internet
4

2000s – One vulnerability can take over the Internet

infected by permutation scanning would start at a ran-
dom point.

This has the effect of providing a self-coordinated, com-
prehensive scan while maintaining the benefits of ran-
dom probing. Each worm looks like it is conducting a
random scan, but it attempts to minimize duplication of
effort. Any time an instance of the worm,W , encounters
an already-infected host, it knows that W 0, the original
infector of the host, is already working along the cur-
rent sequence in the permutation, and is further ahead.
Hence, there’s no need for W to continue working on
the current sequence in addition toW 0.

Self-coordination keeps the infection rate high and guar-
antees an eventual comprehensive scan. Furthermore, it
allows the worm to make a local decision that further
scanning is of little benefit. After any particular copy
of the worm sees several infected machines without dis-
covering new vulnerable targets, the worm assumes that
effectively complete infection has occurred and stops the
scanning process.

A timer could then induce the worms to wake up, change
the permutation key to the next one in a prespecified se-
quence, and begin scanning through the new permuta-
tion, starting at its own index and halting when another
instance is discovered. This process insures that every
address would be efficiently rescanned at regular inter-
vals, detecting any machines which came onto the net
or were reinstalled but not patched, greatly increasing a
worm’s staying power. Otherwise, the worms are silent
and difficult to detect, until they receive attack orders
(see Section 6).

A further optimization is a partitioned permutation scan.
In this scheme, the worm has a range of the permutation
that it is initially responsible for. When it infects another
machine, it reduces its range in half, with the newly in-
fected worm taking the other section. When the range
gets below a certain level, it switches to simple permu-
tation scanning and otherwise behaves like a permuta-
tion scan. This scheme offers a slight but noticeable
increase in scanning efficiency, by dividing up the ini-
tial workload using an approximate divide-and-conquer
technique.

Permutation scanning interacts particularly well with a
worm which attacks multiple security holes: after de-
ciding that the initial exploit is exhausted, the worm re-
sets the permutation to its current address, changes the
permutation key, and exploits the second security hole.
Thus, even relatively rare secondary holes can be effi-
ciently and quickly scanned once the worm has estab-

0

100,000

200,000

300,000

0 1 2 3 4 5 6 7 8

Time (hours)

N
um

be
r o

f I
ns

ta
nc

es

Simulation K = 2.6, T = 5.52

Figure 6: The spread of a simulated worm capable of 10
scans/second in a population of 300,000 vulnerable machines
and its comparison to the model developed in Section 2. The
simulation and theoretical results overlap completely.

lished itself on the network.

It may seem that the permutation scanning algorithm is
spoofable, but only to a very limited degree. If an unin-
fected machine responds to the scan in the same way as
a worm, by falsely claiming to be infected, it will tem-
porarily protect those machines which exist later in the
current permutation from being scanned by the worm.
However, since the permutation itself changes on ev-
ery rescan, the set of machines protected is constantly
changing. The result is that unless a very large number
of uninfected machines respond to probes like an actual
worm, the protection is almost nonexistent.

4.3 Simulation of a Warhol Worm

A combination of hit-list and permutation scanning can
create what we term a Warhol worm, capable of attack-
ing most vulnerable targets in well under an hour, possi-
bly less than 15 minutes. Hit-list scanning greatly im-
proves the initial spread, while permutation scanning
keeps the worm’s infection rate high for much longer
when compared with random scanning.

In order to evaluate the effects of hit-list and permuta-
tion scanning, we wrote a small, abstract simulator of a
Warhol worm’s spread. The simulator assumes complete
connectivity within a 232 entry address space4 using a
pseudo-random permutation to map addresses to a sub-

4In general, the Internet address space isn’t completely connected.
If a machine is not reachable from an arbitrary point on the external

Solution – Linux Security Modules
5

2000s – Confine “network-facing daemons” to prevent host compromise

Problem – Buggy Software
6

Lots of vulnerabilities in software – lots of “memory errors”

Solution – Fuzz Testing
7

Automated Generation of Test Cases for Coverage

Solution – Fuzz Testing
8

A Trend of Increasing Fraction of Memory Safe Objects

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cumulative Distribution of the Fraction of Safe Stack Objects
and Safe Heap Allocations on Linux Packages

DataGuard Uriah

FIGURE 3. Cumulative Distribution of the Fraction of
Protected Safe Stack Objects and Safe Heap Allocations
for All Analyzed Linux Packages. The X-axis represents
the percentage of analyzed Linux packages. The Y-axis rep-
resents the percentage of safe stack objects and safe heap
allocations found by DataGuard and Uriah. The figure can be
understood as “(1 - X-axis)% of analyzed packages have at
least Y-axis% of safe stack objects or safe heap allocations."

This translates to analyzing roughly 266 million source
lines of code (SLOC), which constitutes 77.8% of
the total 342 million SLOC. However, 378 packages
remain unanalyzable due to compatibility issues, such
as conflicts with the LLVM version used by DataGuard
and Uriah. Uriah is able to analyze and harden all 202
Linux Packages that make use of heap allocations, with
its original tool chain.

Second, we investigate DataGuard and Uriah’s po-

tential to automatically protect stack and heap objects

against memory errors. We compute the safe objects
within a Linux distribution. Among all the packages
analyzed, DataGuard validates that all accesses to
12,484,971 out of 14,627,355 (85.4%) stack objects
satisfy all three classes of memory errors comprehen-
sively. These objects can all be protected by stack
isolation. Uriah validates that all accesses to objects
produced in 425,317 out of 545,560 heap allocation
sites (77.96%) satisfy spatial and type safety. These
objects are protected from attacks on temporal mem-
ory errors and memory accesses from unsafe objects
using the Uriah runtime allocation scheme. We note
that this is a slightly greater fraction of the protected
heap objects than in the Uriah paper [5]. One reason
is that these Linux packages are the most recent
versions, so heap use tends to be safer than for older
SPEC CPU2006 programs. Also, some of the SPEC
benchmarks that were evaluated originally in Uriah
have a limited number of heap allocations and a large
fraction are unsafe, which biases the results.

Third, we assess the security impact by analyzing

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023Fr
ac

tio
n

of
 S

af
e

St
ac

k
Ob

je
ct

 (P
er

ce
nt

ag
e)

Years from 2013 to 2023

Fraction of Safe Stack Object by DataGuard
Over the Past 10 Years

Nginx Httpd Firefox

FIGURE 4. Fraction of Safe Stack Objects by DataGuard

the fraction of protected stack and heap objects vali-

dated. Figure 2 shows the distribution of the fractions
of safe stack objects (i.e., allocation sites for the heap)
across the Ubuntu packages. As we can see, using the
memory safety validation of DataGuard and Uriah, a
majority of the Ubuntu packages have more than 70%
of stack and heap objects protected comprehensively
from memory safety errors. The cumulative distribution
(Figure 3) also shows a similar finding. Specifically,
DataGuard protects more than 70% of the stack ob-
jects for 97% of the packages (i.e., at 3% in the figure)
and more than 80% of the stack objects for 75% (i.e., at
25%) of the packages. Uriah protects more than 60%
of the heap allocation sites for 90% of the packages
(i.e., at 10% in the figure) and more than 70% of
the heap allocation sites for 60% (i.e., at 40%) of the
packages.

Assessing Memory Safety over Time
We perform a longitudinal study using DataGuard and
Uriah to assess how memory safety has evolved in
progams over time. We showcase results for Nginx
(versions 1.4.0-1.25.0), Httpd (2.2.24-2.4.57), and Fire-
fox (21-115), spanning ten years (Jan 2013 - May
2023) of released versions for each.

For stack memory protection, we deployed Data-
Guard on the three programs. Figure 4 shows that
memory safety, in terms of the fraction of stack objects
validated to satisfy memory safety comprehensively,
is trending upwards over the past ten years for all
three programs. We observe a few brief reductions in
the fraction of safe stack objects, such as year 2016
for Firefox and year 2018 for Nginx and Httpd. We
note that major updates of the corresponding programs

Month 2023 Publication Title 5

Goals of this course

¨ Learn the principles of computer security
¤ Generally a diverse area and domain-specific

¨ Gain hands-on experience (not just theory)
¤ Learn to break things

n $2M bounty for remote jailbreak!

9

Goals of this course

¨ Learn the principles of computer security
¤ Generally a diverse area and domain-specific

¨ Gain hands-on experience (not just theory)
¤ Learn to break things

n $2M bounty for remote jailbreak!

10

Goals of this course

¨ Learn the principles of computer security
¤ Diverse and domain-specific

¨ Gain hands-on experience (not just theory)
¤ Learn to break things

n $2M bounty for remote jailbreak!
¤ and secure systems

n Write secure code, configure systems securely
n Analyze a system critically for weaknesses

11

Goals of this course

¨ From this class, you’ll learn to:
¤ Crack passwords
¤ Perform memory-corruption attacks
¤ Prevent memory-corruption attacks and their

exploitation
¤ Learn mechanisms to limit impact of exploits

¨ Become aware of security as a key dimension of
software and system design and implementation

12

Getting an A

¨ This class requires knowledge of computer
organization, operating systems, networking
¤ CS61, CS161, CS153, CS164 (a little bit)

¨ And a mature understanding of software and
systems in general

13

Outline

¨ Welcome!
¨ Goals of this course
¨ Introduction of the class
¨ Exercises
¨ Grading

14

Computer
15

Network
16

http://www.jaist.ac.jp/is/labs/lim-lab/image/4.CPS.jpg

17

18

Recent news

Data breach in March 2023 Facebook 50M accounts

Dyn DDoS attack Insider threats

19

What is security about?
20

Security and security mindset

¨ “The study of how a system behaves
under adversarial actions”
¤ Intelligent attackers actively trying to lead the

system to misbehave or do unexpected things

¨ Security vs. System

¨ Corner cases vs. Common case

= =

21

Play Games vs. Security Games
22

Play Games vs. Security Games

¨ Both deal with a set of man-made rules!
¨ Man-made rules have bugs (which can be exploited)!

¤ Think about tax systems…
¤ Warren Buffett’s tax rate is lower than his secretary’s

n 17.3% on $39.8 million taxable income
n Heck, it’s lower than my tax rate

¤ The more complex, the more dangerous

23

Thinking like an attacker

¨ Analyze game rules with different goals (threats)
¤ Break into a door? Steal? Fake identity?
¤ Exercise: How to steal my password or ATM PINs?

¨ Think outside the box
¤ Make program run differently than expected
¤ Exploit unexpected effects (e.g., side channels)

¨ Challenge security assumptions
¤ Define the Threat Model

¨ One successful attack that exploits a vulnerability
is good enough!

24

Thinking like a defender

¨ Discover loopholes in game rules and fix them
¤ With respect to a Threat Model
¤ Need to cover all corner cases (is currently HARD!)
¤ Always catch-up

¨ Design favorable rules
¤ Prevention of bad consequences (also HARD!)
¤ Need to allow legitimate functionalities (which may

lead to bad consequences)

25

Goals of defenders

¨ Risk avoidance
¤ Bug discovery and fixing
¤ No guarantee, but reduces/minimizes risk

¨ Deterrence
¤ No guarantee. E.g., surveillance

¨ Prevention
¤ By design, bad things cannot happen (e.g.,

VPN). Do require system change

• Detection
– Long history! Misuse vs. Anomaly
– Cat and Mouse

• Recovery
– Generic is hard. Domain-specific.

Before
attacks
happen

After
attacks
happen

Proactive

Reactive

26

Case study (detection): how people
ensure physical security

Allow “non-malicious/dangerous”
people in

27

Case study (detection): how people
ensure cyber security

28

Basic Goals in Security (CIA)

¨ Confidentiality
¤ Keeping data and resources

hidden
¨ Integrity

¤ Data integrity (integrity)
¤ Origin integrity (authentication)

¨ Availability
¤ Enabling access to data and

resources

Confidentiality
(Secrecy)

Integrity Availability
(Denial of Service)

30

Threat model

¨ What resources/ capabilities / motivations the
attacker has? What defenses are in place?

¤

Weakness < Vulnerability < Exploit < Attack

31

Topics

¨ Passwords
¨ Software security
¨ System security
¨ Network security

32

Outline

¨ Welcome!
¨ Goals of this course
¨ Introduction of the class
¨ Exercises
¨ Grading

33

Course Info and Readings

¨ Course Management via Elearn (Canvas)
¨ Textbook

¤ Tools and Jewels. Paul van Oorschot. Online.
¨ Readings for each class determined by the class

schedule
¤ https://www.cs.ucr.edu/~trentj/cs165-w24/schedule.html

n Linked from syllabus in elearn and …
n https://www.cs.ucr.edu/~trentj/cs165-w24/

¨ Optional Textbook
¤ Hacking: The Art of Exploitation (2nd Edition), by Jon

Erickson
n Useful for understanding attacks.

34

https://www.cs.ucr.edu/~trentj/cs165-w24/schedule.html
https://www.cs.ucr.edu/~trentj/cs165-w24/schedule.html

Grading

¨ 4 Projects : 25%
¨ 2 homeworks: 10%
¨ 1 midterm: 25%
¨ 1 final: 35%
¨ Participation: 5%

¤ Questions, answering others’ questions, forum
activities, intellectual contribution

35

Late policy

¨ 4 slack days for homework or project
(combined)

¨ 2% bonus points if you do not use any
¤ All or nothing

¨ UCR Academic Integrity Polices & Procedures
¤ Linked to syllabus

37

Laws and Policies

¨ Respect others’ privacy and rights
¨ Federal and state laws criminalize computer

intrusion and wiretapping
¤ e.g., Computer Fraud and Abuse Act (CFAA), Electronic

Communications Privacy Act (ECPA)
¨ University of California Electronic Communications

Policy
¤ You can be expelled

¨ Do not share your work outside of class!

38

http://policy.ucop.edu/doc/7000470/ElectronicCommunications
http://policy.ucop.edu/doc/7000470/ElectronicCommunications

Ethics

¨ This course considers topics involving software exploitation techniques.
As part of this investigation, we will cover technologies whose abuse may
infringe on the rights of others. As an instructor, I rely on the ethical use
of these technologies. Unethical use may include circumvention of
existing security or privacy measurements for any purpose, or the
dissemination, promotion, or exploitation of vulnerabilities of these
services. Exceptions to these guidelines may occur in the process of
reporting vulnerabilities through public and authoritative channels. Any
activity outside the letter or spirit of these guidelines will be reported to
the proper authorities and may result in dismissal from the class.

¨ When in doubt, please contact the instructor for advice. Do not
undertake any action that could be perceived as technology misuse
anywhere and/or under any circumstances unless you have received
explicit permission from Professor Jaeger.

39

Questions
40

